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ABSTRACT

In this paper we present a detailed application of a subgridding
scheme for the finite difference time domain (FDTD) numerical solution
to Maxwell's equations. The subgridding scheme will be necessary for
greater detail and for localized calculations when other methods for the
subcell modifications of the regular FDTD are not applicable. We have
made comparative calculations, as a function of mesh size, of the
reflection coefficient and shunt capacitance associated with two infinite
parallel plates with a finite discontinuity in plate separation.

*This work was performed under the auspices of the U. S. Department of
Energy by Lawrence Livermore National Laboratory under contract No.

W-7405-Eng-48.
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1. Statement of the Problem

Shown in Figure 1 is a cross-section of infinite parallel plane
conductors. The heights of the two sections are such that only the TEM
wave will propagate for a chosen frequency. The plates should be
considered to extend to infinity in the x and z directions, even though
the boundaries for our calculations are at Xp = 2 A to the left of the
discontinuity, and Xgr = 11 A to the rightt We will show that our
calculational algorithm that uses grids of different sizes in different
regions can give meaningful results. These results will be compared to
calculations using a uniform coarse grid and a uniform fine grid
throughout.
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Fig. 1. The cross-section of infinite parallel plane conductors.

Our calculational tool, as sketched in Fig. 2, is the finite difference time
domain algorithm! with various grid sizes and time steps in various

regions.?
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Fig. 2. A possible zoning for the FDTD calculation.

When a sinusoidal TEM wave traveling from the left encounters a
step discontinuity, higher order TM modes will be generated in order to
satisfy the boundary conditions. The frequency and the heights will be so
chosen that only the TEM mode will propagate. Regions of various spatial
and time divisions are shown in Fig. 3.
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Fig. 3. Regions of different spatial and time subdivisions.

2. Input Information

We chose a sinusoidal wave with Ei = $ Ei Hi=%Hi. EiandHi
do not depend on z.

Ex,t) = Re (A & &® ™) ; wherek = wJp—ﬁ- : 1)
f=-i—x1010 Hertz (la)
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Therefore, in free space

T

2 (1b)

X=3x108/%x1010=.04m=4cm L0 =-

choose 6:-% so that the source will be a sine function. Also let
h=1 cm, (2a)

h+ =ch, where 0 <a<1. (2b)

It is physically plausible that the boundary conditions (namely, the
vanishing of the tangential components of the electric field on the
conducting planes) can be satisfied with TM modes and the TEM mode.
The lowest TM mode is the TM;o mode (half sinusoidal in y and no z

dependence). If we choose o = 0.25, so that h. = 0.25 cm, then

Aet = 2(.25) = .5 cm, the cutoff wavelength to the right. (3a)

Ae =2(1.00) = 2 cm, the cutoff wavelength to the left. (3b)

but A =4 cm > A+ and > A, ; therefore, the TM;o mode cannot propagate

on either half of the guide. Choose Ax = h./8 (this will allow 32 zones per
wavelength, a very fine zoning).

3. Boundary Condition on the Left

Far away to the left of the discontinuity, we have

E(xt) = 9 (E(xt) + El(x,t) (4)

78

EBREERNERNRENFERNNNEN NS NN K



where ET(x,t) is a reflected TEM wave. If x, is the left boundary,

t
A
Er(zp,t+At) = Er(xp+ct+cAt)
(xp,t+At)
= Er((xp+cAt) + ct))
= Er(xp+cAt,t)
(Xrest 1)
(X 1) (Xpax, t)
Fig. 4. Interpolation to get
Er(xy t+at).

The value of ET at (xp,+cAt,t) will be obtained by interpolation.

Thus,

AX - c At Er(XL,t) + _E_A__t_ Er(xL+AX,t) (43)

E'(x;,t+At) =
Ax Ax

It is to be observed that cAt < Ax is due to stability considerations. We also
note that Ei(xy,t+At) = Ei(xp-c(t+At)) and this is given.

