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Abstract

This paper outlines a simple finite element approach
for computing eddy current losses in pipe-type cables.
Essentially, what is solved for is the eddy current loss
in a metallic shell that encompasses one or more power
frequency currents, flowing parailel to the longitudinal
axis of the shell. The traditional cross sectional model
for this type of problem involves an open boundary,
which can present difficulties for conventional finite
element methods, although some success has recently
been reported with asymptotic boundary conditions [1].
For many practical cases, the simplest way to bypass
this obstacle is to impose an approximate boundary
condition, H=0, at the outer surface of the metal
shell, It is demonstrated in this paper that this
approximate boundary condition is quite accurate if the
shell is, as a rule of thumb, at Jeast three skin deptbs
thick.

Introduction

In the field of power engineering, much attention has
been devoted to the problem of computing eddy current
losses in various devices associated with the
transmission and distribution of electrical power. One
particular area of research is devoted to the calculation
of eddy current losses in pipe-type cable and similar
structures [2]. Basically, pipe-type cable consists of a
set of three power cables situated inside a metal pipe
which is often filled with insulating oil.  The
alternating currents in the cables produce an
electromagnetic field which, in turn, induces eddy
currents in the pipe. This pipe and cable arrangement
is primarily used as a means of transmission in
underground power systems. The losses in the metal
pipe duc to eddy currents are an important
consideration in pipe-type cable design.

Much of the research into eddy current losses in
pipe-type cable is also applicable to certain electrical
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engincering problems that arise in the relatively new
technology of in-situ electrical heating of heavy oi! {3}.
One aspect of this technology involves transmitting
electrical power down a well which has been drilled
into an underground, oil-bearing formation. Power
cables in the well conduct a low frequency alternating
current from a power source at the surface to electrodes
embedded in the formation. The well is usually lined
with a steel pipe, called a wellbore casing, to maintain
its structural integrity. The alternating currents carried
by the power cable(s) inside the well induce eddy
currents in the surrounding steel casing [4]. This is
essentially the same mechanism for eddy current ioss
that occurs in pipe-type cables.

One of the more common approaches for calculating
eddy current losses is to model a cross section of the
pipe and cable(s) and to use classical electromagnetic
theory to solve for the eddy current density or electric
field in the pipe [5 to 13]. An example of this cross
sectional model for a system composed of a metallic
pipe and single power cable is illustrated in Figure L.
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Figure 1. Cross sectional model of a pipe and cable
eddy current problem.



In Figure 1, a power cable, carrying a power frequency
alternating current, is situated inside a homogeneous,
cylindrical metal shell. In some models, the power
cable is replaced by a thin conductor or filament which
carries the same current as the cable.  The
homogeneous metal shell (region 2) models the pipe.
In the analysis of the eddy current problem in two
dimensions (as opposed to analysis in three
dimensions), both the cable and shell are assumed to be
infinitely long.

The alternating current in the cable is responsible for
exciting the electromagnetic fields in the model. The
current produces an electric field in the z direction
(i.e., perpendicular to the page) and a magnetic field
with components in the r and ¢ directions (or
alternately, in the p and O directions). These fields
exist in all three regions denoted in Figure 1.

Often, the eddy current problem modeled by Figure 1 is
framed as a boundary value problem. Over the years,
various analytical solutions for the eddy current density
in the metal shell have been published [6, 7, 8, 12, 13].
One frequently referenced analytical solution is that of
Kawasaki, Inami and Ishikawa [13]. Their formula for
eddy current density in the metal shell is valid for a
circular shell of any thickness that encompasses an
arbitrary arrangement of power cables (Kawasaki et al.
model each cable with a filament that carries the same
current as the cable). In their formulation, however,
the power cable currents must constitute a balanced
system, (i.e., the sum of all the cable currents must
equal zero).

In this paper, the authors approach the boundary value
problem using a new strategy which combines a basic
[finite element method with the judicious application of
a homogeneous boundary condition at the outer surface
of the metal shell. This leads to a solution for the eddy
current density induced in the metal shell due to the
current in a single power cable. For sitnations where
the metal shell encompasses more than on¢ power
cable, a current density solution, aitributable to the
current in a single cable, is obtained for each cable.
The individual solutions are then superimposed to
obtain the current density in the original, multi-cable
problem. However, unlike the formula derived by
Kawasaki et al., the finite clement approach presented
in this paper is not restricted to situations where the
power cables carry a balanced system of currents.

The finite element based approach to solving the
boundary value problem has several advantages over
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the analytical approach. Chief among these benefits is
the ability of the finite element method to solve
problems that involve complex geometries. Although
the scope of this paper is restricted to solutions for
eddy currents in circular shelis, the finite element
approach is equally adept at solving for eddy current
distributions in shells of any shape (triangular,
rectangular, etc.).

