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Abstract─ The hereby article is devoted to 
elaboration of the analysis method of nonuniform 
transmission line (NUTL) with utilization of 
typical circuit simulator like SPICE. It is assumed 
that quasi-TEM modes are propagated in the 
NUTL. Solution of the problem is divided into 
three parts. 1) The analysis of nonuniform 
transmission line is reduced to the analysis of 
cascaded sections of linear varied nonuniform 
transmission line (LNTL). Proper algorithm 
originates from literature. 2) Computational model 
of linear varied nonuniform transmission line is 
elaborated following the asymptotic waveform 
evaluation methodology. The q-pole model is 
matched to imitate position of zeros and poles of 
admittance matrix of the NUTL. 3) Synthesis of 
passive circuit which implements the model for 
broad range values of LNTL slope constant. 
Consequently parameters of the circuit can be 
evaluated precisely as polynomial function of 
slope constant. Resultant model can be easily 
written in SPICE simulation language. 
  
Index Terms─ Asymptotic waveform evaluation, 
nonuniform transmission line, PR function, 
SPICE. 
 

I. INTRODUCTION 
Rapid development of VLSI technology yields 

large chips powered by a faster and faster external 
clock. Electrical length of interconnections 
becomes a significant fraction of a wavelength. 
Consequently conventional lumped-impedance 
models lead to a great computing complexity. 
There were many calculation models and 
techniques for real transmission lines that soften 
this problem. Most of them are focused on VLSI 
metal interconnections and connections between 
integrated circuits [1]. Unfortunately none of them 
can be easily implemented in a circuit simulator. 

Strongly nonuniform transmission lines are used in 
microwave filters and impedance match 
circuits [6], to form impulse and to process quick-
change signals [7]. Therefore, much attention has 
been paid to them [8], in recent times. 

In this article, a new method of nonuniform 
transmission line (NUTL) simulation is proposed. 
The NUTL is divided into chunks approximated 
by lossless linear varied nonuniform transmission 
line (LNTL). For each approximating chunk an 
analytical solution of equations, which describes 
approximating LNTL is known. The solution is 
converted into SPICE acceptable macro-model 
[13] by methodology patterned on asymptotic 
waveform evaluation (AWE). In the original AWE 
method, initial conditions and a few first moments 
of the transient are matched with q-pole model. 
Herein a q-pole model is matched to imitate 
position and residues of poles and zeros of the 
admittance matrix of the LNTL. Proposed 
approximation methodology leads to the 
simulation model which is equivalent to a simple 
reciprocal circuit. Consequently, chunks of 
considerable length LNTL can be modeled with 
a low order ladder circuit. The model can be easily 
written in SPICE simulation language. 

 
II. ANALYSIS OF NUTL 

Text of this paragraph is quoted from [24] for 
completeness and smoothness of considerations. 
Consider ideal linear varied nonuniform 
transmission line (LNTL). Its wave impedance and 
propagation constant are: 
 0( ) (1 ), / ,Z Z k c       (1) 
where Z0 is a wave impedance in the beginning of 
the line, k=(dZ(ξ)/dξ)/Z0 is the slope constant, ξ is 
the position along the line, c is the phase speed of 
electromagnetic waves in the line, ω is the angular 
frequency of the waves. Solution of the telegraph 
equation for LNTL can be easily found in the 
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literature. For example in [26], the solution was 
found and elements of ABCD matrix have been 
given explicitly. Here the admittance matrix of 
LNTL line is used: 
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 (4) 

where Jn(x), Yn(x), are the Bessel function of the 
first and second kind of order n respectively; ℓ is 
the length of the line; x=ωτ/ kℓ and τ is delay time 
of the line and 1j   . Using the solution, the 
following algorithm of NUTL analysis was 
formulated by K. Lu [26]. The algorithm is quoted 
here in extenso.  

Step 1) “Numerically evaluate 0
/ ( )y d c


   . 

Step 2) Select a set of points  0 1, , , , ,i n      
(corresponding to a set of points in terms of 

( )y    0 1, , , , ,i ny y y y  in the region 
0     ) so the NUTL is broken to small 
n  sections. The ( )cZ y  of the i-th small 
section can be approximated by an LNTL: 

  ˆ( ) ( ) ( ) 1 ( ) ,c c c i i iZ y Z y Z y k y y     (5) 
 1i iy y y    

where
 

1

1

( ) ( ) ,
( )

c i c i
i

c i i i

Z y Z yk
Z y y y









 (6) 

and 0,1, 2, ,i n   

Step 3) Evaluate the ABCD matrix 
i thA    of the 

i-th section by using 1i i iy y  , ik , 
( )c iZ y  in place of  , k , and 0Z  in (2)-(4). 

Step 4) Evaluate the ABCD matrix 
TotalA    by 

cascading the 
i thA     for all small sections. 

 
0

nTotal i th
i

A A 


        (7) 

Step 5) After 
TotalA    is obtained, the S, Z, or Y 

parameters can be calculated by using 
matrix conversion.” 

The algorithm is biased by three drawbacks: 
 The solution of telegraph equations is given in 

terms of the Fourier transform. Time domain 
solution needs one more step i.e. inverted 
Fourier transform. Practically only numerical 
approximation can be obtained by the means 
of FFT algorithm. 

