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ABSTRACT. The surface integral equations of a two
dimensional (2D) anisotropic impedance object is formulated
to abtain the electromagnetic scattered fields due to obligue
plane wave incidence. The surface impedance is anisotropic
with arbitrary principle directions, The moment method
with pulse basis functions and point matching is used io
reduce the surface integral equations to a matrix eguation.
Four different formulations are generated for the problem.
The surface current distributions and the scattered far fields
are verified against the analytical series solutions of circular
impedance cylinders. Very good agreememt between ihe
numerical and the analytical solutions is obtained. A
rectangular cylinder made of four soft surfaces is analyzed
for oblique incidence to verify that the results behave as
expected. The compuier code is also verified by comparing
the solutions of the different formulations against each other.

1 INTRODUCTION

Some complicated structures can be modeled approximately
using the concept of surface impedance, such as e.g.
corrugated objects or objects coated with lossy material or
thin dielectric layers, which can even be loaded with metal
strips. The surface impedance model deals with the outer
boundary of the structure in terms of an equivalent surface
impedance, which can be obtained from the expected local
relation between the tangential components of the electric
and magnetic fields on the outer boundary. This relation can
be found approximately at any surface point from the
solution of a canonical problem which is similar to the local
geometry around this point. The equivalent surface im-
pedance is generally anisotropic, even if the coating is
isotropic, in particular at an outer surface that has two
different principle curvatures. Also, structures with periodic
surface discontinuities such as corrugations or strip foaded
coatings can be modeled using the anisotropic surface
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impedance concept, if the periods of the corrugations or
strips are smaller than half the wavelength., The advantage
with the surface impedance concept is that the numerical
analysis of the object becomes simpler and takes shorter
time. This is because the exact geometry of the loads do not
need to be modelled so the problem description becomes
easier and the number of unknowns can be significantly
reduced.

The impedance boundary conditions (IBC) is a valid
approximation under certain conditions [1], more references
on the IBC can be found in [2]. The use of the IBC can
simplify the analysis of some classes of complex electro-
magnetic problems, but it must be used with care as it may
sometimes give erroneous results [3]. In order to widen the
applicability of the IBC, generalized impedance boundary
conditions (GIBC) was proposed in [4] and later improved
for coated 2D structures [5] at the expense, however, of
considerable analytical complications which requires
specialized researchers to work with such problems. So far,
the GIBC has only been used in connection with coated
metallic surfaces without corrugations. On the other hand,
the IBC has been used successfully to analyze corrugated
horns and waveguides [6].

Anisotropic surface impedances have also been used to
define soft and hard surfaces [7] that theoretically provides
polarization independent soft and hard boundary conditions
for electromagnetic waves of known propagation direction.
The concept of soft and hard surfaces is also a way of
thinking that can help to generate ideas for improved
electromagnetic designs. Analysis tools based on the IBC
are very important also to verify such thought models
initially before the accurate analysis including all surface
details is performed for the final design optimization. An
example of how to use the concept of soft and hard surfaces
to reduce the forward scattering from two dimensional (2D)
structures is described in [8].

Previous papers have formulated the problem of electro-



magnetic scattering from 2D impedance structures due to a
pormally incident plane wave [9-10]. Oblique incidence is
considered in {11-12] for the case of an isotropic surface
impedance. In [11], the finite element method is used for an
arbitrary cross-section, and in [12] the finite difference
method in the frequency domain is used for elliptic cross-
sections. In [13] the method of moment is used for bodies
of revolution with anisotropic surface impedance. In the
present paper the problem of scattering from a two dimen-
sional object of arbitrary cross-section and anisotropic
surface impedance is formulated for oblique plane wave
incidence.

