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Abstract—This paper describes modifications of
the conventional finite-difference time-domain (FDT-
D) method to the full-wave analysis of frequency-
dependent characteristics of microstrips discontinu-
ities on non-diagonal anisotropic substrates. The ap-
plication of the conventional FDTD is limited to ma-
terials with diagonal-anisotropic material matrices. In
this paper it is shown that this restriction can be re-
moved: First, steps for obtaining the FDTD equa-
tions for the analysis of microstrips discontinuities on
substrates with fully anisotropic permittivity matrices
are derived. Then, nsing the Fourier transform of the
computed results in the time-domain, the scattering
parameters as functions of the frequency are calculat-
ed for several examples.

I. INTRODUCTION

The finite-difference time-domain (FDTD) method was
first proposed by Yee [1]. It is formulated by using
Maxwell’s curl equations over a finite volume and approx-
imating the involved derivatives with centered difference
technique. Analysis of the discontinuities is of great im-
portance since more complicated circuits can be realized
by interconnecting microstrip lines with these disconti-
nuities. The FDTD method promises a great flexibility
in handling a variety of microsirip discontinuities [2], [3],
[5]. However, the results published so far are limited to
substrates that are either isotropic or have diagonal per-
mittivity matrices. Many materials used as substrates for
integrated microwave circuits or printed-circuit antennas
exhibit dielectric anisotropy which either occurs natural-
ly in the material or is introduced during the manufac-
turing process. The development of accurate methods for
the design of these circuits requires a precise knowledge of
the substrate material dielectric constants. The variations
in the values of the substrate material relative dielectric
constants introduce errors in integrated circuit design and
reduce its reproducibility. For these reasons and because
in certain applications anisotropy serves to improve per-
formance, it must be fully and accurately accounted for.
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In this paper, we outline the steps to obtain the FDTD
equations for the analysis of microstips discontinuities on
non-diagonal anisotropic substrates. We use these equa-
tions to obtain the scatiering parameters for microstrip
discontinuities on Quartz as the substrate material.

II. PrROBLEM FORMULATION
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Fig. 1. Computationsl domain

The computational domain and the generalized mi-
crostrip discontinuity under investigation is shown in Fig.
1 (a more complete configuration would describe an N-
port microstrip instead of a two-port). The strip and
the bottom plane are perfect conductors (¢ — oo) and
the substrate is characterized by the constant permittivi-
ty matrix ¢

€xx fxy fzz
£= €| Syz fyy Eyz (1)
| €2z €2y Ezz

Furthermore, a uniaxial permeability matrix is assumed.

[ gz O 0
g = Ho 0 pyy O (2)
0 0 p

The structute is taken to be in an open environment, that
is, above the dielectric and the metal strip surface, free
space is assumed to extend to infinity. The substrate-
ground plane also extends uniformly into infinity. With
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Fig. 2. Yee's placement of the ficldcomponents in the FDTD
unit cell.

these assumptions, Maxwell’s curl equations for source
free regions read

~ dH

VxE I—g'—aT, (3&)
oE

VxH=g. (3b)

In order to find an approximate solution to this set
of equations, the problem is discretized over a finite
three dimensional computational domain with appropri-
ate boundary conditions enforced on the conductors,
dielectric-air interface, and the mesh walls.

4. Time-Domain Finite Difference Equations

The centered difference scheme is used to approximate
both the time and the space firsi-order partial derivatives
to obtain discrete approximations to the comtinuous par-
tial equations {3). To simulate the wave propagation in
FDTD algorithm, the six field locations are considered
to be interleaved in space as shown in Fig. 2, which is
a drawing of the FDTD unit cell arranged by Yee [1].
The entire computational domain is obtained by stacking
these rectangular cubes into a larger rectangular volume.
The advantages of this field arrangement are that cen-
tered differences are obtained in the calculation of each
field component and that continuity of tangential field
components is automatically satisfied. In this algorithm,
not only the placement of E and H nodes are off in space
by half a space step, but the time instants when the E or
H fields are calculated are also off by half a time step. We
will use the following notation for our discretization: as-
suming the function F(z,y, z,t) is evaluated at the node
(iAz, jAy, kAz,nAf), this function can be written as
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F*(i,3,k) = F(iAw, jAy, kAz, nAt), where (i,3, k) tep-
resents numbers of the nodes in computational domain in
z, y and z directions and the superscript n indicates the
time step.