 The algorithm cannot be used directly to 
simulate nonlinear networks – that fact 
depreciates the value of the algorithm when 
simulation of digital circuits is considered. 

 It cannot be implemented directly in circuit 
simulator for example in SPICE. 
To alleviate these problems AWE 

approximation of LNTL chunks is considered in 
the next section. 

 
III. LNTL ADMITTANCE MATRIX 

APPROXIMATION 
Each formula (2)-(4) is approximated by 

rational function: 

 
( ) ( ) ( )
0

1

ˆ ,
ij ij ijN

n n
ij ij

n n n

a a ay y
x x p x p

 
      

  (8) 

where pn are poles of yij numbered in ascending 
absolute value order and an

(ij) is residue of yij at the 
pole pn. Poles of all four admittance parameters of 
LNTL are the same and can be computed 
numerically as the solution of the equation: 
        1 1 1 1(1 ) (1 ) 0.J x k Y x J x Y x k      (9) 
It is worth searching for the solution of the 
equation from the approximated value of the pole, 
which can be derived using approximation of the 
Bessel functions by trigonometric ones [30]: 

 , where 1, 2, 3,n
np n
k


     


 (10) 

The exact solution is obtained by the Newton-
Raphson method. Residue an

(ij) of y12 and y21 at 
poles pn can be determined quite easily using the 
following formulae [33]: 

 (12) (21)

0

2 ,
(1 ) ( , )n n

n n

ja a
Z p k M p k


 

    
 (11) 

where ( , )M x k   is derivative of left side of (9): 
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   
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   
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In case of parameters y12 and y21, a simple cut of 
rational series expansion of (3) gives good results. 
A rational series expansion of (2) and (4) is also 
possible. Residue of y11 and y22 at poles pn can be 
determined using the following equations: 

 

   
   

0 1

0 1(11)

0

[ (1 )
(1 ) ]

,
( , )

n n

n n
n

n
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Y p J p k

a
j Z M p k

 
 
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 



  (13)

 

 

   
   

1 0

1 0(22)

0

[ (1 )
(1 ) ]

.
( , )

n n

n n
n

n

Y p J p k
J p Y p k

a
j Z M p k

 
 


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

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 (14) 

Unfortunately, the rational approximation (8) 
obtained by the restriction of rational series 
expansion of (2) and (4) to first N+1 terms poorly 
approximate exact relations (2) and (4) in low 
frequency domain. A better idea is to find 
numerically, zeroes xn

(11) of y11: 
       0 1 1 0(1 ) (1 ) 0J x Y x k J x k Y x      (15) 

and zeroes xn
(22) of y22: 

       0 1 1 0(1 ) (1 ) 0J x k Y x J x Y x k     . (16) 
In both cases, the approximate solution is: 

 (11) (22) / 2 ,n n
nx x

k
  

 


 (17) 

where 0, 1, 2, 3,n     The solution can be used 
to speed up the numerical search for an exact 
solution of (15) and (16). The goal is to obtain the 
approximation (8) by reproducing the exact 
location of first 2N+1 poles and 2N zeroes of (2) 
and (4) respectively: 

 
  

  

( ) ( )

1

1

ˆ .

N
ii ii

n n
n

ii ii ii N

n n
n

x x x x
y y Y

x x p x p





 
 

  




 (18) 

Unknown parameter Yii should be chosen to 
reproduce the exact value of residuum a0

(ii) at pole 
p0=0: 

 (11) (22)
0 0

2
(2 )

ja a
k k

 
  

. (19) 

This guarantees that the approximation (8) is 
accurate in the range of frequencies up to the last 
pole pN. Formula for parameter Yii is as follows: 

 
 

 

2

1

2( )

1

2
(2 )

N

n
n

ii N
ii

n
n

p
jY

k k x





 
 



 
. (20) 

This way, we have an approximation of 
admittance parameters of linear varied nonuniform 
transmission line. The approximation consists of 
four formulas of the type (8). In case of parameters 
y12 and y21 residues are computed using (11). In 
case of y11 and y22 residues are computed as 
follows: 

 
 

22 2 ( )

( ) 1 1

22 ( ) 2 2

1 1

(2 )

N N
ii

m m m
ii m m

n N N
ii

n m m n
m m

m n

j p p x
a

p k k x p p

 

 


  


 

 

  
. (21) 

The approximation circuit consists of four active 
circuits. Order of the whole circuit is four times 
higher than the order of the rational function used 
to approximate each individual parameter yij. Let 
us consider input admittance Yin of the 
approximation circuit matched at the output: 

  11 0 12 21 11 22
in

22 0

ˆ ˆ ˆ ˆ ˆ(1 )
.

ˆ1 (1 )
y Z k y y y y

Y
y Z k

   


 



 (22) 

The function is a rational function of frequency. 
Order of the function is (2N+2) where N is the 
number of pole pairs taken into account in the 
formula (8). To obtain circuit of the order 2N+1 
determinant: 
 12 21 11 22ˆ ˆ ˆ ˆy y y y    (23) 
could not possess poles of multiplicity two. 
Consequently, the relationship: 

 2(11) (22) (12) 0 for 0,1, ,n n na a a n N     (24) 
must be fulfilled. Relationship (24) is true if we 
use (11), (13), and (14). But, when formulas (21), 
(11), and (22) are used to compute residues, then it 
is false. 