The present formulation is based on the surface integral
equation and solved using the method of moment with pulse
basis functions and point matching. With the proper
implementation of this simple expansion and testing,
accurate numerical solutions are obtained. The numerical
solution is verified with the exact solution of a circular
cylinder [14]. Different surface integral formulations are
generated and found useful in the verification of the numeri-
cal solutions for arbitrary objects. In addition a theoretical
example is constructed for which the E-field solution for
TM, incidence should be equal to the H-field solution for
TE, incidence. The example is a 2D object with rectangular
cross section made of four surfaces which are soft as
defined in [7] for the given oblique incidence. Finally, it
should be mentioned that the formulations in the present
paper describe what in [15] is referred to as 2 harmonic 2D
solutions, and that these can be extended to an arbitrary
incident field, i.e. three dimensional sources, by considering
a spectrum of 2D solutions [15].

2 IMPEDANCE BOUNDARY CONDITION

The impedance boundary condition (IBC) for exterior fieldsE,
and H), at a surface S with surface normal 4, can generally
be stated in vector form as

Ey - (Ey » 8,)8, =gy * (3, X Hy) 1)
where 1 is the free space intrinsic impedance and

1= N By Bl + g B By + Mgy i+ 7y 2, 2 @
NN Uplp ™ Npg Bp By ™ Mgy g Me ™ Mzg Uy U

is the anisotropic surface impedance dyad, given in terms of
its components in & local surface coordinate system defined
by the unit vectors &, &; and &, with 4, L 4; and
8, = @y X ;. We can also express this in a matrix form
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where E, E; (Hy, H;) are the components of the E-field
(H-field) along 4, and &, respectively. The IBC is based
on the fact that we in some cases kmow exactly or ap-
proximately the field solution inside the surface, and that
this solution is the same or approximately the same for all
excitations (incidences) considered. The inner field solution
can then be characterized by the relations between its E- and
H-fields at the surface, i.e. the surface impedances
Ngpr Tpps Mgy and 5. The IBC applied to the exterior
fields thereby means that the continuity of the E- and H-

fields are enforced over the surface $ (when the form of the
inner field solution is given).

@

When the surface impedance is anisotropic, we can normally
find two principle directions &, and 4; which makey
diagonal, according to

N = Mg BBy + Mgy By By ©)

From now on we will let 4 and & denote these prin-

ciple directions of . The following example will explain
how 2, and &, are related to the surface structure. Let us
assume a corrugated surface with the corrugations parallel
with 4;. Then, the #; component of the E-field will be
shorted by the thin ridges between the corrugations, so thatn,,
=0, and the 2, component E of the E-field will couple
toa TE to &,mode in each corrugation, which acts as a
shorted parallel plate waveguide if the corrugation are
straight. The E, inside the parallel plate waveguide is
related toH, according to (see e.g. [7])

oMy = - Fi = - ju, tan(k,d) ©)



where &, is the component of the wave number in the 2,
direction inside the corrugations, d is the corrugation depth,
and 7,.is the intrinsic impedance inside the corrugation.
This assumption is good when k,, is known and independent
of the angle of incidence. This is the case for corrugations
that are transverse to the direction of incidence of the wave.

We can transform % in (5) to any coordinate system defined
by vectors 4, L 4, and &, = &, X &, according to

L]

N= N By 8y ¥ Ny By B> My B B+ B, 4, @

where

N = Npp (B * 8, ) (B © 8, )~ mep (8 *+ 8,) (B~ 8;)
=M ~ Mgg) (8p* 8) (8 * &) ®)
Mo = (g~ Mgy ) (B * 8;) (B = 8;)

T = e By * ,)(Bg = 8;) = Mg (2 * 8,)(8; + 4;)

3 FORMULATION

Consider a two dimensional (2D) anisotropic impedance
scatterer of infinite extent in the z-direction and with
arbitrary cross section (Fig. 1). For this geometry, there are
two distinct regions V, and V,, where V| constitutes the
impedance body which is bounded by the surface S and V,,
is the unbounded region outside 8. The surface § is
described by the contour € in the xy-plane and has an
outward surface normal 2, which is orthognal to 4,. The
surface is characterized by the anisotropic surface

impedance dyad %, as defined in the previous section,
where v, Mg, & and 2, are allowed to vary around C.

