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A model of finite electrodes in layered biological media: hybrid image series and
moment method scheme

Leonid M. Livshitz, Pinchas D. Einziger and Joseph Mizrahi

Technion, Israel Institute of Technology Haifa 32000, Israel

The low-frequency electromagnetic field interaction with layered biological tissue is investi-
gated for electrode array excitation. The problem may be reduced into a system of P (number of
electrodes) Fredholm integral equations of the first kind for the electrodes’ current distribution.
We have shown that the kernel (Green’s function) of each integral equation can be expressed
by image series. This leads to a most effective inversion of the integral equation system via
the moment method, since the moment matrix elements can be expressed explicitly by image
series. The outlined procedure is simple to implement and allows estimation of the distributions
of low-frequency potential, current, field and power within the multilayer tissue. It may serve as
a simplified first-order prototype model for realistic biomedical problems where the dependence
on the number of electrodes, tissue layers and their electrical properties must be accounted for.
The model has been utilized for the calculation of the electrode array impedance matrix, po-
tential fields, intra-muscular current distributions and isometric recruitment curves (IRC). The
simulation results indicate that the IRCs are insensitive to the electrodes’ size, however, the
inclusion of the bone/fascia layer significantly increases the IRC slope. Furthermore, the simu-
lation scheme, which can be readily implemented for the classification, calibration, verification
and interpretation of reported numerical and experimental biomedical data, is also applicable in
other problem areas such as geophysical prospecting and electrode grounding in power systems.
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I. INTRODUCTION

Electrode excitation of biological tissue is a well known
and fundamental subject (e.g., [1], [2]), related to almost
every functional electrical stimulation (FES) application.
1t is, therefore, quite a surprise to discover that apart
from a few elementary models, dealing with either a sin-
gle finite electrode in infinite space [3],{4] (both make use
of Jackson’s derivation for circular electrode [5)), [6], or
arrays of point electrodes [7],[8], etc., more general elec-
trode models (analytical or numerical) are not reported
in the current literature.

Herein, the electromagnetic field interaction with mul-
tilayered biological medium is investigated for electrode
array excitation. A layered medium may serve as a

simplified first-order prototype model for many realistic -

biomedical problems where the dependence on the num-
ber of electrodes, tissue layers and their electrical prop-
erties has to be accounted for (e.g., [9]). The proposed
computational procedure can be used as a simple tool for
producing analytical data for testing numerical subrou-
tines applied to simulate direct (FES) and inverse (bio

*L. M. Livshitz and J. Mizrahi are with Dept. Biomedical En-
gineering and P. D. Einziger, is with Dept. Electrical Engineering,
Technion, Israel Institute of Technology, Haifa, Israel.

Address for Correspondence: Prof. J. Mizrahi Dept. Biomedi-
cal Engineering, Technion, IIT, Haifa 32000, Israel, Fax +972 4
8234131; Electronic address: jm@biomed.technion.ac.il

Electrode array, functional electrical stimulation, finite electrode, image

electromagnetic imaging) problems in biomedical appli-
cation [10]. The method outlined can also be applied
in other disciplines such as geophysical prospecting [11],
[12], and electrode grounding in power systems {13}, [14].

The problem may be reduced into a system of P (num-
ber of electrodes) Fredholm integral equations of the first
kind for the electrodes’ current distribution. To obtain an
easy to implement and effective solution for an arbitrary
number of electrodes and layers, we propose an hybrid
solution method. This method is based on a theoretical
manipulation of a recently proposed rigorous image series
expansions scheme [15],{16] and the numerical moment
method [17]. To successfully execute the hybrid method
the kernel (Green’s function) of each integral equation is
expressed by image series. This leads to a most effective
inversion of the integral equation system via the momert
method, since the moment matrix elements can be ex-
pressed explicitly by a finite number of image terms and
a collective image, using a novel summation loop opera-
tor, and closed-form analytic integration. The procedure
outlined is simple to implement and allows estimation
of the distributions of low-frequency potential, current,
field and power within the multilayer tissue, regardless
of the number of electrodes and layers.

