214

ACES JOURNAL, VOL. 16, NO. 3, NOV. 2001

Implementing the Parallel Approximate Schur Complement
Preconditioner

D.H. Malan and A.C. Metaxas
EUG, Department of Engineering, Cambridge, CB2 1TP, UK

dhm@eng.cam.ac.uk, acm@eng.cam.ac.uk

Abstract

A modified implementation of Saad’s parallel approxi-
mate Schur complement preconditioner is presented that
is shown to be faster than the original algorithm. This
is evaluated for the solution of large sparse matrices as
generated by the finite element time domain method.
Results indicate that the preconditioner scales well with
an increase in processors and problem size.

1 Introduction

The linear finite element time domain (FETD) method
[1] is a powerful technique for high frequency electro-
magnetics analysis. It allows the use of an unstructured
mesh to model the geometry, and can produce results si-
multaneously at a range of frequencies by using a pulse
as excitation. It also does not suffer from the matrix ill
conditioning that plagues the frequency domain finite el-
ement method when applied to closed resonant cavities.

OE 0’E J,

Vx/—VxE+ae +e TP e (1)

In the present FETD implementation, the vector wave

equation (1) is discretised using Whitney tetrahedral

edge elements. E is the electric field, 4 is magnetic per-

meability, e and o, are respectively real permittivity and

effective conductivity, and J, represents free source cur-

rent density. The standard Galerkin procedure is applied
to obtain:

Be Be
o5t Tgm 2)

e is a vector of unknown edge values, and s is a vec-
tor that is obtained from source current densities. The
square matrices §, T, and 7, are in general large and
sparse, with around sixteen non-zero entries per row, and
typically several hundred thousand rows for a household
sized applicator.

To discretise the temporal derivatives the Newmark
method is used, which yields the recurrence relation:

= 8.

[Sle + [T5

[Ale"T? = [Pr]et +[Po)et " + kst +has +E3stThL (3)

The Newmark parameters and the time step length
are used to derive the constants k,, and are also used

to obtain the sparse matrices A, P; and P, as linear
combinations of the S, T, and T, matrices in equation
2. At each time step, the FETD method requires the
solution of the sparse system in equation 3, with the
right hand side assembled as a linear combination of the
previous and present electric field and source vectors and
the new source vector.

For large problems the A matrix can have in excess
of a million rows, precluding the use of a direct solver.
The matrix is also real, sparse, symmetric, positive def-
inite and very well conditioned. An iterative solution
method is therefore used, which can be rendered much
more efficient with the right preconditioning. Ideally,
a good preconditioner should significantly decrease the
iterations required, introduce little computational over-
head, and be capable of effective implementation in par-
allel.

The approximate Schur complement preconditioner
proposed by Saad [7] presents an attractive choice. It
is purely local in its setup phase, and in application
requires exactly the same communication routines as
for a distributed matrix vector product. In this paper
the practical implementation of this preconditioner will
be discussed, and its performance when used with the
FETD method will be accessed.

2 Approximate Schur complement pre-
conditioner

As shown in equation 3, at each time step of the FETD
method a linear system of the form Az = b has to be
solved with a new b vector. For solution in a parallel en-
vironment the system is distributed row-wise over p pro-
cessors, as shown in equation 4. The rows held on each
processor are considered as one domain, with matrix en-
tries designated as boundary if they fall in columns of
which the like numbered rows are held on different pro-
cessors, or local otherwise. Rows of the linear system are
called boundary if they contain any boundary entries.

Ay Ape Ayp 3} by
Asr Az Aszp Ty by

: : . - | (4)
Apit Apz -+ App Ty by

1054-4887 © 2001 ACES

p

MALAN, METAXAS: IMPLEMENTING PARALLEL APPROX. SCHUR COMPLEMENT PRECONDITIONER

Each block-row of the above system is reordered
so that the boundary rows occur last. Additionally,
the columns of the whole system are rearranged so
that within the diagonal block of each domain the
columns with numbers corresponding to boundary rows
are stored last. Bearing in mind that the local rows are
per definition only connected to rows within that do-
main, the matrix blocks and vector sections can then be

A =

W l‘lt ten as:
. '
Ba ﬂﬂ j;éi : “j

To o ba
x":[wﬂ] b'_[bﬂ]

E;; is a sparse matrix with number of rows equal to the
number of boundary rows in domain ¢, and number of
columns equal to the number of boundary rows in do-
main j. It represents the coupling between domains
and 7, and will be zero for non-adjacent domains. Aqa,
Aup, Apa and Agg are sparse matrices, containing the
self and inter-connecting matrix entries of the local and
boundary rows. For the vectors, & and f subscripts in-
dicate entries corresponding to local and boundary rows
of the linear system, respectively.