V; is the exterior region characterized by the permittivity
and permeability of the free space (ey, pg). The total
electric and magnetic fields in region V, are denoted by E,
and H), respectively. The excitation is assumed to be an
obliquely incident plane wave propagating in th-e direction

é

X

£E=-0,0,. ¢ = -

- sin ¢mc sin ainc ﬂy

COS ¢y, SIN G,
S Py SID ©

~ cos b, 8,

making an angle §; . with the z-axis and ¢;,. measured from
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Fig. 1 Geometry of the original problem.

the x-axis in the xy-plane. The incident field at a point 7 is
therefore described by

EW=E,,.(E‘PCOSQ,-M+E“sinaw)e'jk°"‘ v (10)
H™ = (k X E™)/q, (11)
where
r=xﬂx+yﬂy+zﬂz=p +zﬂz (12)
EP = -2)(0;,.> Pine) = — i c088,, cosd, . a3
-ﬁycosﬂ,-m. sing;,. + &,5in8,,.
E"™ = -u,(¢) = G, sing,,, - &,c0sdy, (14)

EP and E™ are the unit vectors corresponding to polariza-
tions paraliel (TM, case) and normal (TE,) to the plane
defined by the z-axis and k. The polarization angle o, is
the angle the incident electric field makes with the plane of
incidence. If a;, =0, the plane wave is TM, polarized (8-
polarized), and if oy, =n/2 the plane wave is TE, polar-
ized (¢-polarized). k; is the wave number in the free space,
&, ﬂy and #, are the unit vectors in the direction of x, y,
and z, respectively and 2,(0;,., @in.)s {00 Pine)s
and 4y (¢, ) are the unit vectors in the direction ofr, 8.,
and ¢ in the spherical coordinate system. The complex
constant E_ is the amplitude of the plane wave.



Using the equivalence principle the object can be replaced
by the material of the region V,; and the equivalent electric
surface current J and the equivalent magnetic surface
current M on the surface, which produce zero fields in the
region V; and (Ey-E'™) and (Hy-H™) in the region Vj,
where

J=t, xHy ad M=Eyxa, on S (15)
For infinite cylindrical structures the electric and magnetic

cutrents are assumed to be of the form

1!y = gy &5 (e
and correspondingly for M, where k, = kcos#f;,.. These
assumptions are evident for isotropic surface boundaries as
explained in [15], and we see no reason why it should not
apply to anisotropic impedance surfaces as well. The
magnetic and electric vector potentials, A and F, due to
the equivalent currents J and M can be written as

.I(r’ )
M

N _y1Fo T 7 lot {amn
F(r)}_ € -j- IG(T,T) dfdz
where G(r, r') is the three-dimensional free space

Green’s function and dr’ is the integration increment along
the contour C in the cross-sectional piane. The three-
dimensional Greea's function can be written as

e TkUe-p"12 + @2H?

(lp-0"1% + @2"H'?

Gr,r'y = (18)

where r and 7’ are the position vectors of the observation
and source points, respectively. p and p! are the cylindri-
cal vector coordinates of the field and source points,
respectively. After performing the known z integral we get

&7 no

J(p’) i (19}
ERE

Ry~ | [P 1o~ D

[

where k, = {k?-k> , k,=-koos6;, and H{() is the
Hankel function of zero'™ order and second type. This
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indicates that the magnetic vector potential of the three
dimensional form is the same as the two dimensional form

multiplied by exp(jk,z) [15]. Both J(p’) and M(p) have
components both in the longitudinal 2, direction and in the
transverse 2, direction, i.e.

20)
J J. J (

{ M} Miz a,+ ﬂ;r a, on S,

where the transverse unit tangent is defined by

4. =a, X 8, (21)

where &, is the unit normal to S.