E(x, t+4t) = E'(x; t+4t) + E"(x, t+At) (5)

Ax - cAt

= E(x, t+Ab) +
Ax

(E(x,,t) - E'x, b))

+ E-éE (E(xL,+Ax,t) - Ei(xL+Ax,t))
AX

Ei(x,t)=Re {exp (ot +jka-jkx-jl2c-)}
= sin (w0t + kx; - kx) if wt + kx; - kx>0
Ei(x,t) = 0 if wt + kxp, - kx < 0.
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Or

i sinwt , ift=20 ;
E(Xut)={ 0 ift<O.

i sin(wt-kAx) . if ot-kAx>0 ;
EI(XL+AX’t)=< 0, if ot-kax<0 . (5a)

m=2nf=§§-x101° ‘k =w/3x10° . (5b)

4. Boundary Condition on the Right

Far away to the right of the discontinuity, we have only a
transmitted wave traveling to the right. If we let xg be the right boundary,
we have

E(xgr,t + At) = E(xR - c(t+At)) = E((xR - cAt) - ct)
= E(XR - CAt,t)

Or

Ax = cAt
E(XR, t+At) = T E(XR,

cAt
+ -&;{— E(XR - Ax,t) (6)

t)

=
(m24,) (K -2st %)
(o2t

Fig. 5. Interpolation to get E(xR, t+At).
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5. The Transmission Line Approximation

" We can obtain a transmission line approximation of our
problem by assuming that the electromagnetic field is that given by 1-D
TEM Maxwell's equations.

oE 0

D A

= = (7a)
oH oE

—ri_. X

= e (7b)

Fig. 6. A unit width two-line transmission line.

Referring to Figure 1 for the coordinates and Figure 6 for the
direction of the voltage and current, we let

V =-h Ey
I=-H; *1m

where h is the separation between the parallel planes.
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(7b) and (7a) can be written as

av ol
i
o _ gV
ox h ot

(8a)

(8b)

(8a) and (8b) are the familiar transmission-line equations with

L=hyp henrys/m

_€
C= T farad/m

The wave velocity is

and the characteristic impedance is

o (LR
Z°‘\/g‘\/:h‘”h’“‘

(9a)

(9b)

where n is the "characteristic” impedance of a plane TEM wave. For the
purpose of analysis, we take x=0 at the discontinuity as shown in Figure 7.

Y. .

\zo

Fig. 7. Two different transmission lines connected at x=0.
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Our crude approximation is equivalent to the wave propagation in
two different transmission lines connected at x=0. The symbols in Figure 7
are

Z. = Y.}, the characteristic impedance for x < 0,

Z. Y4.'1 , the characteristic impedance for x > 0,

If we use the superscript + to denote a positive traveling wave and the
superscript - to denote a negatively traveling wave, we get at x=0.

V=V"+V
I =I"+T =(1/2)V"-V)
For x=0_ , we have
V=Z+I

as there is only an outgoing wave to the right. Combining

VT +V) =V =
l x=0 |x:-O+ Z* L l x=0_
21 | 2w |
oo X=O. - Z_ X=
yields
V- + Z+ -Z- +
=V E:-;—Z-—- = RV (lOa)
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At x=0,, we have

vl _=en |x=0+ =(V'+V) lxzo.

+

=1+R)V' =TV

+
v | x=0, x=0 (10b)

x=0_

where R and T are the reflection and transmission coefficients,
respectively, at x=0.

Z.-2Z
R = 77 (11la)
+
2Y.
T=1+R=-Y-+_Y+ (llb)

If we calculate (or measure) the reflection coefficient at a position nA to the
left of x=0, we get the same value as given in (11a). And, if we calculate (or

measure) the transmission coefficient at a position nA to the right of x=0, we
would get the same 7.

6. The Transmission Line Approximation with Approximate
Account for Fringing at the Discontinuity

A more refined approximation would be to use the
transmission line approximation for the dominant TEM mode with a shunt
capacitor at x=0 to account for the fringing of the electric field at the
discontinuity (x=0). Figure 8 shows such an admittance.?