H- Field Equalions:

Using this arrangement for the field components and
the centered difference scheme, an approximation to (3a)
can be obtained at the node (iAz, jAy, kAz, (n+3)At)

H, 3 (i,5,k) = H""4(4,5,k)
At [E,“(i,j +1,k) — E."(,5,k)
Hoflox Ay
B (g k+1)- Ey"(i,j,k)]
Az

(48)

H 30, 5,k) = Hy" 35,5, k)
Al [E,“(i, 3 k+1) — E. (4,5, k)
" Moty Az
_ Ezﬂ(i + laj’k) — Ezn(i:jak):l
Az

H. (i 5,k) = H, "8, 5,k)
At Ey"(i + lv j’k) — Eyn(".’ja k)
" Bothes [ Az
Ezn(’:sj + 1sk) - Em“('i’jik)
- Ay ]

(4¢)

E- Field Equaitons:

The existence of off-diagonal elements in the permittiv-
ity matrix leads to the coupling between the time deriva-
tives of the electric field components. Separating (3b)
into scalar components, we obtain the following equation
in matrix form for electric field components at the time
step © + 1:

[ n+1 i n
E. 77 ] Ez [Fsn
n+1l _ n
Eyliie | = Ey |tk
n41 n
| Bk | | B |
" oH, |»+3% _3H££ nt+d
By |i.f.k 8z i,k
At oH, |n+3 _ oH, |n+3 5)
50D€t= az i’jjk Sz hJ:k
aH}! n+i _ o H. n+§
Bz i,k By |tdk

M and Det denote the adjoint and the determinant of g,
respectively. We now examine this result. The expression
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of the electric field component E; is

At
n+l __ n
E. ik = E, |i.3’.k + g0 Det
0H, n+i aHy n+i
V™o Ty [k T gz |fk
BH, ned _ OH, int3
Ty | 57 [idk ~ ga ik
OHy jnr:  OHy |n+d
+ e (_éz_y .-'.1'.13 - .-,,-,;?)}- (6)

It is readily seen that this equation reduces to the cor-
responding standard FDTD equation, if the off-diagonal
terms of g are zero. (mgy = mg; = 0.) Note that
my, # 0 is guaranteed for positive definite dielectric

, L. sH, |[n+% aHy, |n+3
et oy ¥
matrices. The derivatives 3y= |67k and 3 ik 8re

obtained in the usual manner directly from the FDT-
D grid. In order to calculate the remaining derivatives,

oH, [ni oH, ptd oHy [t} . oM, [n+d
otz F vz H —y H iy z
5 |igk 1 B ligk 0 Be ligk o0d TFE ik anap

proximate interpolation technique has been proposed.
Fig. 3 shows the position of E, in each unit cell along

with the surrounding X, field components of this electric
oH, |n+3

field component. For =5= |, . © we obtain
8z |D9% T 4A;

BG4 15k + B 5 R)
+H MG+ 1,5 - 1,k) + HVT3 (5,5 — 1, k)
~H (4 1,5k~ 1) — B, 5,k — 1)

1

—H 41,5~ 1,k - 1)

=

[

- B - LE- 1)} (7)
Considering the Fig. 4, we obtain the following resuli for
aH, |n+i.
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a_;aﬁ’:_! :TE is obtained through our interpolation as follow:
OHyjn+y . 1
dx WIE T 4Ax
(B0 B G L5k - )
- B - 1,50 - B - 15k - 1) F(9)
a—aH;ﬁ ::E can be obtained in the same manner as
1
B‘TEEE :I,: To this end we construct the differences of

the magnetic field components in the neighborhood of E;
in y direction.

Similar expressions can easily be obtained for £, and E;.
The maximum time step that may be used is limited by
the stability condition of the finite difference equations,

-1/2
1 1 1 1
At < 10
S (A32+Ay2+!.\z3) (10)
where Cmaz 18 the maximum velocity of light in the compu-
tational domain. In our calculations ¢pq, is the velocity

of light in free space because the computational domain
is partially filled with air.

B. Dielectric-Air Interface Conditions

The above finite difference equations for H and E Field
components are derived in the uniform dielectric region of
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the computational domain (Fig. 1) and therefore cannot
be applied to the nodal points located on the dielectric-air
interface or on the boundary walls of the mesh. All these
points require special treatment. The field components
which lie on the dielectric-air interface are the tangential
components of B (£, and E.) and the vertical compo-
nent of H (H,). In calculating H,, (4a) can still be used
because the value of permeability does not change across
the interface, and the E, and F, components used for the
calculation of H; are the tangential components with re-
spect to the interface and are thus continuous across the
boundary. To calculate Ey and E., however, a special fi-
nite difference formulation must be derived from the field
continuity conditions across the boundary. The expres-
sion for Ey within the assumed dielectric is

oE, _ 1
at /.. " epDet

8H, 0H, 8H, O0H,
™\ "8z /T 8 T e

0H, 0OH;
(Z o) 11
T ( 8z oy ) } ()
while the expression for E, in free space is
8E, _ 1 J8H, 0H,
( ot )as'-r_EO{ 8z oz } (12)

For the calculation of E, on the interface, we add these
expressions and apply the continnity condition

aE, _ (8E, _ (9E,
at sub z=0" - Bt air z=0t N at

across the interface. As numerical calculations in [2] and
[7] have shown, we can assume that 8H,/8z and 8Hy /0=
are continuous. Therefore, we obiain an expression for
the calculation of Ey on the interface

0B, _ 1
8 J e Z2eoDet

(13)

inter

9H, oH, 0H, OH,
'{may(*é‘y— =5, ) t(my + Det)(—~ - ——)
9H, OH,
+myz(—aw ~ oy )} (14)

A similar expression can be obtained for E;. E, and
E. vanish on a metal strip because of the assumption of
perfectly conducting surface.