The hybrid image series and moment method scheme
is applied herein for numerical calculations. The simu-
lations are selected to address simple, yet fundamental,
concepts associated with electromagnetic field interaction
with biological tissues. Thereby, they demonstrate the
potential promise of the hybrid scheme which is capa-
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FIG. 1: Physical configuration for layered biological tissue.
The medium consists of n + 1 layers and is excited by a finite
electrode array of size P.

ble of efficiently handling 3-D problems in layered me-
dia, excited by finite electrode arrays of arbitrary (gen-
erally non-planar) configuration. The numerical simula-
tions signify the importance of an appropriate modeling
of the tissue layers. Oversimplified models in FES prob-
lems, utilizing a reduced number of layers, may result in
an inaccurate simulation which greatly deviates from the
real problem. Since our hybrid model can effectively han-
dle layered medium problems with any number of layers,
a decision whether-a particular layer should be included
in the model can be accurately made.

II. FORMULATION
A. Problem statement

The physical configuration of our problem, depicted
in Fig.1, consists of a stratified biological medium with n
boundaries separated between the n+1 homogeneous and
isotropic layers. An array of P rectangular electrodes is
placed in the first layer (n = 1). The evaluation of the
electrodes’ current density distributions and potentials is
carried out within the quasistatic (low-frequency) regime.
The current density j(r) and electric field E(r) are related
via [18],

i(r) = o(2)E(r) (1)
and
E(r) = —V¢(r), (2)
where the potential ¢(r) satisfies Poisson equation
V2¢(r) = —i(r)/o(2). (3)

The parameter o(2) denotes the piecewise constant con-
ductivity of the medium, i.e.,

o(z) =0 (4)

in the i-th layer,
Zis1 <2< 2z, L= 1527 S e 17 Zg = —00, Zp+1 = 00,

()
and i(r) is the electrodes’ current distribution.
We note that o(z) should be replaced by the complex
conductivity ¢(2)

s(2) = 0(2) + gwe(2), (6)

in every layer for which the inequality o(z) > jwe(2)
is not satisfied. The parameters €(z) and w denote the
medium permittivity and the angular (low) frequency
of the electrode excitation (assuming time-dependence
el“t), respectively.

B. Integral equation formulation

The electrodes’ current density distribution i(r) can be
written explicitly as,

P
i(r) = ip(r) @
=1

where i,(r), the current density distributed on the elec-
trode surface S, (Fig.1), is given by

'ip(!‘) = {é?(rp): : ; :Za

5 €S, p=12..P

(8)
Hence, the solution of (3) ¢(r) can be expressed as su-
perposition over all the electrode potentials ¢, (r),

P
$(x) =Y dp(r), 9
p=1
defined via the convolution integral

$p(r) = if’ ip(rp)G(r,Tp)dsp. (10)
o1

P

The point-source response G(r,rp), which can be repre-
sented in an explicit closed-form expression known as the
image series expansion is discussed in Appendix A.

Assuming that all the P electrode plates (Fig.1) are
perfect conductors, i.e., constant potential patches, the
potential of each electrode is specified. Hence, equation
(10) constitutes a system of P Fredholm integral equa-
tions of the first kind for the electrodes’ current density
distribution i,(rp),

P
1 .
Vq=¢>(rq)=-a—1 Z?i ip(rp)G(xg,rp)dsp, ¢ =1,2,..., P.
p=1""%7
(11)

Once system (11) is inverted (Section III), i.e, solved for
i(r), ¢(r) the solution of (3) is obtained via (9) and (10).
Consequently, the vector fields E(r) and j(r) are calcu-
lated using (2) and (1), respectively.
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C. Electrode array

The total current of each electrode I, is obtained by
integration of the electrode current density distribution
ip(rp) over the electrode surface,

I, zfs ip(rp)dsp. (12)

4

The uniqueness of the solution of system (11) in conjunc-
tion with the superposition principle leads to the follow-
ing linear relation between the electrode currents and
electrode voltages '

I=GV, (13)

or, alternatively, V = RI, where G and R = G~ denote
the input conductance (admittance) and the input resis-
tance (impedance) P x P matrices of the electrode array
feeding network, respectively. It can be readily shown
that the matrices R and G are symmetric due to the reci-
procity property of G(r,rp), i-e, G(rq,Tp) = G(rp,rq).
Furthermore, all the diagonal elements of both matrices
are positive, whereas, the off-diagonal elements are posi-
tive for R and negative for G.