.
\ = 1.

Fig. 8. Shunt admittance at the discontinuity.
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For the two semi-infinite transmission lines connected together as shown
in Figure 8, the boundary conditions at x=0 are

V(0,8) = V'(0,t) + VI(0,t) =V(0,,t)
I0,t) = Y.OVT(0,t)- V(0,t) = (Y +Y,) V(0,1

with
V@, =RVO0,t); VOt) = TV(O,b) ,
We find that
Y - Y* - Yc1
R=Y+Y +Yd N (11lc)
+
2Y
T=1+R=Y+Y++Yd . (11d)
Also, if
+ H 3 +'kx R )
V (x,t) =Re (elc')t eka e L em ) with X = nA
then

. ik, o
V(xt) = Re(R &% e” b i oi™2)

ForR = [R| a8, we get
Vix ) = |R] sin (ot +6)

Both |R | and B, can be obtained from the time history of

E'(x,t) = E(x,t) - E(x,,0)
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We can then go back to (11d)
- 2Y.
Y. +Y + =
d" """+ 14R
or
2Y
Y(1 = -Y - Y, 12)
1+R

From (12) we can get C as required in Figure 8.

In Appendix A we give more details to compute Y4 and hence C from
our numerical scheme.

7. Calculational Results

We take h. =1 ¢cm and Ax = Ay = 1/8 cm. This would allow 32 zones
per wavelength. The left calculational boundary is 2A from the
discontinuity and the right calculational boundary is 11A from the
discontinuity. The left boundary condition is imposed at x = - 2A and the

right boundary condition is imposed at x = 11A. For the time interval of
calculation, the effect of the right boundary is not felt at the left boundary,
as we only wish to test the effect of the change of grid sizes. At t=0 we set
the electric and magnetic fields equal to zero. This will give us the initial

condition. For t 20 we set

. = sin wt
B | .
ﬁ— -
In Figure 9a-c we show
. fort20 .
Ey ..o
X

Using Tables la-c we can calculate the time difference, At, between the
cross-over points of the incident and reflected Ey for different values of
hy /h.. Since o is known, we can then calculate the phase angle
between these Ey from 6= ®WAt. We then derive the shunt capacitance

as shown in Appendix A.
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In the last column of Table 2 we give the reflection coefficient based
on equation (A.4). The last column of Table 3 is based on the exact static
formula [equation (13) below] due to the fact that the electric field lines at
the neighborhood of the discontinuity are curved (fringing).

A static approximation for C shown in Figure 8 can be obtained. Itis
the excess capacitance over what occurs when the field lines are uniformly
distributed and straight across. The formula is3

2
c=& {2l 1, 82D 9 (22 )} £/ meter width
T o 1-a l1-a
13)
where a=h+/h_

8. Conclusions

The sets of calculations of the reflection coefficients and
capacitances for the infinite parallel plates with a finite discontinuity
show that using grids of different sizes in different regions gives
meaningful results. This approach will save considerable running time
and require less memory than a finer grid throughout would need. In
addition, it will enable smaller objects to be modeled more accurately.
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Fig. 9¢

Figure ‘9. Reflected y-component of the electric field 2A away from the
discontinuity.

Fig. 9a: h/h. = .25
Fig.9b: hy,/h. = .50
Fig. 9¢:  h/h. = .75

The incident electric field at x = -2\ is Ei(- 2A,t) = 1000 sin wt for t 2 0.
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Time (ns) Eyi, Incident Ey", Reflected

1.9957333 -1.9509e+02 4.8245e+01

1.99791667 -9.8016e+01 -1.3807e+01

2.00000 +1.3923e-03 -7.3750e+01
Table 1la: h_/h_ = .25

1.69375000 -2.9028e+02 1.0602e+01

1.99583333 -1.950%e+02 -2.4998e+01

1.999791667 -6.8016e+01

2.000000 1.392923e-03

Table 1b: h_/h_ = .50

-+

1.99375G600 -2.9028e+02 1.6992e+00
1.99583333 -1.9509e+02 -1.2897e+01
1.999791667 -5.8016e+01