We can now obtain the electric and magnetic fieldsE(p)
and H(p) due to the electric current J(p’) by using

=1 vxA@®) and E(=-t_vxH@E) (@2
™ weg

where the V operator in our case can be expressad as

d

- ; - d
V=V, 8, -jkb, and V==

o+
3y

Y @)

After some mathematical manipulations the electric and
magnetic fields due to the electric currents can be expressed
in operator form as shown in Appendix A. Expressions are
given for E, (J,) E.(J,), E,(J,), and E_(J,) which
are each of the components of the vector operatorEy,, (J)
for the tangential E-field at a point p on S, and similarly for
the tangential H-field vector operator Hy,, (J), i.e.

Egn D =[E,U D E, U ))8,+ [ E U )+E (]2,

(24
Hfan U) = [ sz(Jz) +sz (Jf)] ﬁz+[H-rz (Jz) + 11("1-)] ar

The fields due to the magnetic current M (p’) can be
obtained using duality ( ch. 3, sec. 3-2 [16]).

We will now apply the impedance boundary condition in
Eq. (1) to the field at S. The result is an integral equation



in terms of the unknown electric and magnetic currents of
the form

1

D - LE, (M) + 1+ (8, % {HyulD)
Mo To

(25)
* m(M)})=ﬂlg x‘ﬂ '(ﬂanz) on S

We will now use (1) to express M, and Mr_in terms ofJ,
and 7., as follows. We cross multiply both sides of (1) witha,,
and use (15) to obtain

M=no(n 1) x4, (26)

We substitute (20) for J and multiply both sides with
G, and 2 to get

M =M~ 8,=noln-(J,8,+J 2] %8a,]" 4,
~no(ndy )

(27
M =M-a =ng(n « (J a,+J,2,)] X ,}* &,
=0 (g + 07 ,)

respectively, with 1,,, 7., %, and 7, defined in (8). By
inserting (27} in {24) and (24) in (25) we get the final
integral equation

- ;:-—[EE(J D HEZU ) +E (M) 0 [H ()
o

vH_(J)+H_(M)+H_(M)) -7 [H )+  (28)
Hy(M,)+H_(M,)] = ﬂlo(E;"" g H™ +n H™)
- %[Eﬂ(fz) +E (J)+E (M) +n,lH ()
0
+H_(J)+H (M)+H_ (M) -0 1H, () (29

Ho (M) Hy (M) = B =1 100 HY)

where
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E (M) = = gy Hp () — np Hy(J)
E (M,) = npHy(J;) + np Hy(d))
E (M) = -0, H, (J;) - 95 H ()
Hy (M) = 9, ExUp) — Ny
Hy (M) = 0 E;(Jp) + g By (Jy)
Hy (M) = ~0 By (T = 1 En(T)
H (M) =, E (J) + 1 E (T

E, () (30)

Following the method of moments, the object contour C is
divided into N linear segments with length ACY as in [9],
i=1,2,...,Nand each current component is expanded into
N unknown constant coefficients multiplied by the pulse
basis function . In an equation form, the unknown
currents can be expressed as

N
I = P (31)
g > g"

where [ iz are the unknown current coefficients and P =
T

1 on the subdomain i and zero else where. Substituting (31)
into the operators defined in the Appendix A and then
substitute the operators in (28) and (29) and satisfy (28) and
(29) at the match point (middle of the segments), the
integral equation reduces to a matrix of order 2N, which can
be written in the form

{[Z1+[ X101+ [9([F1+ (2] [9,D}L ]
=[E1+[n[H]

(32)

here the different matrices and column vectors are defined
as in the following. The matrices [Z] and [¥] consist of four
submatrices according to

Z"J' zif Yii ij
Zi=| = 7 ad m=| - 7| @3
¥ o iyl

The elements of the Z and ¥ matrices are given in Appendix
B. The first suffix of the subscript refers to the field
component and the second suffix refers to the electric
current component. The superscript if is the element order



in the submatrix; i for the matching field point in the middle
of the segment i and j for the j°s unit pulse. [E] and[ H]
are the excitation vectors due to the electric and magnetic
fields, respectively defined by

iinc

inc
E T

z
i inc
E‘r

[E]= and [H]}= (E2))

where  denotes the matching field point in the middle of the
segment i. The expressions of these elements are given in
Appendix B. The column vector containing the unknowns
can be expressed as

