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Abstract ─ Infinite periodic boundary conditions 
(PBC’s) implemented in FEKO are presented. To 
enable the analysis of a wide variety of problems, 
the PBC includes dielectric objects, metallic 
surfaces, metallic wires and connection points 
between wires and surfaces. In addition, the 
geometry is allowed to touch the periodic 
boundaries (i.e. continuous current flow onto the 
neighboring cell which requires special basis 
function treatment). 
  
Index Terms─ FEKO, Periodic Structures, 
Antenna Arrays, Frequency Selective Surfaces. 
 

I. INTRODUCTION 
FEKO [1] is a commercial and comprehensive 

3-D electromagnetic field solver which can be 
applied to a variety of problems. This paper 
focuses on periodic structures, for example 
antenna arrays and frequency selective surfaces. In 
particular, infinite periodic structures will be 
analyzed by considering only the unit cell element. 
Although FEKO can model large finite arrays with 
the Multilevel Fast Multipole Method (MLFMM), 
the computational resources of the PBC are much 
cheaper since we only consider one single unit cell 
element. 

The paper is outlined as follows: 
Implementation details are given in Section II, 
verification examples in Sections III-IV, and 
finally the conclusions in Section V.  
 
II. PERIODIC BOUNDARY CONDITION 

The PBC feature enables the analysis of infinite 
periodic structures by simulating only a single unit 
cell element. Both 1-D and 2-D (including 
skewed) lattices are allowed as shown in Figs. 1 
and 2, respectively. The phase shift along the 
lattice vectors can be determined automatically if a 
plane wave is used as excitation, or it can be 

specified by the user (say antenna array). Large 
but finite sized arrays can be approximated as an 
infinite array. This allows the use of the PBC to 
minimize the total number of unknowns (and 
therefore memory) as well as the computation 
time. 

 
 

Fig. 1. 1-D periodic boundary. 
 

 
 

Fig. 2. 2-D periodic boundary with skewed lattice. 
 

A. Geometry Across Boundary 
FEKO allows the geometry to touch the 

periodic boundary (i.e. one part in one cell will 
then be connected to another geometry part in the 
neighboring cell). The two unit cells in Fig. 3 are 
equivalent (different split of a patch array) and 
will produce the same results. 

Modified Rao-Wilton-Glisson (RWG) [2] basis 
functions on the boundary in Fig. 4 ensure 
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continuous current flow across the unit cell 
boundary into the neighboring periodic element. 

 
Fig. 3. Current on equivalent unit cells. 

 

 
Fig. 4. Special basis function on boundaries. 
 

B. Ewald Transformation 
The free space 2-D periodic Green’s function in 

the spectral domain has the form [3]  
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and in the spatial domain [3] 
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(2) 
For high accuracy, the PBC implementation 

uses the Ewald transformation in order to get fast 
convergence for these infinite sums. In this 
formulation, the periodic Green’s function is 

written as the sum of a modified spectral portion 
and a modified spatial portion [3] ࢘)ࡳ, (࢙࢘ = ,࢘)ࡳ  (࢙࢘ + ,࢘)ࡳ   .(࢙࢘

(3) 
The modified spectral portion contains the 

complex error function, and is given by [3] ࡳ(࢘, (࢙࢘ =   ࢠ(࢙࣋ି࣋)⋅࢚ିࢋ
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Similarly, the modified spatial portion is [3] ܩଶ(ݎ, (௦ݎ =   ݁ିబబ⋅ఘ8ܴߨ
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The number of terms in the infinite sums is 
determined automatically by adding more terms 
until convergence (within 0.01%) is reached. It 
includes the required Floquet modes (both 
propagating and evanescent) to achieve high 
accuracy. 

The Ewald transform is also used for the 1-D 
PBC implementation. The modified spatial portion 
is the same as for the 2-D case, but the modified 
spectral portion now contains the exponential 
integral [4] 14݀ߨ  ݁ି௭ஶ

ୀିஶ   ஶ
ୀ

(−1)! ାଵܧଶ(ℇߩ) ቆ−݇ఘଶ4ℇଶ ቇ. 
(6) 