In view of Kirchhoff’s current law, the sum of all the
electrode currents must be zero,

1,1,..,0)I=(1,1,..,1)GV =0, (14)
i.e. (LHS),

S I, =0, (15)

or, equivalently (RHS),

P P
SV, =0, ap=3) G- (16)
p=1 g=1

This restriction leads to the conclusion that only P-1 of
the elements of either the vector V or the vector I can be
arbitrarily selected. Thus, the remaining P+1 elements
of V and I are explicitly specified via either (15) or (16),
and (13).

The total complex power S, delivered by a P-electrode
array, can be expressed in terms of the vector V and
complex conjugate of the vector I,

1
S= §VTI*. (17)

Note that for w=0, ¢(z) = o(z) in (6), leading to real
input power S = VTL

1III. MOMENT METHOD

The integral equation system in (11) can be inverted
using the moment method with pulse base for the elec-
trode current distribution and point match for the po-
tential [17]. The discretized electrode potential ¢ is a

linear transformation of the discretized current density
distribution % via L, '

¢ = Li. (18)

The moment matrix L is a square matrix specified by its
elements /,,,, (representing the potential at the center of
the subsection m due to unit current density distribution
on the subsection n), given as,

bom = G(rm,ry)dz, dy,, (19)

1 Zo+b/2 /yn+b/2
Y

01 Jz,—b/2 n—b/2

where 1,, and r,, represent the location of the observation
and source points, respectively. It can be readily verified
that the discretization quanta is a square element of size
b x b, thus a square electrode of size a x a contains N =
(a/b)? subdivisions (Fig.1). Hence, a problem involving
P identical square electrodes associates with vectors 2
and ¢ of size PN and a moment matrix L of size (PN) x
(PN). An explicit closed-form expression for the moment
matrix element can be obtained by substituting (A.23)
and (A.24) from Appendix A in (19) and utilizing the
identity,

T ydzldl
fava= [ [

=zln(y +r) + yIn(z +r) — zarctan (zy/zr),
(20)

where ' = (z2 + y”2 + z%)"/2. In this derivation we
make use of [19],[20], or more efficiently, the symbolic
software, Mathematica 2.2 (Wolfram Research Corp.).
The expression can be reduced into Bancroft’s result [21]
upon setting z=0. The resultant element ¢y, is given by,

1
b :471'0'1 [h(xm ~Zn + b/27 Ym — Yn + b/27 zm)
- h’(m‘m —Zn+ b/21y’m —Yn — b/2’ zm) (21)
—h(Tm — Tn = b/2,Ym — Yn +b/2,2m)

+ h(zm — Tn — b/2,Ym — Yn — b/2,2m)];

where h(z,y, zm) is expressed via the loop operator (see
Appendix A),

h(z,y,2) = f(z,y,2 — 2') + K1 f(z,y, 2 + 2')+

n—1 rmi+...+mij—li—..~lj_2+1 M;
g2

j=1 l;-1=0 m;=0
x(m1 +...+mj_1 — Lh—.. =2+ 1>

Lo
my+ . +mi—b —. i
x( 1+ ...+ mj 1 j 1)—Kj)mj
m;j

% K;j-l K;nj_lj—l(l _ K‘?)m1+‘-~+m;‘—1“[1'—---“lj—1+1

x f(z,y,z+ z;)] K, + (2,20
(22)



148 ACES JOURNAL, VOL. 16, NO. 2, JULY 2001 SI: COMPUTATIONAL BIOELECTROMAGNETICS

The last term in the RHS of (22) represents an asymp-
totic error estimation of £,,, due to the truncated image
series expansion in (A.23). This collective image term
significantly accelerates the image series convergence and
the overall algorithm speed.

Note that, the electrode voltages and currents in (13)
are related to the discretized electrode potential and cur-
rent density distribution in (18) via,

¢ =UV =UG™ ], (23)
and
I =07, (24)
where U is a (PN) x P rectangular matrix,

S b 1+PG—1)<i<Pj
Y710 otherwise, i =1,2,..,PN, j=1,2,..,N.

(25)

Thus, using (23) equation (18) can be uniquely inverted

once either P-1 electrode voltages or electrode currents

are specified (Eqgs.(14)-(16)). Furthermore, upon utiliz-

ing (24) as well, the conductance matrix G is completely

determine via L™!

