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Abstract - The problem of electromagnetic scattering from
arbitrarily shaped, imperfectly conducting surfaces that can
be represented by an anisotropic impedance boundary
condition is solved numerically using the electric field
integral equation and a triangular parch model for the
surface. The anisotropic impedance boundary condition
Sunction is described by a constant surface dyadic within
each triangular face. The procedure is validated by
comparison of numerical results obtained with the triangular
patch model with body of revolution model results for
problems involving scattering by spheres and cylinders
having uniform or anisotropic impedance boundary
conditions.

I. Introduction

Many problems of interest in electromagnetic scattering
involve imperfectly conducting bodies. The impedance
boundary condition (IBC) [1] is often used to modeling
specific classes of such bodies in electromagmetic scattering
problems. The IBC is an approximate boundary condition
that relates the tangential electric and magnetic fields at the
body surface via an impedance parameter, which is a dyadic
in the case of an anisotropic surface impedance. When the
approximation is valid, it can be used effectively to reduce
the number of unknowns required in the numerical solution
process by a factor of two. Senior has examined the
conditions for which the IBC is valid [2], and Mitzner has
presented a surface integral equation formulation for
scattering by bodies that are represented by an IBC [3].
The impedance relationship is often obtained through the
solution of a canonical problem, such as scattering of a
plane wave from an imperfectly conducting ground plane
having the constitutive parameters of the scatterer of
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interest, and the relationship is then assumed to apply
locally to the nonplanar surface of the scatterer. The IBC
represents a good approximation in such cases if the
magnitude of the complex refractive index of the scatterer
material is much greater than unity and if the radius of
curvature of the scatterer is sufficiently large. The
impedance boundary condition has been used to model high-
conductivity scatterers, absorbing coatings, plasma coatings,
corrugated surfaces, rough surfaces, and other
configurations [4-8]. The applicability of various types of
integral equations in modeling IBC problems has been
studied by various investigators [9-14]. Numerical solutions
for scattering by arbitrarily shaped bodies having isotropic
IBC’s have been presented using a pulse expansion, point
matching procedure by Sebak and Shafai [15] and using the
triangular patch modeling method by Glisson [16]. The use
of more accurate generalized impedance boundary conditions
in the numerical solution of two-dimensional electromagnetic
scattering problems has also been demonstrated [17] and
higher order IBC’s applied to bodies of revolution have been
presented [18]. Anisotropic surface impedances have been
employed in frequency selective surfaces by Orta er al [19].
Numerical solutions for bodies of revolution with anisotropic
IBC’s have been presented in [20], and a comparison of
different integral equation formulations for bodies of
revolution with anisotropic IBC’s has been presented in
[21].

In this work the solution of electromagnetic scattering
problems involving an arbitrarily shaped body with an
anisotropic impedance boundary condition is formulated and
implemented. The triangular patch model described by Rao
et al [22] serves as the basis for the development. The
triangular patch code originally employed the electric field
integral equation (EFIE) formulation and was applicable
only to scattering problems involving perfectly conducting



bodies, which could be either closed bodies or thin open
surfaces. In this work the anisotropic IBC model is
included in the EFIE to represent an approximate model for
specific classes of imperfectly conducting closed bodies.
The implementation permits modeling of objects that are
relatively thin in terms of wavelength [23]. Results are
validated by comparison of patch code results with results
obtained with a body of revolution solution procedure. The
formulation of the surface integral equation is presented
briefly in Section II, and the numerical implementation is
described in Section III. Numerical results are given in
Section V.