 
IV. PASSIVE MODEL 

Now the goal is to obtain an approximation 
circuit which is: 
 as accurate as possible; 
 order of the circuit should be 2N+1 where N is 

the number of pole pairs taken into account in 
the formula (8); 

 passive - to assure stability of every one model 
which contains the model of the nonuniform 
transmission line. 
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The conditions for a network with an admittance 
matrix ( )ijy s    to be passive are [14]: 

1. ( ) ( )ij ijy s y s   for each pair ij (“*” is complex 
conjugate operator). 

2. ( )ijy s    is a positive real (PR) matrix, i.e., the 

product    T T[ ( )] [ ( )] 0ij ijy s y s
   z z for all 

complex values of s with Re( ) 0s  and any 
arbitrary vector z. 

The first condition is satisfied whenever conjugate 
complex poles (zeros) are selected to create the 
model. The second condition is then equivalent to 
that all eigenvalues of  Re ( )ijy j    are greater 

than zero for     [22]. Ensuring that 
condition is usually a challenging task because of 
all variations of Padé approximation are 
notoriously non-passive. Literature gives some 
ideas of how to reinforce passivity for models 
obtained by rational approximation of frequency 
domain responses and do not lose accuracy of 
approximation [14], and [16]. Nevertheless the 
model considered herein is free of such problems. 
Method of order reduction not only slightly 
enhances model accuracy but does not violate 
intrinsic model passivity. Therefore, it is sufficient 
to check passivity of the resulting model.  

The idea of model order reduction is to 
slightly correct residuum an

(12), computed by (11), 
and residues an

(11) and an
(22), computed by (21), to 

fulfill (24): 
(11) (11) (22) (22) (12) (12)ˆ ˆ ˆ, ,n n n n n na a a a b a a c a       (25) 

 2(12)
2 2 2

(11) (22)where n

n n

a
a b c

a a
   


. (26) 

Correction coefficients a, b, and c should be as 
close to one as possible. For example, Euclidean 
distance should be as low as possible: 
 2 2 2( , , ) ( 1) ( 1) ( 1) .I a b c a b c       (27) 
Minimization of (27) with constraint (26) gives the 
solution: 

 2

1 2
,

1 2
a b







 


 (28) 

 2

1 2
.

1 2
c








 (29) 

After correction of residues, the input admittance 
Yin of the approximation circuit is a rational 
function of order 2N+1. 

Passivity of the model can be assured by the 
checking of passivity criteria for the input 
impedance (22). A real rational function is the 
driving-point immitance of a linear, passive, 
lumped, reciprocal, and time one-port network if, 
and only if, it is a positive real. This condition can 
be formulated as the following theorem, cited 
from [23]: 

Theorem 1. A rational function represented in 
the form 

 1 1

2 2

( ) ( )( )( ) ,
( ) ( ) ( )

m s n sP sF s
Q s m s n s


 


 (30) 

where 1 ( )m s , 2 ( )m s  and 1( )n s , 2 ( )n s  are even and 
odd parts of the polynomials ( )P s  and ( )Q s , 
respectively, is positive real if, and only if, the 
following conditions are satisfied: 
1. ( )F s  is real when s is real; 
2. ( ) ( )P s Q s  is strictly Hurwitz (zeroes lie on 

open left-hand plane); 
3.  

2( )
s j

M s



1 2 1 2( ) ( ) ( ) ( ) 0m j m j n j n j      for all ω. 
The first condition is enforced by choosing of 
conjugate complex poles (zeros) of the model. The 
second condition can be checked by factorization 
of ( ) ( )P s Q s . The third condition can be 
reformulated in a much convenient form 
following [23]: 

Theorem 2. If 2( )M s  is an even polynomial 
of a complex variable s with real coefficients and 

(0) 0M   and ( )M s  does not possess real 

negative roots then 2( ) 0
s j

M s

  for all ω. 
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Results of factoring polynomials ( ) ( )P s Q s  
( )M s  and values (0)M  for the model of LNTL 

with parameter N=1 (third order) are shown in 
Fig.1. Factorization was performed for the value 
of the slope parameter k  lying in the range of 0.1 
to 10. Polynomial ( )M s  is a second order 
polynomial with only one root of multiplicity two. 
Each time the model passivity conditions are met. 