(35)

The matrices [ and [n,] each consists of four submatrices
according to

if
T

if
Z

i
k4

iJ if
T o

] if
Nz "N

(36)

[ = and

l']'
T

where each submatrix is a djagonal matrix with 7., = the

value of the surface impedance Ny 8 the middle of the
segment i when i = j and zero otherwise, where the
subscripts v and v refer to z and 7. Once the matrices Z
and ¥ are created and the excitation vectors [E] and [H] are
filled and substituted in equation (32), the moment matrix
system (32) can be solved to obtain the unknown current
coefficients in (35).

4 DIFFERENT FORMULATIONS

In order to account for different formulations, one may use
the E-field integral equation (E,, = 0), or H-field integral
equation (&, X Hy,,) = 0, both applied just inside the
surface S with the equivalent currents defined in (15). Then
combining them to obtain the combined field integral
equations or use the IBC as an integral equation as described
above. The moment matrix of these integral equations can
be obtained if the matrix equation (32) is written in the
following form

36

{a([Z1+ {¥1l1,1) * BLnA ([Y1+ [Z] [7,])} 1]
= alE]+ BInALH]

(37

where o and {3 are, respectively, the combination parameters
weighing the electric field and the magnetic field just inside
the surface S [2]. Thus different field formulations can be
obtained by different selections of o and 8. These formula-
tions can be obtained according to Table I.

Table I
Generation of different formulations

Formulation type

IBCE
IBCH
IBCC
IBC

0.

Ind?

'[ﬂf}'l
1.

s O e

IBCE (IBCH) implies that the E-field (H-field) boundary
condition is applied, i.e. the tangential electric (magnetic)
field is assumed zero just inside the surface of the object,
using the implementation of the IBC approximation for the
magnetic current, i.e. the magnetic current is related to the
electric current via the surface impedance as in Eqn (27).
The third formulation IBCC denotes the combination of
IBCE and IBCH on the impedance surface. The fourth
formulation, IBC implies that the IBC is implemented
explicitly on the equivalent currents and the tangential
fields. The solutions from the IBCE and IBCH formulations
are not unique where there are internal structure resonance
frequencies. These cases can be treated by using the IBCC
or IBC formulations. The solution of the IBC formulation
is also not unique when the impedance is zero (perfect
conducting case) or inductive. The problem of nonunique-
ness will not be investigated in this paper. Interested
readers may find this treated in [2] and [17].

5 SCATTERED FIELDS

Once any of the above formulations is solved the scattered
field can be computed from the obtained electric current
distribution. The field will be scattered along a cone of half
angle §= « - 6, around the structure. In the cylindrical
coordinate system it is sufficient to compute the z-com-
ponents of the electric and magnetic fields in the far zone
when r and p are much larger than the wavelength and the
maximum cross sectional diameter of the object. This can
be obtained, first, by using the large argument approxima-



tion of the Hankel functions in the field operators defined in
Appendix A and also in their dual operators due to the
magnetic currents, Second, neglect the high order terms of
1/p. Third, substitute the magnetic current by the electric
current and the surface impedance using (27). It can be
found that in the cylindrical coordinate system, only z and
¢ components of the ficlds are contributing to the far field.
The spherical components of the electric field Ey and Eg,
which are more appropriate to use in the oblique incidence
case, can be obtained from the cylindrical field components
E, and H,, respectively. Therefore, by using simple
transformations the spherical electric field components can
be written as

. , N
J_ %k

se _
E, (0.¢) =7 ‘g-;kp—p

i i=1 (33)
AC! & @, * 5 XIT:' [k, 1y~ ko (&, * ﬁ"i)
=k (B s a)) L [k 9y — Ky, (8 ¢ 8)]
. . N
Ey°0.8)= | =5 PRI RS
whyp = (39)

actes %" X1 o, + d)ny - k]
* Iy tho @, * ) 1r = K (@, + 8,)]

In this paper the scattered fields are computed and normal-

ized to ‘/Zjlrkpp .