On each domain, internal unknowns may be elimi-
nated independently, leaving a reduced system in terms
of the boundary unknowns. The diagonal blocks of the
reduced system are the Schur complement matrices of
the A;; matrices, found as Asc; = Agp—ApadziAag. If
the reduced system is multiplied on both sides by a diag-
onal block matrix consisting of the inverses of the Schur
complement matrices, further algebra finally yields a sys-
tem of the form [3]:

A = [Ao Aap]

(5)

I A5y B A5, B | [2p,
A5g,En I A55,Esp z8,
“igé',,Epl Agé',,Ezﬂ 1 Zg,
Rso,A7b
RSCzA’z- b2
= : (6)
RSC,,A,,-lbp

The ~ sign indicates that approximations are used.
Rsc, = [0 I]is a rectangular matrix that for domain ¢
restricts a vector of values on that domain to the bound-
ary values. To solve this linear system iteratively the left
hand side needs not to be formed explicitly, only its ef-
fect in matrix-vector products is required. If an approx-
imation of the figé‘ matrix is implicitly available as an

215

incomplete LU factorisation, the matrix vector product
is found from:

P

j=1
J#i

To compute this equation, the zg; values have to be re-
trieved from the processors where they are held. Indeed,
the communication required is identical to that required
to compute a full matrix vector product. The incomplete
factors of the Schur complement matrix are obtained by
doing an incomplete factorisation of the complete A; ma-
trix on each domain, and then (see Appendix) using only
restricted portions of the factors: Lsc = Rscﬁ,-R:Ig'c,
and Usc = RscUiR%.

The approximate Schur complement preconditioner
therefore first requires the calculation of an incomplete
factorisation of the diagonal block on each domain. With
this available, the application of the preconditioner can
be summarised as {7]:

1. On each domain, receive a right hand side vector:
be;
e |
’ I: bg;

2. Compute the right hand side of the approximate
Schur complement system (eq. 6) on every domain
from a forward and backward sweep of the incom-
plete factors, retaining only the boundary values of

the result: BSC; = RSC&&!’_IE‘—I [Z;.

3. Solve the reduced system of equation 6 with a global
iterative method, computing matrix vector prod-
ucts by exchanging boundary values and then using
equation 7.

4. Exchange the final boundary values, and update the

boundary section of the right hand side using: bg, =
P

bg; — Y Eijzp,
i=1
J#
5. Using the updated right hand side, compute the es-
timate of the solution on each domain as:

r; = U"_l.zli—l Ib):t
Bi

An implementation of this preconditioner is available in

the P-Sparslib library [6].

216

3 Fast approximate Schur complement
implementation

Saad’s implementation of the approximate Schur com-
plement preconditioner in the P-Sparslib library follows
the algorithm in the previous section very closely. Both
the second and the last steps of the algorithm appear to
require a forward and backward substitution with the en-
tire L; and U; incomplete factors of the diagonal blocks,
and are implemented as such in the P-Sparslib code. In
fact, substantial computational savings can be effected
by reusing information computed at the start. In the
second step, the backward sweep with the U; factor can
be terminated once the boundary values have been com-
puted, thus allowing the local values found from the
forward sweep to be retained. The calculations in the
second step are rewritten as:

bg; I 0

[BSC; } B |: 0 057611 (8)
The vector by, is used as temporary storage for the re-
sult of the forward sweep on the local variables. Since
only the boundary section of the right hand side vector
is changed in step four, in the final step the by val-
ues can be used to execute a forward sweep of only the
boundary values, followed by a backward sweep of the
entire system. The final step calculation can therefore

be rewritten as:
To; - [1 0 by,
E R Y
Bi SC; Bi
For a large matrix the boundary values can constitute
less than ten percent of the local system. By this mod-
ified procedure almost an entire forward and backward
sweep is eliminated per preconditioning step, allowing
significantly faster execution.

} L7

4 Results

Typical matrices from applying the FETD method to a
microwave cavity [4] are used to evaluate the precondi-
tioner. The cavity is modelled at 2.45 GHz, and consists
of a rectangular metal enclosure, several wavelengths in
all dimensions, fed via a waveguide. Excitation is via
a current sheet in the waveguide; all metal boundaries
are treated as perfect conductors. An intricately shaped
load material with permittivity 30 — 107 is placed inside
the cavity.

An unstructured mesh of Whitney tetrahedral edge
elements is nsed to discretise the domain. The matrix
partitioning is done using the Metis [2] graph partition-
ing package, using vertex weighting to ensure the same
number of non-zero entries per domain, and edge weight-
ing to reduce the numerical value of boundary entries.

ACES JOURNAL, VOL. 16, NO. 3, NOV. 2001

FGMRES with restart of 20 is used as outer accelera-
tor - since the preconditioner changes at every step this
can detract from the performance of a standard tech-
nique like CG, so a flexible method is preferred. Four un-
restarted GMRES iterations on the reduced system are
used per preconditioning step. In all cases the relative
residual is reduced to less than 10~%; with no precondi-
tioning except diagonal scaling this takes 54 iterations to
achieve for the largest matrix. It was found that the pre-
conditioner produced the shortest execution times with
incomplete factorisations containing 2.5 times more en-
tries than the original diagonal blocks, hence this is used
in all cases.

By reducing the element size in the mesh, a series of
matrices is created such that consecutive matrices differ
in size by a factor of two. By solving the smallest using
one processor and then doubling the number of proces-
sors for every subsequent matrix, the amount of data per
processor is kept approximately constant.