Therefore, the admittance Yin can be 
synthesized using Darlington methodology [34]. 
The synthesis algorithm is summarized in 
Appendix I. The algorithm is based on Z=1/Yin – 
input impedance of matched reciprocal circuit. For 
N=1, the result of the synthesis is particularly 
simple. The circuit approximating LNTL consists 
of inductance connected in series with Darlington 
C-type section – see Fig. 2. The synthesis has been 
conducted for normalized linear varied 
nonuniform transmission line described by 
parameter kℓ varied in relatively wide range from 
0.1 to 10. The number of synthesized circuits was 
100. For each of the inductance nL , n=1,3,4; and 
for capacity 2C , a discrete set of values was 
obtained depending on slope parameter k . These 
values are arranged along the regression curves. 
Each inductance of the model depends on slope 
parameter kℓ almost linearly whereas variation of 
capacity C2 can be estimated by rational function 
of second order. Consequently, a simple passive 

approximation circuit can be formed. Inductances 
and capacitance of the subcircuit can be computed  
using the following equations: 

  -5
1 0 6259 (1152 - 6.943 ) 10 ,L Z k k       (31) 

2
0

(-0.4735 - 22.34) 51.23 ,
(-11.13 +1) +51.27

k kC
Z k k
   

 
 
 
 

 (32) 

  -4
3 0 3494 (3188 8.580 ) 10 ,L Z k k        (33) 

  5
4 0 28796 (3361- 3.24 ) 10 .L Z k k        (34) 

Other configurations of the third order (N=1) 
lumped circuit, which models a section of the 
linear varied transmission line are discussed 
in [24]. 

 

Fig. 1. Passivity check for third order model of LNTL: a) real vs. imaginary part of P(s)+Q(s) roots; b) root 
of M(s) (multiplicity two) and value M(0). 
 

Fig. 2. Passive circuit, which models a segment of 
the linear varied nonuniform transmission line.
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V. SPICE MODEL 
The passive circuit shown in Fig. 2 can be 

easily described in the SPICE simulation 
language. A convenient form of the description is 
a subcircuit. Values of inductance and capacitance, 
which compose the network, should be determined 
by the parameters passed to the subcircuit. If the 
used simulator has a preprocessor, that allows 
calculating the value of the subcircuit parameters 

before analysis, then this task is relatively easy. 
Example of the model implementation in the form 
of subcircuit attributed by parameters, in the 
SPICE simulator environment, was presented 
in [24]. 

This article presents a concept of the model 
implementation, which does not require the 
involvement of the preprocessor. Many versions of 
SPICE, including many of those that come from 
the Berkeley version Spice3f, e.g. Ngspice 
program, does not have a preprocessor and does 
not allow user to define parameters. In this 
situation, parameters can be passed to subcircuit 
only in the form of voltages (currents) defined 
outside of the subcircuit. Voltages can easily 
modify the value of current sources – voltage 
controlled current sources. Much more difficult is 
to achieve the effect of modification of the 
capacity or inductance. As shown in the 
article [27], it is not impossible, but quite 
inconvenient. The technique proposed here is 
based on simulation of an analog computer, which 
is modeling a passive circuit from Fig. 2. 
Differential equations in normal form describing 
the circuit have the form: 

 

3 1 3

3 4

1 3

1 1

2 2
2 2

1 4

3

3

4

3

0 0
( ) ( )

1 1( ) 0 ( )
( ) ( )

0 0

u t

T T T
T T

T T

u t
u t u t

T T
u t u

T T
T

t

T

 




  

 
 
 

    
          
       

 
 
 





 

 

Table 1: Transconductances of the active circuit 
modeling LNTL 
Parameter Expression

12G   3 1 3 1

3 4 0

L L L C

L L g

  

 
 

1 inG   1

4 0

C
L g

 

1 outG   1 1 3

3 4 0

C L L
L L g
 
 

 

21 23G G  2 0

2

C g
C
   

32G   1 3 1 4 3

3 4 0

L L L L C

L L g

   

 
 

3 inG    1 3 3

3 4 0

L L C

L L g

 

 
 

3 outG    1 4 3

3 4 0

L L C
L gL
 


 

0g  an arbitrary value 
  

 
 
Fig. 3. Active circuit, which models a segment of the linear varied nonuniform transmission line. 
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1 3

3 4
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4
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3 4

1 4

3 4

1

( )
0 0 ,

( )

T T
T T

T T

T
u t
u t

T T
TT T T

 
 
          

 
 






  



 (35) 

where ( )nu t  is time derivative of voltage ( )nu t  for 
n=1,2,3, 0n nT g L  for n=1,3,4, and 2 2 0T C g . 

0g  is an arbitrarily assumed value of trans-

conductance, while 1 1 0( ) ( )u t i t g  and 

2 2 0( ) ( )u t i t g  are voltages derived from loop 
currents 1 ( )i t  and 2 ( )i t  marked in Fig. 2. 

System of equations (35) can be realized in the 
form of the active circuit shown in Fig. 3. The 
circuit follows a typical active OTA filter based on 
“leapfrog” structure, though is not identical with 
the filter [28]. State variables are voltages on 
capacitors C1-C3. Relations between state 
variables, resulting from equations (35), are 
implemented by transconductances which value 
depends on three additional input voltages. The 

Table 2: SPICE description of the active circuit modeling LNTL 
.subckt xmachine.00 in gnd out gnd tau inz0 kL 

*interface for parameters passing 

Rtau  tau  tau2  10 
vtau  tau2  0 dc 0 
rz0  inz0  0  1meg 
rkL  kL  0  1meg 
*circuit reactances computing 