G =p*UTL'U. (26)

IV. ELECTRODE ARRAY EXCITATION OF
LAYERED BIOLOGICAL TISSUE
NUMERICAL SIMULATIONS

The hybrid image series and moment method scheme
that has been outlined in Sections 2 and 3 is applied
herein for numerical calculations. The simulations are
selected to address simple, yet fundamental, concepts as-
sociated with low-frequency electromagnetic field interac-
tion with biological tissues. Thereby, they demonstrate
the potential promise of the hybrid scheme that is capa-
ble of efficiently handling 3-D problems in layered media
excited by a finite electrode array of an arbitrary (gener-
ally non-planar) shape.

The method’s efficiency is due to three inherent dis-
tinct features, namely: 1. The moment matrix elements
l.n are expressed explicitly and recursively via the image
series expansion combined with an asymptotic truncation
error estimation, i.e., finite number of images and a col-
lective image term; 2. The field vectors E(r) and j(r)
in (2) and (1), respectively, are obtained through explicit
(analytic) closed-form differentiation of ¢(r) and G(r,rp)
in (8), (9) (i.e., term by term differentiation of the im-
age series expansion) which is more accurate and stable
than the numerical differentiation that is used in other
schemes. 3. Utilization of the complex conductivity of
¢(z) in (6), enables the generation of low-frequency w #0
field data for the layered media rather than the DC com-
ponent only.

Since, all of the calculations are carried out for the
physical configuration depicted in Fig.1 where z, = 2; =
0, p=1,2,..,P (2, is a component of r, = (Zp,Yp, 2p),
defined in (8)), w = 0, and g1 = 0 (air layer), the expres-
sion for Gi(r,r') in (A.23) has to be modified in accor-
dance with the identity,

1+ K,

1+ K 2
lim ——L =2 (27)
a1—0 03 o3

1-K,

a1 o2

Furthermore, the simulations are calculated assuming
perfect conducting electrode plates discretized as b =
0.05a (N = (a/b)> = 400) and the following typi-
cal FES parameters: n = 4, o1 = 0 (air), o2 =
0.4 S/m (wet skin), o3 = 0.04 S/m (fat),04 =
0.7 §/m (muscle), o5 = 0.07 S/m (bone/ fascia), z1 =0,
2o = 0.005 m, z3 = 0.01 m, z4 =0.04 m [22].

A. Potential map

The potential in the m-th layer (m=1,2,...,n+1) is ob-
tained via (9) through discretization of (10),

b2 PN
P (r) = . > ikGm(r,rx), €Sy  (28)

k=1

where p = 1,2,..,P, 1+ (p—1)N <k < pN, i is a
component of the PN-dimensional vector 7 in (18) and
G, is the corresponding m-th layer Green’s function.

The potential distribution and vector plot of the z —y
components of the electric field, depicted in Fig.2, is
calculated for a four electrode array P = 4, PN =
4x400=1600, m=1 and electrode size a=0.04 m. The
map illustrates efficiently the complete excitation status
of the biological tissue at the electrode plane z;, = z; = 0,
p = 1,2,3,4. The electrode z-y spacings and the elec-
trode potentials V are specified in Fig.2. The plot of the
£ —y projection of the field vector E(r) in (2) is obtained
through explicit (analytic) closed-form differentiation of
#(r) and G (r,rx) in (28), i.e., term by term differenti-
ation of the image series expansion.

B. Two-electrode configuration

We focus here on the dependence of electrode array

and biological tissue interaction on the following three
parameters: 1. electrode size, 2. electrode separation,
3. number of layers and their conductivities. The array
configuration, therefore, is reduced to the simplest pos-
sible, i.e., a two-electrode system.
The numerical simulations carried out next signify the
importance of an appropriate modeling of the tissue lay-
ers. Oversimplified models which utilize a reduced num-
ber of layers may result in an inaccurate simulation which
may significantly obscure the real situation. Since our hy-
brid mode! can handle effectively n-layer problems, the
decision whether a particular layer should be included in
the model can be accurately made.
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054

Potential [V]