[Procs. (P) || Entries (E) [Tts. (T) [Tts.onl |
T 1,246876 | 3 3
2 2,516,166 3 3
7} 4,759,275 | 3 3
8 9,867,675 4 4
16 20,509,258 | 5 4
[Procs || Slow | Fast (F) [F/I/(E/P) |
1 2.36 1.41 3.76E-7
2 3.24 2.12 5.63E-7
4 2.98 2.09 5.86E-7
8 4.56 3.29 6.66E-7
16 6.39 4.66 7.26E-7

Table 1: Timing results for fixed problem size per pro-
Cessor. ’

Table 1 shows the timing results on a Cray T3E if the
number of non-zero entries per processor (E/P) is kept to
around 1,250,000. The Its. column indicates how many
FGMRES iterations were required, while the Slow and
Fast columns show the time in seconds needed to solve
the system using the original and improved formulation
of the approximate Schur complement preconditioner.

The most significant figures are in the last column,
showing the time per iteration divided by the number of
entries per processor. Ideally, this time should remain
constant. For the present preconditioner some increase
may be expected when moving from 1 to 2 processors,
since on one processor no iterations on a reduced system
are carried out. From 2 to 16 processors the time in-
creases by around 29 percent, which is due to increased
communication, as well as to a slow increase in the rel-
ative size of the reduced system.

MALAN, METAXAS: IMPLEMENTING PARALLEL APPROX. SCHUR COMPLEMENT PRECONDITIONER

It appears that the advantage of the fast algorithm
decreases as more processors are used: from a difference
of 34% for two processors to only around 27% for six-
teen. This is due to a relative increase in communication
time over calculation time. For low numbers of proces-
sors, the average number of adjacent processors will in-
crease sharply as more processors are used, though this
will become much less significant for very large num-
bers of processors. In addition, it may be noted that
for any configuration where communication time domi-
nates, either due to slow inter-processor links or a small
number of entries per processor, this preconditioner will
tend to be outperformed by simpler local methods like
block ILUT. The reverse is true if there is a relative
increase in calculation time - either through faster inter-
processor links, or more entries per processor, when the
reduction in iteration count offered by the approximate
Schur complement preconditioner leads to significantly
shorter execution times.

The Its. on 1 column indicates the number of itera-
tions required on one processor. It can be seen that in
terms of iterations the preconditioner scales very well,
with an additional iteration required only in the sixteen
Processor case.

5 Conclusions

For matrices from electromagnetic FETD analysis, the
approximate Schur complement preconditioner gives a
reduction in iteration count similar to ILU on one pro-
cessor. It is simple to implement in parallel, requiring
only routines for a local incomplete factorisation, the
exchange of boundary variables and an accelerator. A
small modification to the algorithm allows a significantly
faster implementation. For constant processor load on
two or more processors, execution times increase slowly
as more processors are used.

A Appendix

For a matrix partitioned as in equation 5, a useful insight
[5] is that an inverse of the Schur complement matrix is
present inside the inverse of the complete matrix:

{Aaa Aap 177 _

Apa Aﬂﬁ] a
Azl —AZMAapAge I 0
[e [gz 1

~ | _azt sz 5 (10)
”AscAﬁaAaa sC

——,

217

An asterisk indicates a term of no interest. This identity
allows the incomplete factorisation of the Schur comple-
ment to be found from the incomplete factorisation of
the diagonal block on each domain.

To see how the right hand side of equation 6 is ob-
tained, note that the right hand side of the reduced sys-
tem, found by eliminating the local variables on a do-
main and then multiplying by the inverse of the Schur
complement matrix, is equal to:

Agé. (bﬂﬁ _AﬂauA;;.bﬂp) (11)

From equation 10 it can be seen that this is the same as:

Rsc, A7'b; (12)

References

[1] D.C. Dibben and A.C. Metaxas. Finite element time
domain analysis of multimode applicators using edge
elements. Journal of Microwave Power and Electro-
magnetic Energy, 29(4):242-251, 1994.

[2] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM Journal of Scientific Computing, 20(1):359-
392, 1998.

[3] D.H. Malan. Parallel Finite Element Analysis for
Microwave Heating Systems. PhD thesis, University
of Cambridge, 2000.

[4] D.H. Malan and A.C. Metaxas. Implementing
a finite-element time-domain program in paral-
lel. IEEE Antennas and Propagation Magazine,
42(1):105-109, 2000.

[5] Y. Saad. Iterative Methods for Sparse Linear Sys-
tems. PWS Publishing Company, 20 Park Plaza,
Boston MA, USA, 1996.

[6] Y. Saad and A. Malevsky. P-sparslib: A portable li-
brary of distributed memory sparse iterative solvers.
Technical Report UMSI-95-180, University of Min-
nesota, Minneapolis, MN, 1995.

[7] Y. Saad and M. Sosonkina. Distributed Schur com-
plement techniques for general sparse linear system.
SIAM Journal on Scientific Computing. To appear.