VL1  100  0 dc 0 
BL1  0  100  i=0.062591+(0.011523-6.942533e-5*v(kL,0))*v(kL,0) 
VL3  200  0 dc 0 
BL3  0  200  i=0.34938+(0.318778+8.58005e-4*v(kL,0))*v(kL,0) 
VL4  300  0 dc 0 
BL4  0  300  i=0.287957+(0.033614-3.240502e-5*v(kL,0))*v(kL,0) 
VC2  400  0 dc 0 
BC2  0  400  i=((-0.47351*v(kL,0)-22.34105)*v(kL,0)+51.22673)/((-
11.12705*v(kL,0)+1)*v(kL,0)+51.27397) 
*analog computer 

c10  1  gnd  20pF 
c20  2  gnd  20pF 
c30  3  gnd  20pF 
b10  gnd  1  i=(1/i(VL4)*V(in,gnd)-
(i(VL3)+sqrt(i(VL1)*i(VL3)))/i(VL3)/i(VL4)*V(2,gnd)+sqrt(i(VL1)*i(VL3))/i(VL3)/i(VL4)*
b20  gnd  2  i=(1/i(VC2)*V(1,gnd)-1/i(VC2)*V(3,gnd))/i(vtau)*v(inz0)/2500
b30  gnd  3  i= (-sqrt(i(VL1)*i(VL3))/i(VL3)/i(VL4)*V(in,gnd)+ 
(sqrt(i(VL1)*i(VL3))+i(VL1)+i(VL4))/i(VL3)/i(VL4)*V(2,gnd)-
(i(VL1)+i(VL4))/i(VL3)/i(VL4)*V(out,gnd))/i(vtau)/v(inz0) 
g1in  in gnd  1  gnd  0.02 
g2out gnd out  3  gnd  0.02 
.ends  
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Table 3: SPICE description of LNTL two segment model 
 
.subckt xmachine.01 in gnd out gnd intau inz inklx1.02 in 
 gnd 2 gnd intau inz inkl1 xmachine.00x2.02 2  gnd
 out gnd intau inz2 inkl2 xmachine.00rkl  inkl  0 
 1kbz2  inz2  0  v=v(inz,0)*(1+v(inkl,0)/2)bkl1  inkl1 0
  v=v(inkl,0)/2bkl2  inkl2 0 
 v=v(inkl,0)/(2+v(inkl,0)).ends 
 

parameters given in this way, modify the 
properties of the model by specifying a delay  , 
wave impedance 0Z , and slope parameter k  of 
the line. The equations describing the individual 
transconductances are summarized in Table 1. In a 
case of typical OTA-based structure of “leapfrog” 
filter is enough to simulate an LC ladder biased by 
resistances [29]. Network from Fig. 3 can interact 
with any biasing system. State variables 
corresponding to the currents are transformed by 
the voltage-controlled current sources into 
corresponding currents actually observed at the 
ports of the network. As a result, such networks 
can be connected in a series to form the model of 
linearly varied transmission line of arbitrarily large 
order. 

SPICE description of the circuit implementing 
the model in Fig. 3 is shown in Table 2. Input port 
of subcircuit named xmachine.00 is between 
nodes in and gnd. Output port is between nodes 
out and gnd. Wave impedance of the line near the 
input port is equal 0Z . Wave impedance of the line 
near the output port is equal 0 (1 )Z k  . To obtain 
the appropriate circuit delay the current source 
should be inserted between the node tau and the 
ground (node number 0). Value of the source 
expressed in amperes should be equal to the line 
delay, expressed in nanoseconds. For example, if 
the line delay is intended to be 1ps, the current 
value generated by the source should be 1mA. 
Potential of inz0 node (expressed in volts) 
defines the line impedance. Potential of kL node 
(expressed in volts) determines the slope 
parameter k  of the transmission line. Only 
positive values of the slope parameter are valid. 

 

VI. SIMULATIONS 
Using third order circuit in Fig. 3, one could 

build LNTL model of arbitrarily high order. The 
idea is to use algorithm invented by K. Lu [26] 
and presented in section II. The LNTL is divided 
into small sections; each modeled using the circuit 
of Fig. 3. Admittance parameters of each section 
are reproduced by the model in wide range of 
frequencies. In particular, the mutual interaction of 
neighboring line segments is reproduced closely. 
The structure of the circuit causes, that mutually-
far segments interact with each other poorly. As a 
result, it is expected that combining cascade 
circuits allows effective enhancement of model’s 
accuracy. 

Table 3 shows how to declare a model of LNTL 
consisting of two segments of equal delay using 
SPICE simulation language. The first segment of 
the transmission line has a slope parameter equal 
to 2k , where k  is a slope parameter of entire 
LNTL. Input wave impedance of the first segment 
is 0Z . The delay of this and the next segment is 
equal to 2 , where   is a total delay of the 
LNTL. The appropriate value for this parameter is 
obtained by combining the tau nodes of both 
circuits and supplying an external source of 
current which defines total delay  .The second 
segment is replaced by the circuit attributed by 
slope parameter (2 )k k  . Input impedance of  
the segment is equal  0 1 / 2 .Z k   By means of 
only ten subcircuits, similar to those in Table 3, 
one comes to the model of LNTL which consists 
of 1024 segments. 