Another advantage of the finite element approach over
the analytic approach is the relative ease with which
inhomogeneous probiems can be solved. For example,
finding an analytic solution for the electric fields in
Figure 1 would become exceedingly difficult if one or
more of the three regions were azimuthally or radially
inhomogeneous. However, the degree of difficulty in
obtaining a finite clement solution for the same
problem would be essentially unchanged by the
presence of the inhomogeneity.

The finite element approach also has an advantage
over the method of moments numerical approach used
by Kriezis and Cangellaris [7] to solve the problem
illustrated in Figure 1. The advantage comes into play
when the relative permeability of the metal shell is
greater than one (i.c., when the shell is composed of
some ferromagnetic material). This situation poses no
difficulty for the finite element method. However, a
proper method of moments solution for eddy current
density in a ferromagnetic shell involves a far more
compiex formulation than that used by Kriezis and
Cangellaris to compute the current density in a
non-magnetic shell.

There is, however, one major drawback to the
application of the finite element method to this
boundary value problem. Region 3, the region
surrounding the shell, extends to infinity in the radial
direction and therefore this problem has an open
boundary. Unfortunately, the basic finite element
method is unable to solve boundary value problems
that have one or more open boundaries. Although
there are various hybrid methods that can solve such
problems, the simplest tactic is to apply an
approximate, homogeneous boundary condition along
some arbitrary boundary surrounding the shell. The
intent is that the introduction of the approximate
boundary condition should not significantly affect that
portion of the finite element solution in the shell
Other common boundary conditions used in
conjunction with artificially bounded solution spaces
include absorbing [14] and radiation boundary
conditions [14, 15].



For the homogeneous boundary condition, the solution
space should extend far enough into region 3 to justify
setting the electric or magnetic field to zero on the
boundary. The main drawback to using this distant
boundary, illustrated in Figure 2, is the extra elements
required to model that portion of region 3 incorporated
into the solution space.

Distant boundary of solution space (for E=0orH=0at p>> 1)
Proposed boundary of solulion space (H =G atp =b)

Figure 2. Boundaries of the solution space for the
eddy current problem modeled in Figure 1.

The authors of this paper have established that, in
many practical cases, the soiution space boundary need
extend no further than the outer surface of the metal
shell. More precisely, one can impose the simple,
Dirichlet boundary condition H=0 along the outer
surface of the shell without significantly affecting the
accuracy of the finite element solution within the shell
itself (note that H is the total magnetic field intensity,
H=H,, +H,,). The obvious advantage of this new

solution space boundary (shown in Figure 2) is the
reduction in the number of elements required to solve
the problem.

To demonstrate that the finite element method, in
conjunction with the H = 0 boundary condition applied
along the outer surface of the shell, will yieid a correct
solution for the eddy current loss in the shell, the
analytical solution published by Kawasaki et al. is used
for comparison. From the numerical examples
presented in this paper, it will be seen that the finite
¢lement solutions compare favorably with analytic
solutions.

The finite element solutions to be presented in this
paper were calculated using software based on a
computer program called UNAFEM, written by W. 1.
Denkmann, in collaboration with D. S. Burnett [16].
The code for UNAFEM is presented in Burnett’s book
entitled Finite Element Analysis: From Concepts to
Applications.

The Governing Partial Differential Equation and
Boundary Conditions

In preparation for the finite element method, a
governing partial differential equation is constructed
for the boundary value problem modeled in Figure 1.
Beginning with Maxwell’s equations in phasor form,

VxE=-jouH, (1)
and VxH=(0+jme)E. 3]
Substituting (1) into (2) yields

Vx(—_:l—(VxE)J—(c + jos)E=0. 3)
Jop

Since power losses in cable systems are generally
computed for electrically short cable lengths,
wavelength effects can be neglected. Consequently, the
only existing field components, E,, H, and H, , are
assumed to exhibit no variation with respect to the z
coordinate. Thus, equation (3) may be written more
explicitly as

-g(a,m%}i( m%]w(r)s, -0,

o
4)
where o, (r)=-_:f—, %
Jop
ay(r)=—1, )
jop r
and [3(7')= —r(c+jo)s). O

The boundary conditions for this problem are specified
at the surface of the power cable in region 1 and, as
discussed earlier, at the outer surface of the metal shell.
At the surface of the power cable, H, =I/(2m.),

where 7 is the total current in the cable and 7, is the
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radius of the power cable. At the outer surface of the
shell (at p=25), the approximate boundary condition
H=0 is imposed. The justification for this
approximate boundary condition is discussed later in
this paper.