2.00000 1.392923e-03

Table 1c: h_/h_ = .75

+

Table 1la,b,c. The incident and reflected Ey at x= -2k. The left boundary of
the calculational grid is at x = -2A and the right boundary of the
calculational grid is at x = +11A.
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Calculated |R |

h, /h, Uniform ' Uniform Transmission-Line
Coarse Grid Mixed Grid Fine Grid Approx. | R|
25 .629 627 627 (4-1)/(4+1)
.50 363 362 362 (2-1)/(2+1)

.75 151 150 151 (4-3)/(4+3)

Table 2. Calculated and transmission-line-approximation reflection
coefficients.

Calculated C x 1022 f/m
h, /h_ Uniform Uniform From Equation (13)
Coarse Grid (Mixed Grid) Fine Grid
25 - 5.20 5.1 5.22 5.75
50 2.31 2.27 2.2 2.21
75 59 566 570 5.73

Table 3. Calculated shunt capacitance and the static approximation based
on Equation (13).
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APPENDIX A
Calculation of the Shunt Capacitance
from the Numerical OQutput

From the text we have the incident wave at X =nA

Ei(xr,t) = sin ot t>0 (A.1)

[Equation (5a)]

The reflected wave is

E'(x,t) = Re (R JIW2HeY

with

R = IR|e® and x = -ni

E'xt) = [Rlcos(wt+6 -w2) = Rlsin(wt+6)

=- R|sin (at+4) (A.2)
where

A = er-n(or6t=x+Ar)

r

In our numerical examples, A, is a small number. A, can be obtained

directly from the ET vs. wt plot. From equation (12)

2Y
1+R

Y, =

Y - Y, (A.3)

Let

R = |R|c059r+j bllsiner = - tR.lc:osAr -] hl{sinAr
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2Y (1 +R*)
Y, =
d7 14+R)1L+R%

.Y - Y

+

2Y (1- [R| cosa)
={ 2 2 . 2 'Y-'Y+}
1- IRl cosA)” + |R |2 sin A

i 2Y IR sin A,

+
1 - |R| cosa)?+ [R|%sin’ 4,

The value IR |can be read off directly from the computer output, and A, can
be obtained from a numerical interpolation. We also recall that

L L
e h 377 h,
€

For the transmission line approximation,

for free space.

Z.-Z. h -h
=Z7.+Z h _+h

R (A.4)
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APPENDIX B
Symbols and "Pseudo” FORTRAN Flow Chart

In this appendix, we show the names of some variables and a
"pseudo” FORTRAN flow chart. The electric field components in zone 1
will be Elx, Ely; the horizontal zone boundaries will be I1L, I1R, etc. The
vertical boundaries will be J1B, J1T, etc. A pseudo flow chart outlining the
steps of calculations, interpolations, etc. is shown in steps (1)-(13).

727 IaT
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Fig. B.l. The variable zones, indices and variables.
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Back from (13)
>

AT1

(1) Use AT1, advance to t =——

y

— I1 =I1L, I1R
—J1 =J1B,J1T-1

H1Z(I1,J1) =H1Z(11,J1) + ....
Continue

I3=1I3L-1,I3R-1
J3 =4J3B,J3T -1
H3Z(I13,d3) = H3Z(I3,J3) + ....