FIG. 2: Potential map and vector plot of the z — y com-
ponents of the electric field for a four-electrode array at
z=2,=21=0, p=1,2,3,4. The electrodes’ size are ap=0.04
m, their ¢ — y centers are z=(x1,Z2,%3,z4)=(0.1, 0.1, 0.1,
0.2)[m}, y=(v1,y2,¥s,y4)= (0.05, 0.15, 0.25, 0.15)[m], and
their potentials are V=(-0.5,0.5,-0.5,0.5) [V], respectively.
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FIG. 3: Dependence of the normalized electrodes input

conductance (Eq.(29)) and conductance matrix elements
(Eq.(26)) on the normalized distances between the electrode
centers. .

a Calculations of the conductance matriz and the
electrodes input admittance We focus herein on the eval-
uation of the conductance matrix elements G;; and G2
in (26) as well as the electrode input admittance Gin,
given via,

__ L 1A
Gin = T 2(G'n Gi2), (29)

for the symmetrical two-electrode problem (Vi = -V2 &
Gy1 = G, Eq.(16)). The dependence of G11/G1imax;
G12/G11max and Gin/G1imax on the electrodes’ normal-
ized center spacing d/a >1, is given in Fig.3. Note that
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FIG. 4: Dependence of the normalized electrodes input

conductance (Eq.(29)) and conductance matrix elements
(Eq.(26)) on the second layer conductivity, o, (skin).
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FIG. 5: Dependence of the normalized electrodes input
conductance (Eq.(29)) and conductance matrix elements
(Eq.(26)) on the third layer conductivity, o3 (fat).

for d/a >3, there is practically no interaction between
the electrodes, i.e., G12 =0, and G1; reaches the single
electrode limit. The normalized conductivity dependence
on either a5 or o3 is depicted in Fig.4 and Fig.5, respec-
tively. While the conductivities are strongly dependent
on the skin layer conductivity (o2), that is in contact
with the electrode array, the somewhat more moderate
dependence on the fat layer conductivity (03) cannot be
ignored.

b Current distribution in the muscle layer The fun-
damental problem of field interaction with excitable tis-
sue is investigated here for the muscle layer (o4). The
z-component of the current density j(r) (Eq.(1)) is cal-
culated in the muscle layer r = (%,0,2), 23 < z < z4, for
constant electrode currents and spacing (I; = —Io=0.1 A
and d =0.2 m, respectively) utilizing the image series ex-
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pansions in Appendix A. Its dependence on the z-axis
is depicted in Figs.6 and 7, for various electrode sizes
(a=0.001 m, 0.005 m, 0.01 m, 0.04 m, setting z = 23)
and for two different conductivities of the lowermost layer
(65 = o4 or 05=0.07 S/m, setting; e = 0.00lm and
z = 23, (23 + 24)/2, z4), respectively.

The difference between the current density midway be-
tween the electrodes may be critical for whole muscle ex-
citation. While the electrode size has (almost) no effect
on the current distribution, midway between the elec-
trodes (Fig.6), it has a strong influence on the maximal
current density values, just beneath the electrode edge,
due to a large or small electrode’s distance to size ratio,
respectively. Thus, it may be concluded that the main
role of the electrode size is to reduce the maximum cur-
rent density to below the safety threshold standard [1] by
increasing the electrode area.

Furthermore, the selection 05=0.07 S/m enhances the
current density due to the support of the lowermost layer
(Figure 7), and the selection 05 = 04 reduces the current
density due to the absence of the lowermost layer. Thus,
disregarding the bone/fascia layer may lead to a painful
error resulting in an underestimation of the inter-muscle
current density. This important observation highlights
once more the potential promise of the proposed method
that can effectively handle layered medium problems with
any number of layers.

40 T v '
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g
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FIG. 6: Dependence of the current density jz(r) ( Eq.(1) Jon
z for various electrode sizes (setting r=(z,0, z3) and d=0.2
m).

C. Isometric recruitment curve

The isometric recruitment curve (IRC) of a muscle is
defined as the relation between the stimulus activation
level and the output force when the muscle is held at a
fixed length. The IRC curves depicted in Figs.8 and 9
are an extension, to finite size electrodes and to a five-

-
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FIG. 7: Dependence of the current density j-(r) (Eq.(1)) onz

for two different conductivities of the lowermost layer (setting

2=[23, (23 + 24)/2, 24], a=0.001 m and d=0.2 m). Dashed

line denotes 0=0.07 S/m and solid line denotes unbounded
muscle 0=0.7 S/m
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FIG. 8: Effect of electrode size on the IRC.

layer media (air, skin, fat, muscle, muscle boundary), of
previous simulations [15].