6 RESULTS

First, to verify the code, a circular cylinder with an ar-
bitrary anisotropic impedance is considered. The paramet-
ers are ka=3.0, with arbitrary surface impedance of 7, =
0.5+j0.1, 1,,=0.3+j0.6, ,,=0.3+j0.5 and »,,=0.7-j0.3
{these values are chosen arbitrarily) and the plane wave
parameters are 0, =45°, ¢; . =180° and oy, =45° The
surface electric current components are plotted in Fig. 2a
(against the exact solution obtained from the series solution
in [14]), ten and twenty segments per wavelength are used
in the numerical solution based on the IBC formulation. Ac-
ceptable results are obtained with 10 segments per wave-
length and more accurate results are obtained when 20
segments are used. Also the scattered far fields are com-
puted and plotted in Fig. 2b and compared with the exact
solutions. It is obvious that the solution using 20 segments
per wavelength gives more accurate results within the whole
¢-range. Notice that neither the fields nor the currents
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distribution are symmetric around the plane of incidence
because the incident wave is chosen to have both TE, and
TM,, incident polarizations simultaneously and also because
of the unequality of the surface impedances values %, and

-

. 1}
a00a i b
0.002
0.001 | — exact
- — - [10A]
m——ee [200]
o L " - L 'l
3 0 1 1 3
phase I, (deg.)

2

] 1

contour length (A)

3 T 2
contour Jength (A)

] 3

Fig. 2a Exact and numerical current distribution on a circular
cylinder with, ka=3.0, 9,,=0.5+j.1, 5,=0.3+j.6, 5,,=0.3
+j.5 and 9,=0.7-.3, illuminated by a plane wave with
9i=45°, éi = 1800, and o = 45°,

10

E, & E, (dB)

[ — exact
| =~ ~ (num.) [10/)]
— = {(num.) [20/A]

.30 A L A L L " 1 " L A

60 120 180 240 300 360
QD

Fig. 2b Exact and numerical scattered far fields of the

example in Fig. 2a.



Now we consider some practical configurations. The first
example is again a circular cylinder, but now with ¢ =
- §50.0, 0,y = Ny = Ay = 0.0, 0, =45°, ¢y, = 180°,
and ¢, = 45°. This surface impedance represents {ransve-
rse corrugations. The actual corrugated surface is very
difficult to analyze [18]. The impedance model is much
simpler and easier to analyze and an exact solution can be
found as considered in [14]). The exact solution is com-
pared with the present moment method solution using the
IBC formulation with 20 segment per wavelength. The
current distributions are plotted in Fig. 3a. Very good
agreement can be noticed between both solutions. Also, one
must notice that the current component J, normal to the

corrugations is almost zero. This is expected as Jmust flow
entirely along the corrugations. This is a good verification
that the surface impedance considered in this example is a
good approximation of the transverse corrugated cylinder.
The scattered far fields are given in Fig. 3b. The exact and
the numerical solutions are indistinguishable. Notice also,
the skew symmetry between Ep and E; components which
is also expected for oblique incidence and 45 degree
polarization. For normal incidence Ey and E; could be
equal for all ¢ for 45 degree incident polarization if the

impedance 7, = .
1LI
0.007 —
0006 — IRCE
! -~ IBC
0.005 |
o.004 |
0.003 |
0.002 |
0,001
i a b It: d. e & & b Ic 4 e s
{’};m I (deg) phase I, (deg.)
r
m -
0 -
L
0 | [
180 [ . L . L
] 1 2 i 1 2 3
contour length (A) contour length (M)

Fig. 3a Exact and numerical current distribution on a
circular cylinder with, ka=3.0, and 5 ,,=-50., 7,,=1
=17,,=0.0, illuminated by a plane wave with 6, =45% ¢
= 180°, and a;, = 45°.
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_20 A 1 A L e 'y L A L i
0 60 120 180 240 300 360

o

P

Fig. 3b Exact and numerical scattered far fields of the
example in Fig. 3a.