In order to examine the accuracy of the LNTL 
multi-segment model, the simulation experiment 
was conducted.  The simulated circuit is  
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presented in Fig. 4. The input source (loading 
resistance) was matched to input (output) wave 
impedance of LNTL. The number of third order 
sections, LNTL model consists of, varied from 1 
to 256. In each step of the experiment, the number 
of sections was doubled. In the experiment, the 
reflection coefficient of the input port 11 ( )S  and 
the reflection coefficient of the output port 

22 ( )S  were studied. It was assumed, that input 
impedance of modeled transmission line is 50Ω, 
whereas delay of the line equal to 1ns. The line 
slope parameter k  has changed in the range of 
0.1 to 10. The frequency response of the 
simulation model ( )nnS  , where n=1, 2, was 
compared with the response ( )nnS  obtained on the 
basis of analytical equations (2)-(4). This allowed 
to determine limit frequency maxf , for each of the 
tested models, above which the relative deviation 
of the model reflection coefficient differs greater 
than 5% from the reflection coefficient determined 
analytically: 

 
max0 2

( ) ( )max 0.05
(0)

nn nn

f
nn

S S
S 

 
 


 . (36) 

We examined models consisting of sections, 
whose number K amounted to: 
 k2 where k 0,1, ,8K    . (37) 
Data for the SPICE program was prepared 
automatically, using an application written in 
LabVIEW® graphical language, due to the large 
number of test simulations. The results of the 
frequency domain analysis are shown in Fig. 5. 
The horizontal axis bears slope parameter kof the 
LNTL. The vertical axis bears the product of the 
maximal frequency maxf and line delay. The set of 
curves is parameterized by variable k determining 
number of sections, which the model comprises. 
Figure 5 shows that the frequency range in which 
the model truly reflects the properties of the 
reflection coefficient is proportional to the number 
of sections used. The model is better when the 
transmission line is more nonuniform. This is 
successful information. The proposed model is 
useful wherever there is a line that shows high 
non-uniformity at a short distance compared to the 
line delay. 

A circuit similar to the circuit presented in 
Fig. 4 was used to determine time complexity of 

Fig. 4. Circuit used in simulation experiment for 
examination of LNTL model accuracy.  
 

Fig. 5. Maximal frequency of the multi-segment 
LNTL model. 
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computations with model of the LNTL line. In this 
case, the linear varied transmission line described  

by the slope parameter k=10 was used. The input 
port was excited by the time domain impulse 
rather than AC source. The impulse has shape of 
“raised cosine”: 

 1 cos 4 / for 0 / 2
( ) ,

2 0 otherwise
t tAe t

     
 


 (38) 

where amplitude of the impulse was A=1V and 
τ=1ns was the line delay. Duration of the impulse 
was equal to half of the line delay. The simulation 
objective was to obtain reflected wave from the 
input port in time range 0 to 2τ. Accuracy of the 
time domain simulation was determined by 
comparison of reflected wave ( )u t  computed by 

SPICE, with the reflected wave ( )u t  computed 
using analytical formulas (2)-(4). Error of the 
computations: 

 0 2

0 2

max ( ) ( )
,

max ( )
t

t

u t u t

u t




  

 

 
  (39) 

as a function of the LNTL model sections number 
is presented in Fig. 6. The latter figure, also, 
shows time of computations on a 2.5 GHz PC 
computer. The model, which consists of 16 
segments gives error less than 4% , whereas 
computation time is no longer than 500ms. 
 

VII. MEASUREMENTS 
In order to verify the algorithm by experiment, 

the reflection coefficient of the input port 11 ( )S   
of nonuniform, asymmetric PCB stripline was 
measured. The transmission line under 
investigation was implemented on a conventional 
two-side epoxy-glass laminate. Thickness of the 
laminate dielectric layer is 1.5mmh  . Copper foil 
thickness amount to 35t µm. Relative 
permittivity of the laminate dielectric layer is 
equal to 4.2p  . Line width varies continuously 
from 2.9 mm by 0.6 mm to 8.1 mm – see Fig. 7. 
The line is electrically matched on input and 
output port. Measurements were performed using 
the network analyzer HP4396A. Frequency range 
of the measurement spanned from 1.0 MHz to 1.8  

Fig. 6. Time domain error and time of 
computations versus number of third order 
segments the LNTL model consists of. 
 

a)

b)  
Fig. 7. Tapered lossless transmission lines investigated experimentally a) photograph b) drawing with 
dimensioning. 
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GHz. The amplitude and phase of the measured 
reflection coefficient of the input port is shown in 
Fig. 8. 