Fig.8, presents the IRC for various electrode sizes (a =
0.001 m, 0.01 m, 0.04 m, 0.1 m). It should be noted that
the 0.001 m electrode case gives a similar solution for
both current density distribution and IRC problems as
for the point-electrode case [15]. Despite the broad range
of sizes (1 mm — 4 ¢m), the model shows no substantial
effect of the electrode size on the IRC shape. However, for
electrode sizes comparable to the width of the Quadriceps
muscle (~10 em), the IRC shifts toward the right side
of the current axis and manifests an abrupt reduction
of the maximal force. This is due to a more uniform
current density, reducing the electrode current density
below threshold.



LIVSHITZ, EINZIGER, MIZRAHI: A MODEL OF FINAL ELECTRODES IN LAYERED BIOLOGICAL MEDIA 151

0.8

vV

s

£0.6

i~

&

S04}

S =k 0,=0.07 S/m

; -4 6.=0.2 S/m
S
0.21 -e- 6,=0.04 S/m
B , . 1 .
0 002 004 006 008 0.1 0.12
Current [A]

FIG. 9: Effect of the lowermost layer conductivity on the IRC.

The effect of different conductivities of the lowermost
layer on the IRC is shown in Fig.9. The variations were
from o5 = o4 (semi-infinite case) to o5 = o3 (poor con-
ductive layer). The decrease in conductivity of the low-
ermost layer leads to an increase of the IRC slope and
shifts the onset of the saturation region towards lower
current values. The simulation results indicate, as ex-
pected and supported by the preceding discussion, that
IRC are insensitive to the electrodes’ size, however, the
inclusion of the bone/fascia layer significantly increases
the IRC slope.
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APPENDIX A: IMAGE SERIES EXPANSION
OF GREEN’S FUNCTION IN LAYERED MEDIA

1. Integral representation

Setting r, = (0,0,2’) for the point-source coordinate
leads to a circularly symmetric Green’s function in (10)
and (11) which can be expressed via a single spectral
integral, known as the Fourier-Bessel representation [12],

G =4 [ o) hnd (a)

where Jg is the Bessel function of the first kind and zero
order, p is the radial coordinate and g(z,z') is the char-
acteristic Green’s function, and given via [15], [16],

gi(z,2') = H TP(E)[e—£|z~z'l+Rie£(z+z')], 21 < z < 2.

p=1
(A.2)
The subscript i (p) denotes specific expressions or values
that are valid in the i (p)-th layer, defined in (5). R;(§)
and T;(£) in (A.2) are the reflection and the transmission
coefficients, given recursively as

[1 - K?]'Rﬂ+l (5)62&{ }e—2§Zi

Ri(§) = {Ki+ 1+ K:Rigs (€)e= , Rn41(8) =0,
(A.3)
and
() = — T Fn nE =1 (A9

T 1+ K Ry(D)eresa’

where K; denotes the intrinsic reflection coeflicient of the
i-th interface,

g; — Tit1
Ki=—————, Ko=0,

A5
;i +0iq1 (A9)

0’0:0.
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2. Image series expansions via the loop operator

The finite binomial series expansion, containing M
terms and a remainder,

M
1 m+N\ .,

g L (M0
(1-2) o\ om
+ZN: M+ N+1\ gM+e+l

= M+p+1) (1 —z)pptt’
is a vital tool for the image series expansion of (A.2) and
consequently (A.1). The series converges as M — oo, for
all |z} <1. Image series representations has been obtained
upon repeatedly expanding both the reflection and the
transmission coefficients in (A.3) and (A.4), respectively,
in finite binomial series as outlined in (A.6) [16].

Unfortunately, the representations become quite cum-
bersome as the number of layers increases (e.g. [23],

[24],[25]). More succinct representations can be obtained
by introducing the notation [ for the loop operator, de-

fined via,
Ma(n1) Mq(nl,...,nq_l)

M,
> hi(ma) D ha(ni,na)-

ny=mi ne=maz(n1)

M,y Ma(n1)

> X

n1=m1 na=ma2(n1)

q
j=1

hQ(nl’ sy nq)
nqzmq(nl,...,nq_;)
Mq(nl,...,nq_l) .