Continue

(2) Use AT1, advance to t = AT1

I Il = IlL, U.R-l

— J1 =2,J1T-1
E1x(11,J1) = E1x(11,J1) + ....
Continue

— 13 = I3L, I3R-1

J3=2J3T-1
E3x(13,J3) = E3x(13,J3)
Continue

Fixtot=AT1

Fix the boundary condition for E1Y(I1L,J1)
Fix the boundary condition for E3Y(I3R,J3)
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(3) At the interface
Saving the old values for interpolation

—— J1 =J1B,J1T-1

E1YT(J1) = E1Y(I1R,J1)
Continue
—J3=J3B,J3T-1
E3YT(J1) = E3Y(I3L,J3)

Continue

1}
o

tot

Y (4) At the interface
Interpolate and extrapolate tot=0

E2Y(I2L,1) = E1Y(I1R,1)
E2Y(I12L,J2T-1) = E1Y(I1R,J1T-1)
E2Y(I2R,1) = E3Y(I3L,1)

E2Y(12R,J2D-1) = E3Y(I3L,J3T-1)
1

K=2,J1T-1
E1Y(I2L,2*K-1)
=.75*E1Y(I1R,K)
+25*E1Y(I1R,K-1)

E2Y(I2L,2*%(K-1)) = .25*E1Y(I1R,K)
+.75*E1Y(I1R,K-1))

——Continue

K=2,J3T-1
E2Y(I2R,2*K-1) = .75*E3Y(I3L,K) + .25*E3Y(I3L,K-1)
E2Y(I2R,2*%(K-1)) = .25*E3Y(I3L,K) + .75*E3Y(I3L,K-1)

Continue
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%) UsaAT2,advanceI-L‘?.Zt:oi:=7-=-T

— 2 = I2L, I12D-1
J2 =J2B, J2T-1
H2Z(12,J2) = H2Z(12,J2) + ...
- Continue

— 12 = 12D, I2R-1
J2 = J2B, J2D-1
H2Z(12,J2) = H2Z(12,J2) + ...
——Continue

( (6) Use Atl, advance E1Y and ESY to t = Atl

— 11 =11L+1, I1R
J1 =J1B, J1T-1
E1Y(I1,J1) = E1Y(I1,J1) + ...

—— Continue

— I3 =13L, I3R-1
J3 =J3B, J3T-1

E3Y(13,J3) = E3Y(I3,J3) + ...
—— Continue
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/ (7) Time average values for E1Y Atl
and E3Y at the interface tot=4t, = -

<

—J1 =J1B,J1T-1
E1YT(J1) = .5*E1YT(J1) + .5*E1Y(I1R,J1)
— Continue

—dJ3 =J3B, J3T-1
E3YT(J3) = .5*E3YT(J3) + .5*E3Y(I3L,J3)
Continue

(8) Spatial average to get E2Y
[ at the interface tot=At,

E2Y(12L,1) =E1YT(Q)
E2Y(I2L,J2T-1) = E1YT(J1T-1)
E2Y(I2R,1) = E3YT(1)
E2Y(I2R,J2D-1) = E3YT(J3T-1)
K=2,J1T-1
E2Y(12L, 2*K-1) = .75*E1YT(XK) + .25*E1 YT(K-1)
E2Y(I2L, 2*(K-1)) = .25*E1YT(K) + .75*E1 YT(K-1)
Continue

K=243T-1
E2Y(I2R, 2*K-1) = .75*E3YT(K) + .25*E3YT(K-1)
E2Y(I2R, 2%(K-1)) = .25*E3YT(K) + .75*E3YT(K-1)
Continue

p
(8a)

Advance the interior E2x, E2Y to t = Aty
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/ (9) Replacing the calculated values in At,
(1) by spatial average (tempor.) tot= -

.

— J1=1,J1T-1
H1Z(I1R,J1) = .25*(H2Z(I2L,1+2*%(J1-1))
+ H2Z(12L+1,1+2*(J1-1))
+ H2Z(12L,2*J1) + H2Z(12L+1,2*J1))
Continue

—— J3=1,J3T-1
H3Z(I3L-1, J3) = .25*(H2Z(I12R-1,1+2*(J3-1))
+ H2Z(12R-2,1+2%(J3-1))
+ H2Z(I2R-1,2*J3)
+ H2Z(12R-2,2*J3)
Continue