The magnetic field boundary conditions are related to
the Neumann boundary conditions on £, by the
following relations:

-1 18E

H=—- 8

T jou r 5§ ®

and ¢=_LBE“ 9
Jou or

These two expressions can be derived from equation

).

Synopsis of the Procedure for Obtaining the Finite
Element Sofution

By employing the Galerkin method of weighted
residuals, along with the desired element trial solutions
and appropriate shape functions, a system of equations
can be assembled. The solution to this system of
equations is the firite ¢lement solution for the electric
field, E,.

Terms corresponding to the Neumann boundary
conditions on K, arise naturally in the system of
equations assembled from the element equations. The
Neumann boundary condition terms may be substituted
with the magnetic field boundary conditions, in
accordance with equations (8) and (9).

A Discussion of the Approximate Boundary
Condition, H=0

As a “rule of thumb,” the approximate boundary
condition, H = 0, is valid if the thickness of the metal
shell, b—a, is ai least 3 skin depths, where one skin

depth equals (2/(op,0,); p, and o, are the

permeability and conductivity of the metal shell.

The rationale behind this rule is fairly obvious. The
magnetic ficld (as well as the electric field) can be
viewed in terms of inward and outward propagating,
cylindrical waves. These waves, which emanate from
the power cable, penetrate the lossy metal shell and
attemuate as they propagate through the shell in the
outward radial direction. For a shell 3 skin depths

thick, an incident wave originating at the inner surface
of the shell will have decayed by a factor of
approximately €’ by the time it reaches the shell’s
outer surface. Thus the magnitude of the magnetic
field at the outer surface of the shell is negligibly small
compared to the magnitude at the inner surface.

It should be noted, however, that this rule of thumb is
highly conservative because it does not account for the
effects of reflection at the air-metal interface at the
outer surface of the shell. When the incident waves of
the magnetic field reach the outer surface of the shell,
the waves can, depending on the angle of incidence,
undergo near total reflection. In many practical cases,
the combined effects of attenuation and reflection will
diminish the magnitude of H at the shell’s outer
surface to such an extent that the H = 0 approximation
is valid, even when the shell thickness is significantly
less than a single skin depth.

For the problem iliustrated in Figure 1, it is difficalt to
make a general statement about the effects of reflection
because the cylindrical waves emanating from the
power cable are obliquely incident to the surfaces of the
shell. However, for a somewhat simplified problem
where the power cable is situated at the center of the
shell, the waves are normally incident to the surfaces of
the shell. In this situation, the degree to which the
magnetic field at the shell’s outer surface is diminished
by reflection and attenuation can be illustrated
mathematically and physically.

For the casc where the power cable is located at the
center of the shell, the magnetic field in the sheli, f, ,

can be expressed by the following formula, derived in
reference [17]:

[eu(b—r)em(b*r) -T e-a(b-rJe-jB(b-r)]

H’z (r) = 2ndar [ea.(b—ﬂ)efﬁ(b_“} _re_a(b—a)e—jﬁ(b—a)] »
(10}
where o=PB= ."’_";EL , (102)
= Zy (b)-nz ; (10b)
Z; (b) +1;
and where My = f& , (10c)
S

105



(2} e A
Z,(6)= J'ET; Hfz)(m oo ) (10d)
8o H,"|o4/ggmod

Equation (10) satisfies Maxwell’s equations and the
exact boundary conditions at the outer surface of the
shell (i.e., the tangential electric and magnetic fields
are continuous across the air-metal interface; and the
fields outside the shell, in region 3, are subject to the
radiation boundary condition). The terms o and §
are, respectively, attenuation and phase constants. The
significance of I will be discussed shortly. n, is the
intrinsic impedance of the metal shell. Z,(b) is the
wave impedance in region 3 at # =& it is derived from
the definition Zy(b) =—E;(b)/H,(®). The HY ()
term in the expression for Z,(b) is a Hankel function
of the second kind of order .

According to (10), the magnetic field at the outer edge
of the shell, r =5, is

Hy (by=——- [1-T] _
& 2nab [ea(b-a)e.fa(b—a}_r e—a(b—a)e-js(b-a)]

an

The term I' is key to understanding the effects of
reflection at the outer surface of the shell. T is the
ratio of the reflected portion of the electric field to the
incident portion of the field (at the shell’s outer
surface). This term is completely analogous to the
reflection coefficient for uniform plane waves as
discussed in reference [18].