The characteristic impedance of the line varies 
continuously from the value of about 50 ohms 
through 100 ohms to a value of approximately 25 
ohms. However, there is not any generally 
accepted method of calculating the wave 
impedance stripline based on its geometry and 
electrical properties of materials. There are 
simplified equations, which do not take into 
account the thickness of the foil e.g. [31]. In 
literature one can find a more complex formula, 
which takes into account the thickness of the foil 
e.g. [32]. None of these equations are much better 
than the others. It was therefore decided that the 
characteristic impedance of the line calculated for 
the first time using the formula found in [31], and 
the second time using the model found in [32]. 
Then, the author made a model of nonuniform 
parts of the transmission line, as proposed in this 
article. Section 2 was modeled by four third-order 
segments. Section 4 was modeled by eight third-
order segments. Uniform parts (segments 1, 3, and 
5) were modeled by intristical SPICE model. The 
input port was excited by a triangular impulse. 
Basically, the shape of the impulse was the 
following: 

 
1 1

1 1 1 1

/ for 0
( ) (2 ) for 2 ,

0 otherwise

t t
e t A t t

 
   

 
    



 (40) 

where 1  2 ns and A=1V. Pulse is formed 
through the Chebyshev filter of 15-order with a 

pass-band frequency 1.8GHz, so to limit its 
spectrum. The wave reflected from the input port, 
as calculated by the program SPICE, is presented 
in the Fig. 9. Actually, the figure shows two 
waveforms computed by SPICE – time 
calculations was 1.02 s, using the SPICE program 
on a 2.5 GHz PC. First of them (solid line) 
concerns the profile of the transmission line 
impedance calculated by formulas from [32]. The 
second waveform (dotted line) concerns the 
impedance profile of transmission line calculated 
by formulas from [31]. In addition, the figure 
shows a reflected wave, which was calculated 
from the measured reflection coefficient (points). 
For calculations, the standard algorithm for 
convolution of discrete signals using the FFT was 
used [35]. Comparing the calculated and measured 
results, we found that the result agrees well with 
the experiment. 
 

VIII. CONCLUSIONS 
In this article, a method of nonuniform 

transmission line analysis is proposed. The method 
reduces NUTL to cascaded linear varied 
transmission lines. LNTL segments are 
approximated by a passive circuit, which consists 
of inductance, cascaded with Darlington C section. 
The model is implemented in circuit simulator as 
active circuit similar to OTA-based leapfrog filter. 
Parameters of each section are computed using 
polynomial regression. Cascaded circuits are 
insensitive to parameters variation. Due to this 
fact, inevitable regression errors do not disturb the 
frequency response of the model significantly.  

 

Fig. 8. Amplitude and phase of reflection coefficient S11(w) of stripline from Fig. 7. Measurement made 
with HP4396A. 
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Calculations performed using the proposed model 
agree well with laboratory measurements. 
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Appendix I 
Synthesis algorithm of Nth order model of 

LNTL 
1. Let delay of the line   be equal to 1s and 

let wave impedance at the input 0Z  of the 
line be equal to 1Ω. 

2. Select a set of points  1 2, , , Kk k k     
from the interval 0.1≤ k≤10. 

3. 1n  . 
4. Let nk k  . 
5. Numerically evaluate 2N+1 poles of the 

linear varied nonuniform transmission 
line. Pole is always at  0  . The rest of 
2N poles are solutions of the following 
nonlinear equation: 

        (1 ) (1 )
1 1 1 1 0.p k p p p k

k k k kJ Y J Y   
     
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The solutions should have the smallest 
absolute value possible. Approximate 
values of the solutions are given by 
formula p n    where n= ±1,±2,...,±N.  

6.  Evaluate residues of 21y  parameter at 
poles found in Step 4) by using 
equation (11). 

7. Numerically evaluate 2N zeroes of 11y  
parameter and 2N zeroes of 22y  parameter 
of the linear varied nonuniform 
transmission line. Zeros of 11y  parameters 
are solutions of nonlinear equation: 

        (1 ) (1 )
1 0 0 1 0p k p p p k

k k k kJ Y J Y   
    . 

Zeros of 22y  parameter are solutions of 
nonlinear equation: 

        (1 ) (1 )
1 0 0 1 0p p k p k p

k k k kJ Y J Y   
      

Approximate values of zeros are given by 
formula 2p n      where n=–N,-N+1, 
...,N–1. 

8. Evaluate residues of 11y  and 22y  parameter 
at poles found in Step 4) by using equation 
(13) and (14) respectively. 

9. Evaluate correction coefficients a, b and c 
for each residuum by using formulas (28) 
and (29).  

10. Evaluate coefficients of rational function, 
which describes the input impedance 

( ) 1 ( )inZ s Y s  by using equation (22). 
Determinant 2

12 11 22y y y    possess only 
poles of multiplicity one. Residuum na  of 
the determinant at pole np  can be 
computed using formula: 

 
 

,12 ,12 ,22 ,11 ,22 ,112N
k n k n n n

n
k N k n
k n

a a a a a a
a

p p


 


 . 

where ,n ija  is a corrected residuum of ijy  
at pole np . 

11. Separate inductance xL  using formula: 

 Li( )lim ,
Mn( )x s

sL
s s




 (41) 

where impedance function is a ratio of 
polynomials ( ) Li( ) Mn( )Z s s s . 

12. Let us ( ) ( ) xZ s Z s sL  . 
13. Numerically solve polynomial equation: 

  Ev ( ) 0.Z s   (42) 
14. Choose solution 0s  of (42) which has 

negative real part and minimal absolute 
value. 