C. Dielectrics 
In the Method of Moments (MoM), metallic 

and dielectric triangles allow the use of the surface 
equivalence principle (SEP) to model any 
dielectrics within the unit cell. Since we allow the 
geometry to extend across the unit cell (by using 
special basis functions), infinite dielectric regions 
can also be modeled. This makes FEKO a 
powerful tool to analyze printed antennas with 
inhomogeneous media. The SEP has a clear 
advantage over both the finite-element/boundary-
integral (FE/BI) method [3], and the hybrid 
MoM/Green’s function method [5] where the 
volume equivalence principle (VEP) is used. The 
SEP only meshes the surface of the dielectric, 
whereas the FE/BI and VEP methods use volume 
elements to mesh the dielectric.  
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Another advantage of using the SEP is that we 
can ignore all dielectric surfaces which are located 
on the unit cell boundaries. This is valid since 
identical dielectrics are touching the boundary 
surface on both the inside and outside (from the 
neighboring unit cell). In contrast, for the FE/BI 
method the boundary conditions must also be 
imposed on the FE mesh located on these side 
walls.   

Multiple dielectric regions are allowed to touch 
the same boundary to enable the analyses of, for 
example, a dielectric substrate with periodic holes. 
The advantages of the SEP will become clear in 
the microstrip example in the next section. 

 
III. EXAMPLES 

A. Pin-fed Microstrip Patch Array 
Consider the pin fed microstrip patch antenna 

in Fig. 5, with side lengths L = W = 30 mm and 
vertical feed probe at (x,y) = (-7.5,0) mm. The unit 
cell is square with dimensions a = b = 50 mm, 
substrate permittivity εr = 2.55 and substrate 
thickness d = 2 mm. A close-up of the pin-fed 
excitation is shown in Fig. 6, consisting of two 
wire segments connecting the ground plane and 
the patch.  

The SEP is used to model the dielectric, with 
the vertical side walls excluded from the mesh 
below. The ground plane and patch are modeled 
with metallic triangles, and dielectric triangles are 
used to model the top dielectric interface. There 
are special basis functions on the periodic 
boundaries for both the metallic and dielectric 
triangles to ensure current continuity. 

 
Fig. 5.  Pin-fed microstrip patch array. 

      The active input impedance is defined as the 
input impedance in the active array environment 
when all elements are excited. We will compute 
the active input impedance when all elements are 
fed in phase to produce a main beam at broadside. 
The calculated broadside scanning input resistance 
and reactance are shown in Figs. 7 and 8, 
respectively. Good agreement to the published 
FE/BI results [6] can be seen. 

 
Fig. 6.  Close-up of pin-fed excitation. 

 

 
Fig. 7.  Active input resistance. 

 

 
Fig. 8.  Active input reactance. 

Published

Published 

FEKO 

FEKO 
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B. Printed Dipole Array 
Scan blindness will be demonstrated for the 

infinite array of printed dipoles [5] in Fig. 9. 
Parameters: Dipole length L = 0.39 λ, width W = 
0.01 λ, square unit cell a = b = 0.5 λ, substrate 
thickness d = 0.19 λ and permittivity εr = 2.55. 
The centre of the dipole is excited by an edge 
voltage source.  

The active reflection coefficient is defined 
when all dipoles are excited with the correct phase 
to produce a main beam in the direction ϑ (ϑ=0° is 
broadside): ܴ(ϑ) =    Zin(ϑ) − Zin(ϑ = 0°)Zin(ϑ) + Zin∗ (ϑ = 0°). 

(7) 
The feed network is matched for broadside 

scanning to the internal source impedance 
of  ܼ (ϑ = 0°). 

The computed active reflection coefficient 
versus scan angle compares very well to the 
published results [5], for both magnitude and 
phase as shown in Figs. 10 and 11, respectively. 
Note the unity reflection coefficient at the scan 
blindness angle of 45.  
 

 
 

Fig. 9. Printed dipole array. 
 
C. Frequency Selective Surfaces 

The Jerusalem-cross frequency selective 
surface (FSS) in Fig. 12 was analyzed. Fig. 13 
shows the unit cell and plane wave excitation. 

 

 
Fig. 10. Magnitude of active reflection coefficient. 

 

 
Fig. 11. Phase of active reflection coefficient. 

 

 
 

Fig. 12. Jerusalem-cross FSS. 
 
To verify the PBC results the MLFMM was 

used to analyze a large finite 51x51 FSS. Excellent 
agreement in the current distribution at 7 GHz can 
be seen in Figs. 14 and 15. 
 

FEKO 

Published

Published

FEKO 
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Fig. 13. FSS unit cell and plane wave excitation. 

 

 
 

Fig. 14. Finite 51x51 FSS solved with MLFMM. 
 

 
Fig. 15. Single element solved with infinite PBC. 