An impedance cylinder with square cross-section is con-
sidered as shown in Fig. 4a. This geometry has no analytic
solution. The surface impedance is used to model soft
corrugated surfaces. The corrugations of the sides A and C
are considered to be along the transverse direction parallel
to the xy-plane with an equivalent surface impedance
assumed to be %,=-50.0, 7,,= %,= n5,=0.0. The

Fig. 4a Geometry of a corrugated square cylinder.



corrugations on the sides B and D are assumed to be of the
same parameters as that on sides A and C (i.e. has the same
surface impedance with respect to the coordinates of the
corrugations with ny.=-j50.0, s M= Ngp=7g=0.), but tilted
by an angle §=45° with the x-axis. The equivalent surface
impedance with respect to the object surface coordinates
using (8) is given as 1 ,= My = Ny = Ny = 525.0 On the
side D and %, = 7, = -§25.0, 9, = 9, = +j25.0 on the
side B. The electric surface current components and the
scattered far fields are computed due to a plane wave with
6,=45° o; = 0° (TM, polarization) and ¢; = 180°. The
current distributions are plotted in Fig. 4b from the IBCE
and IBC formulations. Notice that the x-axis of the upper
two figures (current magnitude) are indicated by the letters
a, b, ¢, d, e, and a which are corresponding to the surface
positions given in Fig. 4a. In the lower two figures (current
phase) the x-axis is indicated by the contour jength starting
from the point a on Fig. 4a. The scattered far fields are
plotted in Fig. 4c. In these figures the solution from the
IBCE and IBC formulations are presented and compared
against each other. It can be noticed that the solutions
obtained from both formulations are in good agreement with
each other. It is clear that the scattered fields are symmetric
around the xz-plane (plane of incidence) when ¢, = 180°
because of the object symmetry around this plane and
because of the pure TM,, polarization of the wave incident.
The ¢~component of the scattered field is zero along the
plane of incidence in the forward and the back scattered
directions because of the skew symmetry of the J, com-
ponent which is obvious from the phase distribution of the
current. When the incident wave is TE, polarized, the
current distributions and the scattered far fields are given in
Figs. 5a and 5b, respectively. One should notice that the
scattered E-field Ey and E, for TM, polarization of the
incident wave is nearly equal to the E;, and E,, respectively
for TE, polarization of the incident wave. This corresponds
to E-field for TM,, polarization being equal to H-field for
TE, polarization, which is expected as the cylinder is close
to soft (it would have been ideally soft if Ne= ) and
therefore has polarization independent scattering characteris-
tics according to [7]. The electric current component normal
to the corrugations must be zero. To check this for our
example the electric current components along and normal
to the corrugations are computed from the currents in Fig.
4b and 5a and plotted in Figs. 6a and 6b, respectively. One
should notice that the current components normal to the
corrugations are nearly zero for both TM, and TE, in-
cidence as expected. This can also be considered as a
verification of the code.
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Fig. 4b Electric current distribution of the geometry in Fig.
4a with, 9 ,, = -j50.0, 3., = % = Ny = 0.0 on side A
andC, = N =Ny =Ny = -j25.00nthesideDand
N gg = My = = Jj25.0, 1y = Nz = +j25.0 on the side B.
The cylinder side length = 0.75 A. The plane wave with
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Fig. 4c, numerical scattered far filed of the object in
Fig. 4a with the parameters in Fig. 4b.
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Fig. 5a Electric current distribution of the geometry in Fig.
4a with the same parameters in Fig. 4a and the plane wave
with 8, =45°, a;,, = 90°, and ¢, = 180°.
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Fig. 5b, numerical scattered far filed of the object in
Fig. 4a with the parameters in Fig. 5a.
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7 CONCLUSIONS

The integral equation for the problem of electromagnetic
scattering from arbitrary 2D objects with anisotropic surface
impedance due to obliquely incident plane wave with
arbitrary linear polarization is derived. The surface im-
pedance is anisotropic with an arbitrary principal direction.