>

'n.q:mq(nl,...,nq_l)

Ba(na)-hg(nr, oy mg)

Mj(ny,n2,...,n5-1)
hj (nl 3125 --ey nJ)?

nj=m;j(ni,ng,...,nj-1)

(A7)

where g denotes the overall number of the nested cy-
cles (layers). The upper and the Jower summation lim-
its of the j-th cycle, denoted by M;(ni,ns,...,nj—1)
and mj(ny,ns,...,nj_1), respectively, depend on the
preceding ni,n2,...,n;j—1 indices, whereas the function
hj(ni,ng,...,n;), evaluated in the j-th cycle, depends on
all the ny,ng,...,n; indices. For ¢ < j the loop operator
is defined as [[]_, = 1.

While repeatedly expanding (A.3) and (A.4) via (A.6),
the characteristic Green’s function g;(z, z') is most con-
veniently decomposed into two finite image series expan-
sions, g; (z,2') and g; (2,2’), and two corresponding re-
mainder terms vt (z,2') and 77 (2, 2'),

i-1
6ile,2) = J[ 1+ Kollgi (2,2) + 977 (2, )]
p=1

n-1

i1+ Ki) (A8)
Jj=1 ;:—:]:j-f-l [1 + KkRk+1 ({)eézk]

X['Yle,...,Mj (2,2") + Vi, (%5 2)].

+

where the index j represents summation over all layers,
and M; is related to the number of images accounted
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for in the j-th layer and are contained in g (z,z') and
g7 (2,2'). Note that, g; (z,2') and g; (2,2') correspond
to the transmitted and reflected image contributions, re-
spectively, whereas v*(z, 2') and v~ (z, 2') collectively ac-
count for the truncated transmitted and reflected image
contributions.

The image series representations, utilizing the loop op-
erator for 1 >1, is summarized herein. The representa-
tions for =1 can be expressed in term of the =2 expan-
sions and thus given subsequently.

ne1 ¢ Matodmi—li—.—liotnE,  M;
+ —
i) =11 | > 3
Jj=1 l;-1=0 m;=0
% (m1 + ... +mj1 — li—...— lj_2 + nii,j,l)
li—1
% (m1 +..m; — - - lj——l + ni:j,l -1 +.ui,j)
mj
X (__KJ)TTIJ K;j—l (1 _ K?)ml+"'+mj‘1_ll—“'-lj‘1+nz‘j,:j,1
x 6_25(2.7'4'1_zj)(ml+"'+m.'i_ll—"'_lj—l+77§::j,1)
+ +
X Kglj—lj_l}KZi.Zlnni.n.Oe—{(z:Fz’)’
(A.9)
where the summation factor 77?,:,-, .
Mk =0 T, =k—pijs (A.10)

is expressed via the discrete step function y; j,

L2 (A.11)
1< 7.

The equalities _; = lp = 0, mp = 0, are also adapted
here. The individual truncation error, associated with
the j-th layer (M;) and depending on the preceding j-1

layers (M, M, ..., Mj_1), is given as,

3 [ M1
k=2 mk_1:0

% (ml Fotdmp_1 -l — ... —
mj—1

+
Vidtr .oy (22
l—1 + Uii,k,1 -1+ ﬂi,j)

m1+.~.+mk_1—l1-—...—lk-g-f—'l}?fk'l
x >
e 1=0
my+...+mp_y— 11 —..
X
le—1
_ Kg)m1+...+mk_1—l1—...—lk-l—i-nii‘k‘l

+
dj—2 + ni,k,l)

X(~Kpo1)™ K (1

X e—-2§(zk—zk—1)(m1+...+mk_1—l;—~,..-l;‘_2+nii’k'1)

X [Rj-{-l (5)62531']"11:—1—%—1]

m]+-~~+mj—1—ll"--~“lj—1+"71?k‘j‘1'—1+#i,j
X [Ry(€)e?%] o >
p=0
Mj+m1 +...+mj—g +1-15 —.. -—lj__
X
M;+p+1
[— K€% Ry, ()M TP+ D)
[1+ K;Rjp1(§e*es [Pt