 
The magnitude and phase of the reflection 

coefficient (versus frequency) are plotted in Figs. 
16 and 17, respectively. This is for a normal 
incident plane wave on the FSS. Excellent 
agreement to the published results [7] can be seen, 
for both magnitude and phase.  

 

 
Fig. 16. Magnitude of the reflection coefficient. 

 

 
Fig. 17. Phase of the reflection coefficient. 

 
D. Infinite Cylinder 

An infinite cylinder shown in Fig. 18 is 
modeled as a finite cylinder with 1-D PBC at both 
ends. FEKO can handle arbitrary incidence, but 
the published results for this example used a z-
directed normal incident plane wave. The diameter 
of the cylinder is varied and the scattered electric 
field is computed versus the observation angle, in 
order to get the scattering width (SW) defined as ߪଶି = lim→ஶ( 2ߩߨ ∣ ௭௦ܧ ∣ଶ∣ ௭ܧ ∣ଶ ). 

(8) 
In Fig. 19 the computed SW is in very good 

agreement to the published results [8]. 
 

Published 

FEKO 

FEKO 

Published 

588 ACES JOURNAL, VOL. 24, NO. 6, DECEMBER 2009



Fig. 18. Unit cell of infinite cylin
 

Fig. 19. Scattering width of infinite c
 
E. Infinite Wire 

To verify the implementation of t
basis functions for wires at 1-D
boundaries consider the infinite z-dire
with the unit cell shown in Fig. 20. A
plane wave is incident along the x-axis
field for the infinite wire is known analy
The computed near electric and magn
are shown in Figs. 21 and 22, re
Excellent agreement to the analytical 
be seen. This verifies the special basi
implementation for wires at the boun
well as the near-field computation for bo
and magnetic fields together with the PB
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Fig. 20. Unit cell of infinite w
 

Fig. 21. Near electric field of infin
 

Fig. 22. Near magnetic field of infin

EKO 

 
wire. 

 
nite wire. 

 
nite wire. 
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IV. FAR-FIELD 
In this section the far-field of a finite MxN array 

will be computed using the infinite array 
approximation to obtain the current distribution on 
the elements. Consider the example of a 2-D 
antenna array of strip dipoles, with the unit cell in 
Fig. 23. Parameters: Dipole length L = 0.45 λ, 
width W = 0.02 λ, unit cell length a = 0.50 λ and 
width b = 0.30 λ. The elements are fed with the 
correct phase increment to obtain a main beam 
pointing in the direction ϑ=20, requiring a phase increment of (2a/λ)sinϑ= 61.564. 

 
Fig. 23. Unit cell of strip dipole array. 

 
The PBC analysis will give the correct current 

distribution on the unit cell dipole in an infinite 
array environment (including all mutual coupling). 
With this current distribution, the single unit cell 
dipole on its own radiates a doughnut shaped far-
field pattern as shown in Fig. 24. 

 
Fig. 24. Far-field of single unit cell element. 

 
To compute the far-field of a finite MxN array 

as shown in Fig. 25, we sum the far-field pattern 
of the unit cell with the correct phase and position 
of each element in the array. Computing the far-
field using the PBC ignores edge effects, since it 
assumes that the current distribution is identical on 

all array elements (except for the phase shift). The 
far-field computed with the PBC approximation 
was validated using the MLFMM, which analyzes 
the complete finite array. The MLFMM computes 
the correct currents on all elements and includes 
edge effects. Results for two array sizes are shown 
in Figs. 26 and 27. As expected, the main beam 
points in the direction ϑ=20. Good agreement 
between the PBC approximation and the MLFMM 
can be seen. 

 

 
Fig. 25. Finite MxN array. 

 

 
Fig. 26. Far-field of 11 x 11 array. 

 

 
Fig. 27. Far-field of 51 x 51 array. 
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V. CONCLUSIONS 
Infinite periodic boundary conditions were 

implemented in FEKO using the efficient Ewald 
transform to obtain fast convergence for the 
infinite sums. Both 1-D and 2-D (including 
skewed) lattices are supported. The geometry is 
allowed to extend into the neighboring cell with 
the use of special basis functions on the boundary. 
The phase shift along the periodic lattice can be 
determined automatically from plane wave 
excitations, or it can be specified by the user. The 
PBC includes metallic and dielectric triangles, 
wires, connection points. This makes FEKO a 
powerful tool to analyze printed antenna arrays 
with inhomogeneous media and also frequency 
selective surfaces. By ignoring edge effects, the 
PBC enables efficient far-field calculations of 
finite MxN arrays. 
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