(10) Use At2, advance H2Zto t =-g- At2

— 12 = I2L, I12D-1

J2 =J2B, J2T-1
H27(12,J2) = H2Z(12,J2) + ...
Continue
12 = 12D, I2R-1

J2 =J2B, J2D-1
H2Z(12,J2) = H2Z(12,J2) + ...
Continue

Y to (11)
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Y 2

(11) Time average of (9) and (10). This replaces
the calculated boundary values by (1) for

t= 1 At, . These values are then advanced by

(1) to a new time t;=%At1

—Jl=1,J1T-1
H1Z(I1R,J1) = .5*H1Z(I1R,J1)
+ .5%.25%(H2Z(12L, 1+2*(J1-1)
+ H2Z(I12L+1, 1+2*(J1-1))
+ H2Z(12L, 2*J1) + H2Z(12L+1, 2*J1))

— Continue

—J3=1,J3T-1
H3Z(I3L-1, J3) = .5*H3Z(I13L-1, J3)
+ .5* 25%(H2Z(I2R-1, 1+2*(J3-1))
+ H2Z(I2R-2, 1+2*(J3-1))
+ H2Z(I2R-1, 2*J3)
+ H2Z(12R-2, 2*J3))

—(Continue

\‘( to (12)
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" (12) Spatial average to get E2Y at the
interface to t = Aty = 2Aty

E2Y(12L,1) = E1Y(I1R,1)
E2Y(I2L,J2T-1) = E1Y(I1R,J1T-1)
E2Y(I2R,1) = E3Y(I3L,1)
E2Y(I2R,J2D-1) = E3Y(I3L,J3T-1)

K=2J1T1
E2Y(12L,2*K-1) = .75*E1Y(I1R,K) + .25*E1 V(1R K-1)
E2Y(12L,2%(K-1)) = .25*E1Y(IIRK) + .75*E1Y(11R K-1)

L———— Continue

K=2,J3T-1

E2Y(I2R,2*K-1) = .75*E3Y(I3L,K) + .25*E3Y(I3L,K-1)
E2Y(I2R,2%(K-1)) = .25*E3Y(I3L,K) + .75*E3Y(I3L,K-1)
Continue

(13)

Advance the interior E2Y, E2x to t = 2At2 = At

Back to (1)

1 \ \ ‘ [
N 4 < R i = e



APPENDIX C
The Finite Difference Equations

The finite difference equations used in this report are derived from
the integral forms of Maxwell's equations, which are

$E . al- -aaz [[us « 6 C.1)
<ﬁﬁ-d§=%”eﬁ-d§ (C.2)

For the TM wave appropriate to our problem, we have

E (x,y,2,t) = X Ex(x,y,t) +5 Ey(x,y,t) (C.3)
Hxyzt) = 2H &y, (C.4)

and there is no z dependence.

Using (C.1), we have

HV2(041/2, +1/2) - HY V04172, j+1/2)

i At

Ax Ay

= ax (EDG+1/2,) - EDG+1/2, j+1))

+ay (E] (41, j+1/2) - E} G, +1/2))

resulting in

H™2 (14172, j+1/2) = B2 (141/2, j+1/2) - —oe (BT (1/2,) - E] (+1/2,+1))
‘ Hay - x X
At

n,. . n, . .
" (Ey (i+1, j+1/2) - Ey (1,J+1/2))
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Using (C.2), we have

E™ (141/2,§) - E® (i+1/2,)
X X
€ At byel =

1o (B2 ge/eger - B (141/25-1/2)

E’;“ (14+1/2) - E] (1j+1/2)
At

Ax el =

1 (H;‘*l’2 (-1/2,j+1/2) - HI*12 (i+1/2,j+1/2))

resulting in

E™ (1+1/2,) = ES (1+1/2) + -E-; (H“*“2 (i+1/2,j+1/2) - H“*l’ (i+1/2- 1/9))

B (1,j41/2) = Ej (1,j+1/2) + 5— (H“‘“”2 (i-1/2,j+1/2) - H“*l‘2 (1+1/2,J+1/9>)
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