2Q

The integral equations are solved by the method of mo-
ments with pulse basis functions and point matching. Four
different surface integral equations are actnally imple-
mented. In the numerical evaluation of the matrix elements
four point Gaussian quadrature is used. It is also found that
10 basis functions per wavelength gives reasonable results,
but 20 segments per wave length is enough for most
applications to obtain accurate results in the near and far
fields. For objects with large cross sections in terms of
wavelength more segments may be needed in order to get
full convergence in weak field regions or in regions of
rapidly varying currents. The numerical solutions are
verified against the analytical solutions of circular cylinders.
A theoretical example is constructed for which the E-field
solution for TM, incidence should be equal to the H-ficid
solution for TE, incidence. The example is a cylinder with
square cross section with soft surfaces, such as corrugations
that are tilted to become normal to the k vector for the given
oblique incidence. The results are found to behave as
expected. This example illustrates the significance of the
present solution in order to simplify complex structures that
may be very difficuit to solve using other models.

The IBC is valid for perfectly electric conducting surfaces
where the surface impedance is zero as well as to all
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Fig. 6. The amplitude of the current distribution along
and normal to the corrugation in Fig. 42 (a) for the
case in Fig. 4b and (b) for the case in Fig. 5a.

surfaces of finite surface impedances. If the impedance is
infinite (perfect magnetic conductor) one must use another
formulation based on the surface admittance which can be
obtained from applying duality on (1} (not presented here),
We may refer to this boundary condition as the admittance
boundary condition (ABC). Therefore, it is expected that the
numerical accuracy will deteriorate when the surface
impedance values are much larger than the values used in
this paper. To improve that one may use the ABC formula-
tion, which is expected to be more accurate in such cases.
This subject and this formulation will be considered in a
future study with some discussions on the accuracy and
limitations on these formulations.
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APPENDIX A

Electric and magnetic field operators due to the electric current
components are expressed as

k 2
~jk k
E ()= :u‘:: J CJszz)(kpAp) @, * Apya’ (A-2)
E )= 1 1 u® apy@, »apydr’ (a3)
Zrv 4“’50 ]C 441 pAP) T
= 1 27 1 e @
E,U,)= ?Je;]c" 7 4@, » a,) Hy (k,A0)
k
-2 B @+ 0) -k, [, HG (e, 80) G
-éHfZ)(k,Ap)] @, a5 @, sp)di’
H,;) =0 (A-5)
H,(J,)= —71*. JCJZHF)(kpAp) (@, Ap)al’ (A-6)
H,(J )=-k" THP ¢ Ap) (4, Ap)dt’ (A-Ty
Tr\Vr 4_j[C 1 My (3
(A-8)

H_ ()=~

l A HP®,80) (@, * 8,]) at’

ISR



here the first suffix of the subscript denotes field component and
the second suffix denotes the current component. HP? () is the

Hanke! fimction of the first order and second type andAp = {p - o |
as shown in Fig. 1. The hat is used to indicate the unit vectors. In
the above equations the prime is used to indicate the source coor-
dinates. The field operators due to the magnetic currents can be
obtained using the duality.

APPENDIX B

The matrix elemnents of the impedance Z and ¥ are given below
as

k2 .
zi- HP(k A dr’ (B-1a)
4k"a:uj;:f
ik pcin. Y AR (B-1b)
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The above integrals are performed numerically using Gausquadra-
ture method of 4 points where ApY = | o' - pl | and p’ for the

segment j. The excitation matrix elements are given as

iinc
EZ

cosam.e] @, * m)

E
=_Tsin b,
Mo

E,”"‘

—(EPcos o +EMsinay,) * &,
Mo

A - P |
H ™ =L sing, sinag, e % " #)
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(B-9)

(8-10)

(B-18)

jine E . f
H™ = 2™ 056, (EPsinay,, ~E" cosay,) * 81 #% " *) (B-19)
o

where the superseript i denotes the middel of the scgment i .