15. Evaluate index set {q0, q1, q2, q3} 
assigned to 0s  by impedance 
function ( )Z s . Elements of index set are 
given by formulas: 

 0 0 0 0
0

0 0 0 0

,R Xq
R X

 
 





 (43) 

 0 0
1

0 0 0 0

2 ,Z Zq
R X 






 (44) 

 2
0 0 0 0

2 ,q
R X 




 (45) 

 0 0 0 0
3

0 0 0 0 0

1 ,R Xq
R X q

 
 


 


 (46) 

where 0 0 0 0( ) .Z s Z R j X     (47) 
16. Compute coefficients of rational function: 

 

 

1 1
1

1 1

( ) ( ) ( )( ) ,
( ) ( ) ( )

D s Z s B sW s
C s Z s A s



 

 (48) 

where 2
1 3 0 0( ) ,A s q s s s   (49) 

 1 1( ) ,B s q s  (50) 
 1 2( ) ,C s q s  (51) 
 2

1 0 0 0( ) .D s q s s s   (52) 
Detailed algorithm of computations is 
given in the Appendix II. 

17. If 0s  is a real function, compute 
parameters of type-C section: 

 0
1 2

0 2 2

1 , ,qL L
q q q

   (53) 

 2
2 12

0 2

1, 0.qC M
q


    (54) 

 

 
Fig. 10. The Darlington type-C section. 
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18. If order of 1 ( )W s =0 then go to 25. 
19. Let 1( ) ( )Z s W s . 

20. Evaluate index set {p0, p1, p2, p3} 
assigned to 0s  by modified impedance 
function ( )Z s  by using equations (43)-
(47). 

21. Compute coefficients of rational function: 

 2 2
2

2 2

( ) ( ) ( )( ) ,
( ) ( ) ( )

D s Z s B sW s
C s Z s A s



 

 (55) 

where 2
2 3 0 0( ) ,A s p s s s   (56) 

 2 1( ) ,B s p s  (57) 
 2 2( ) ,C s p s  (58) 
 2

2 0 0 0( ) .D s p s s s   (59) 
Detailed algorithm of computations is 
given in the Appendix II. 

22. Compute parameters of type-D section: 

 3 3 0 0
1 2

3 2 2 0 3 2 2 0

, ,p q p qL L
p q p q p q p q

 
 

 (60) 

 2 2
1 1 2 2

0 0

, ,p qM L L C
s s


   (61) 

 
44 2 2 2

13 0 0 13 0
2 4

13 3 2 2 0

2( )
0,

( )
s

M
p q p q

   

  

  


 (62) 

where 2 0 0 2 2
13

3 2 2 0

( ) ,s s p q
p q p q


 




 (63) 

 2 2 2 2 2
4 3 1 2

2 2 13 2 2

, , .q M p M qL L C
p q p M

       (64) 

23. If order of 2 ( )W s =0 then go to 25. 
24. Let 2( ) ( )Z s W s  and go to 13. 
 
 

25. Let 1n n  . 
26. If n N go to 4. 
27. For each element of the circuit, find 

parameters of regression curve describing 
variation of the element versus variations 
of k  parameter. 

 
Appendix II 

Algorithm of rational function separating 
Consider rational PR function 

( ) Li( ) / Mn( )Z s s s , where 

0 1Li( )s l l s   N
Nl s , 

0 1Mn( )s m m s    N
Nm s and four 

polynomials: 

 
2

0 2 1

2
1 0 2

( ) , ( ) ,

( ) , ( ) ,

A s a a s B s b s
C s c s D s d d s

  

  
 (65) 

obtained according equations (49)-(52). Exists 
rational PR function ( )W s  [34]: 

 ( ) ( ) ( )( )
( ) ( ) ( )

A s W s B sZ s
C s W s D s





 (66) 

or ( )Li ( ) ( )Mn ( ) Li( )( ) ,
( )Li ( ) ( )Mn ( ) Mn( )

A s s B s s sZ s
C s s D s s s

 
 

 
 (67) 

where 0 1Li ( )s l l s     1
1

N
Nl s 
 , Mn ( )s  0m  

1m s   1
1

N
Nm s 
 . Order of ( )W s  is equal to 

order of ( )Z s  decremented by 2. Coefficients of 
the left side numerator should be equal the right 
side coefficients of numerator of (67). At the same 
time, coefficients of the left side denominator of 
should be equal coefficients of the right side 
denominator of (67). From equality of free 
coefficients we obtain: 

 0 0
0 0

0 0

, .l ll m
a d


    (68) 

Equality of first order coefficients gives: 

 1 0 1 1 0 1
1 1

0 0

, .l m b m l cl m
a d
      (69) 

Equality of second order coefficients gives: 

 2 1 1 0 2 2 1 1 0 2
2 2

0 0

, .l m b l a m l c m dl m
a d
          (70) 

Equality of third order coefficients gives: 

 3 2 1 1 2 3 2 1 1 2
3 3

0 0

, .l m b l a l l c m dl m
a d
      

   (71) 

In general, following recursive formula can be 
written: 

 
Fig. 11. The Darlington type-D section 
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1 1 2 2

0

1 1 2 2

0

,

,

k k k
k

k k k
k

l m b l al
a

m l c m dm
d

 

 

  


  


 (72) 

where 0,1, , 1k N  . Initial conditions for 
computations are: 
 1 2 1 2 0.l l m m        (73) 
Similarly, the reverse computing formula can be 
obtained. 
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