(A.12)

Substituting (A.8) into (A.1) and utilizing the Weber-
Lipschitz identity [12]

® omtlz—2| ) 1
e SEFTEL, df = —, A13
/ b(ERE = (4.13)
results in an image series expansion for G;(r,r,)
i—1
Gi(r,rp)= {H(1+Kp) [GF (r,1p)+G7 (r,1p)]+Ti(r, 1)},
(A.14)
where
_ m1+...+m,~—11——...——lj-2+7)?:'j,1 MJ-
e =11 | ) >
Jj=1 lj~1=0 m;=0
% (m1 + ... +mj_g — Ihi—.. = l]'_g + nz#,:j,l)
lj_l
o my + ...mj — i —..— lj_l + ’f],—f’tj,l =1+ p;
m;

o gy, +

x (KM KT (1= Kyt mhme st
+

771%2.1_’7;',7:.0

n

(22 + 32 + (2 — zli)2]1/2’

cxgete]
(A.15)

10+ Mg
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n—1
2F =+ -2 (zj+1 - zj)
[ ]5;1 e (A.16)

x(m1 + ... +m] - ll - lj—l +17?,:j,1)]’

and a remainder term I'(r,r,) representing a collec-
tive image, i.e., summation over all the image series
terms that are not included in the finite image se-
ries (A.15). Following [16] T, ..., a;(r,Tp) is evaluated
asymptotically (end-point integration) for M; — oo,
7 =1,2,...,n— 1, yielding,

n—1 i-1
Ti(r,r,) ~ [i(z,2") = z i_Iszl(l + Kx)
' 5o sy (1 + Kk Rierr (0)]

X[F;}:Ml ----- M; (Z’z’) +Fi—,M1,...,M_,,-(Z7z,)]-

(A.17)

The asymptotic truncation error Ty, ... ar; (2, 2') is ex-
pressed as,

My

J
fii,M1,...,Mj(z?zl)=H[ Z

k=2 "*mg_-1 =0

y (ml ot mp_1 =l — .. =l '*‘77?,:1;,1 -1+ P’z’,j)

mj_1
ml+---+mk—1—11—--~—lk—2+7]fk'1

x >

lg-1=0
. *
N (m1 +otmeo —l— e+ ni,k,])
g1
x("Kk—-l)mk_l Kik-l(l _ Kz)m1+...+mk_1—ll-...—lk_l—k—nfk'l

< Rypa O

m1+.4.+m,-_1—-ll—-...—l,-_1+nfj,l——1+p.;‘5
—n.
X [Ri(0)] s b>
p=0
% (MJ +m; +...+mj_1+ 1=l —...— lj_l +772:j,0 + Wi i
M;+p+1

[—K;Rjy1 ()M P+
1+ K;jR;1(0)PF! [z — ZE]

(A.18)
where

R;j1(0) = (0j41 = 0n+1)/ (0541 + Onta).  (A.19)

J

Z* = £{z' -2 (2 — ze-1)(ma1 + ...

k=2 (A.20)
+mp_y =l — o —lp_2) + (Zj.H - Zj)
X(mg—1 — lg-1 + Mj +p+1+ "72:);,1]}
The following uppermost layer functions (i = 1);

gl(zwz’)v 71(z’zl)a Gl(l‘,l‘p), F1(I‘,I'p), and fl(z,z') are
related to the second layer "reflection” functions (i = 2);
g (2,2'), 73 (2,2"), G5 (r,1p), T5(r,1p), and I5(z,2),
respectively:

qi(z,2) = (1 - K1)gs (2,2") + e 6177

A2
+ K813 4y (2, 2", (421
1n(z,2) = (1 - Ki)v; (2,2'), (A.22)
Ga(r,1y) = 2[00 = Ka)Gy (mp) + 2y
% Pl(Aa23)
+ ——2— 4+ T(r,1p)],
v+ 1)

Liery) = (1- KOT5(6r,),  (A24)
T1(z,2") = (1 — Ki)[5(2,2"). (A.25)

In n-layered media, the finite expansion in (A.15) con-
verges, if at least n-1 of the intrinsic reflection coefficients
[K;], 1 << n, are less than unity [16].
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