When |Z; (6)>>|na|, T (as defined in equation 10b)
approaches unity and as a result, the numerator in (11},
and H, (b) itself, approach zero. Physically, this
implies that the incident and reflected magnetic fields
at r =6 are nearly equal in magnitude, but are almost
180° out of phase; hence the incident and reflected
portions of the field cancel each other out. This
behavior of the magnetic field is highly analogous to
that of current at the end of an open circuited
transmission line. It is of interest to note that
lZ3(b)l >>|ny| is more likely to occur for
non-magnetic shells than for magnetic shells. It
should also be noted that regardless of the relative
magnitude of T, as the shell thickness approaches two
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to three skin depths, the denominator of (11) becomes
large and reduces H, (&) to effectively zero.

Comparison of Finite Element and Analytic
Solutions for Eddy Current Loss

In this section, it will be shown by example that the
finite element method, in concert with the H=0
‘boundary condition, yields solutions that are consistent
with analytic solutions for eddy current losses in
pipe-type cables and similar structures.

Consider the example illustrated in Figure 3: three
power cables, arranged in a triangular configuration,
are surrounded by a steel pipe {or steel wellbore
casing). Each cable carries a 100 A rms alternating
current at a frequency of 60 Hz. The current in any
one cable is 120° out of phase with the currents in the
other two; thus the currents constitute a balanced, three
phase system.

a=0.38Tm
d=0204m

t= 3 skin depths

\ f.=64cm

Oenper =2.86x10° S/m

Bawel = Holr

\region 3 (air)
region 2 (steet pipe)
region 1{air)

Figure 3. Cross sectional model of a pipe-type cable

(three power cables, spaced 120° apart,
encompassed by steel pipe).

Using the finite element method and the H=0
boundary condition, values for the eddy current loss in
the steel pipe are computed for a range of different
magnetic permeabilities. Eddy current joss as a
function of the relative permeability of the steel pipe is
plotted in Figure 4 and compared with the analytical
solution provided by Kawasaki, et al. in equation 6 of
reference {13].  As the permeability of the pipe is
varied, the outer radius of the pipe, b, is adjusted so as
to maintain a wall thickness of three skin depths.
Thus, the rule of thumb discussed earlier, which
stipulates whether or not H=0 is an accurate
approximation for the magnetic field at the outer
surface of the pipe, is satisfied.



Unlike the boundary value problem illustrated in
Figure 1, the problem in this example involves three
excitation currents instead of one (i.e., three power
cables are situated in the pipe as opposed to a single
power cable). Essentially the problem illustrated in
Figure 3 is decomposed into three, single cable
problems. Each “single-cable problem” consists of
only the steel pipe and one power cable.

For the first single-cable problem, a finite element
solution is obtained for the electric field that arises
from I,, the current in the first cable. The governing
partial differential equation for the electric field, E,, is
given by equation (4). For this example, the authors
modeled the solution space of the problem (regions 1
and 2) with linear quadrilateral elements. Using the
Galerkin method of weighted residuals, along with
element trial solations and shape functions appropriate
for linear quadrilateral elements, a system of equations
is assembled from the element equations. Neumann
boundary conditions for E,, which can be related via
(8) and (9) to the magnetic field boundary conditions,
can be readily substituted into the right hand side of
the resulting system of equations. Once again, the
magnetic field boundary conditions are H=0 at the
outer surface of the pipe, and, for this first problem,
Hy =1, [(2nr, ) at the surface of the cable. This yields

a solution for that part of the total £, attributable to
the current in the first power cable, 7,.

Except for the different phases of the excitation
currents, the two remaining single-cable problems are
identical to the first. Thus, to obtain a solution for the
second single-cable problem, simply multiply the
solution for £, from the first problem by exp(j2x/3)
to reflect the difference in phase between /, and 7,.
Similarly, to obtain the solution for the third
single-cable problem, multiply the solution for E,
from the first problem by exp(—j2n/3). The
solutions are then superimposed with due regard to the
original azimuthal position of the cables in Figure 3
(i.e., prior to superposition, the solution attributable to
1, is rotated +120° about the center of the pipe and the
solution attributable to 7, is rotated -120°). The
resultant solution for £, can then be used to compute
the eddy current loss in the steel pipe.

From Poynting’s theorem, the eddy current loss per
meter of pipe is given by
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nb
Pty = S stoa J’ J']EZ]Zpdpde Wim.  (12)
0a

Substituting the resultant solution for £, into (12) and
evaluating the integral numerically yields a value for
Pis. Figure 4 is a plot of the eddy current loss in

the sieel pipe as a function of the relative permeability
of the pipe. The solid line represents the finite element
based solution and the dashed line denotes the
analytical solution for eddy current loss, computed
using equation 6 from reference [13].