C. Absorbing Boundary Conditions

Due to the finite capabilities of the computers used to
implement the finite-difference equations, the mesh must
be truncated in #, ¥ and z directions. The difference e-
quations cannot be used to evaluate the field components
tangential to outer boundaries since they would require
the values of field components cutside of the mesh. The
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ground plane is a perfect conductor and the tangential
electric field is forced to be zero on it. The tangential
electric field components on the remaining five mesh wall-
s must be specified in such a way that ouigoing waves
are not reflected using the absorbing boundary conditions
(ABC’s). The Mur’s first absorbing boundary condition
is utilized for the calculation of microstrip discontinuities
in this work [4]. For a wall normal to the z-axis Mur’s
first ABC’s may be written in the form

(E. - l.f?_) E.on = 0. (15)

dz vt
This equation can be discretized using field components
on or just inside the mesh wall, yielding an explicit finite
difference equation

vAf — Az Erl _ Eg) ,

n4+1 __
Eo _E?+‘uAt+Az( 1

(16)
where Eg stands for the tangential components of E on
the mesh wall and E{ represent the tangential compo-
nents of E one node inside of the mesh wall. Similar
expressions can be obtained for the remaining ABC’s by
using the corresponding normal directions for each wall.
It should be noted that the normal incidence assumption
is not valid for the fringing fields which are propagating
tangential to the walls; therefore the sidewalls should be
far enough away that the fringing fields become negligible
at the walls.

D. Ezcitation Pulse and Source Modeling

In order to simulate a voltage source excitation it is
necessary to impose the vertical electric field E; in a rect-
angular region ABCD underneath the input of the mi-
crostrip in the source plane k = ks (see Fig. 1). The
launched wave has unit amplitude and is Gaussian in time

—(t=to)?/T?
EﬂﬂG:n = { € 0

The source plane being parallel to the (x, y) plane is lo-
cated several nodes away from the boundary inside the
computational domain (Fig. 1). This plane divides the
computational domain into region 1, containing the mi-
crostrip disconiinuity, and region 2, containing the ab-
sorbing boundary. For field wave E.""3,4,ks) on the
source plane we obtain

(x,y) € ABCD
elsewhere,

(17)

Ea:n+1(i, i kS) = E, |;‘n,_,‘,k, + Ezgen " (18)

where E, |, ;, Tepresents the term at the lefi-hand side

of Eq.(6) evaluated at the time step n. On the source
plane, no special treatment is applied to the remaining
EM field components. They are calculated from (4) and
(5). With this modeling technique for the excitation [6],
the de source distortions reported in [2] and [5] are not

apparent.



11I. NuMERICAL RESULTS

In order to determine the scattering parameters of
microstrips discontinuities by means of FDTD, Fourier
transform of incident and reflected transient waveforms
must be used. We assume reference planes (i.e. T'— T in
Pigs. (5) and (6) in the sides of discontinuities and record
the vertical electric field one node underneath the center
of microstrip of each reference plane at every time step.
The scattering parameters S;; may then be obtained by
Fourier transform of these transient waveforms as

FI[V;(t)]

FT@) (19)

Sin(f) =

The reference planes are chosen far enough from the dis-
continuities to eliminate evanescent waves.

Ezamples

In this work, two types of symmetric microstrip discon-
tinuities on Quartz substrate with permittivity matrix

453 -0.34 -0.24
=€ | —0.3¢ 430 013 (20)
—0.24 0.13 475

and the permeabilities gy = pyy = pzz = 1 have been
calculated. In our calculations the parameters of the
structure and the mesh have been selected as follows.
thickness of the substrate: A =0.5 mm

width of the metal strip: w = 1.0 mm

mesh size: 20 x 80 x 100
Az = Ay = Az =0.1mm
At == 0.120 ps.
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Fig. 5. $11 and S2; paramecters of the microstrip gap.

IV. CoNCLUSION

We have extended the conventional FDTD method to
include non-diagonal permittivity matrix for calculating
the frequency characteristics of microstrips discontinuities
on fully anisotropic materials over a large frequency range.
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Fig. 6. S-parameters of the microstrip cross-junction.
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