Note that in Figure 4 the analytic and finite element
solutions are in good agreement. The tendency of the
eddy current loss to peak at a particolar p, is not
intaitively obvious and seems to be associated with
very thick pipes (thickness >> one skin depth) which
encompass a balanced, multi-phase system of currents.
Similar behavior has been observed by Sikora, et al. in
[9] and Poltz et al. in [19].

0.5:
E 045
2 i
z ]
@ 0.4
é ]
E 1
E 0.35:
o -
) —O0— FE Solution
> 03
------ Eq. 6 of Ref. 13
1.0 A —— S—
10 100 1000
M, of Steel Pipe

Figure 4. The eddy current loss in a stegl pipe
(depicted in Figure 3) as a function of the
relative permeability of the pipe. The outer
radius of the pipe is adjusted as the
permeability varies, so as to maintain a wall
thickness of 3 skin depths.

To demonstrate that the H =0 boundary condition is.
sometimes justified for pipes or metal shells iess than 3

skin depths thick, consider a new problem, modeled in

Figure 5, where the thickness of the metal shell varies

between 20% and 150% of one skin depth.



a=57mm

d~ 29 mm

fem 5 mm

Gy =50 10° S/m
G =333 10Ei Sim
Hou=Hka = Ko
ragion 3 (air)

region 2 (metal sheath)
regioh 1(ain)

Figure 5. Cross sectional model of three current
carrying conductors surrounded by a copper
or aluminum sheath.

As illustrated in Figure 5, a non-magnetic metal
sheath surrounds the three conductors. Each conductor
carries a 300 A rms alternating current at a frequency
of 50 Hz. In the first instance, the metal sheath is
assumed to be composed of copper, which has a skin
depth of 10 mm at 50 Hz. In the second instance, the
metal sheath is assumed to be composed of aluminum,
which has a skin depth of approximately 12 mm at 50
Hz.

Once again, a finite element solution is computed for
the electric field E,, and expression (312) is used to
compute the eddy current losses in the sheaths. The
eddy current losses in copper and aluminum sheaths
are plotted in Figures 6a and 6b as functions of sheath
thickness. The solid lines represent the finite element
based solutions and the dashed lines denote the
analytical solutions for eddy current loss, computed
using equation 6 from reference [13].

6 -
——0— FE solution

o L S Eq. 6 of Ref. 13
2
£ 4
2 “ One Skin depth = 10 mm
o | 3: ~
E ]
Q
g ]
3 27
g ]
w1

0

0 2 4 8 8 10 12 14 16
Sheath Thickness 't [in mm]

Figure 6a. Eddy current loss in a copper sheath as a
function of the sheath’s thickness.
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Figure 6b. Eddy current Joss in an aluminum sheath
as a function of the sheath’s thickness.

For sheath thicknesses greater than about 0.8 skin
depth, the finite element and analytic solutions are in
good agreement.  Consequently the approximate
boundary condition, H=0 at p=b, is in this case
justified for sheaths as thin as one skin depth because
of the aforementioned effects of reflection of the
magnetic field at the outer surface of a metal shell
surrounded by air. That is, the inward and outward
traveling waves, which constitute the magnetic field,
undergo almost complete canceliation at p = b.

As sheath thickness drops below 0.8 skin depth, the
accuracy of approximate boundary condition becomes
increasingly poor, the amount of atienuation
experienced by the incident portion of magnetic field at
the outer surface of the sheath is insufficient to justify
setting H=0. Thus the finite clement solution, which
relies on the H=0 boundary condition, becomes
increasingly inaccurate as the sheath thickness
decreases. Although not shown in Figures 6a and 6b,
the analytic solutions for eddy current loss rapidly
decrease as sheath thickness drops below 0.2 skin

depth.

Conclusion

For the problem of calculating the eddy current
distribution and losses in pipe-type cables and similar
structures, the finite element method can yield accurate
solutions. One obstacle in applying the finite element
method to these problems is the question of how 1o
limit the solution space of, what is technically, an
unbounded problem. The authors have demonstrated
that, for metal shells greater than 3 skin depths thick,
accurate finite efement solutions can be obtained by
imposing the approximate boundary condition, H=10,



along the outer surface of the shell. This rule of thumb
is, however, somewhat conservative and in many
practical cases the approximate boundary condition
still holds for shells as thin as one skin depth. Finally,
it should be noted that the finite clement approach
discussed in this paper lends itself quite easily to
problems where the metal shell or pipe is not circular
(ie, triangular, rectangular, eic). This is not
necessarily true of the various analytical methods
which are generally difficult to adapt to problems with
non-circular shells.
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