. Integral Equation Formulation

The electric field integral equation for a body having an
impedance boundary condition can be developed from the
equivalence principle [24] by first removing the scatterer
from the medium in which it resides and placing equivalent
electric and magnetic surface currents J and M along the
surface forming the boundary of the scatterer in the original
problem. The equivalent currents radiate in an infinite
homogeneous region and are defined by the relations
J=hxH and M=E x, where E and H are the total electric
and magnetic fields at the surface of the scatterer in the
original problem. With the equivalent currents defined in
this manner, they will radiate the correct scattered field for
the original problem in the region exterior to the scatterer,
and will radiate the negative of the incident field in the
region interior to the scatterer surface. The EFIE for the
impedance body can therefore be written as

~AXAXE =AXAXE® , 1S M
where E’ is the incident electric field, ES is the scattered
electric field, and h is the outward directed unit normal at
the surface of the scatterer. Eq. (1) is valid in the limit as
the observation point r approaches the surface from the
interior, denoted by §°. A similar equation valid in the
limit as r approaches the surface from the exterior may be
obtained from the definition of the equivalent magnetic
current. The equation which results after the limit
operations are performed is the same in both cases.

The scattered electric field E° may be represented in
terms of potential functions as

ES(r) = —jwA(r) -V (p) —_i,v X F(r) @
where
A(D) =4 I Jr)G(r,r"ds' (3a)
N
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B(r)=1 I o(r"YG(r,r')dS" (3b)
€%
F@r) =¢ I M(r')G(r,r")dS' (30)
s
and where
e—jkil"l"l (4)

) e

In (3) and (4) r and r’ represent the observation and source
coordinates, respectively, e, u, and % are the permittivity,
permeability, and the wavenumber of the exterior region,
respectively, and o is the equivalent electric surface charge
density, which is related to J through the continuity
equation. A harmonic time variation exp(jwf) is assumed
and suppressed.

The scattered electric field given by (2) is evaluated in
the limit as r approaches the scatterer surface from the
interior. The scattered field expression resulting from the
limit process is valid just inside the scatterer surface, and it
may be substituted into (1) to represent the boundary
condition just inside the scatterer surface as an integral
equation in the unknown surface currents J and M.
Additional bouadary condition information must be enforced
to uniquely determine both equivalent current sets, however.
When applicable, the impedance boundary condition, which
relates the tangential components of the electric and
magnetic fields at the scatterer surface, may be enforced to
provide the necessary additional information. The IBC
considered in this work is the anisotropic impedance
boundary condition, which relates the surface electric and
magnetic fields by any one of several equivalent
expressions:

E-E- i =nZ OxH)
-AXAXE =9Z - (AxH)
AXE =nax[Z_+(AxH)]

®)

where the anisotropic IBC surface impedance dyadic is
normalized by the intrinsic impedance of free space % and
is defined by

Z =Z,184,8, +Z54,8; +Zy 84, + 2yl H,
|2y
Zy18,8,

and where 4, and 4, are unit vectors in an orthogonal

Z)54,4, ©)

Zy3870;



coordinate system defined on the surface S. The orientation
of these unit vectors is assumed to satisfy 4, =fixX4i,,
where @ is the outward-directed unit surface normal. In
terms of the equivalent electric and magnetic surface
currents, the anisotropic IBC may be represented by

M= -gax[Z_+]] Q)
Thus, one finally obtains the EFIE for a scatterer with an
anisotropic impedance boundary condition:

E. (0) = jwp j JG(x,r)ds’ + .elv j oG(r,r’')dS’

s % ®

- [1OXIZ, T XVCE)dS Ly, 1S
S

where r- S~ denotes that the equation is valid in the limit
as the observation point approaches S from the interior of S.
The equivalent electric surface current J is then the only
unknown quantity and (8) may be solved for J via the
method of moments [25].

III. Numerical Solution Procedure

The triangular patch modeling method developed by
Rao, Wilton, and Glisson [22] is employed to solve (8) for
the unknown electric surface current density J. A suitable
triangular patch model of the geometry of the impedance
body is first developed. The electric surface current density
J on S is then approximated in terms of basis functions f,

Figure 1.
with a triangle pair.

Geometrical parameters associated
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defined on pairs of triangles as

N
I =3 11,0 ©
n-1

where N is the number of interior edges in the model.
Various geometrical quantities associated with a triangle pair
with commmon edge n are illustrated in Figure 1. The two
triangles attached to the common edge are denoted as 7,
and 7,". Points within triangle T, may be defined by a
position vector r with respect to a global coordinate origin
0, or by a local position vector p,* defined with respect to
the free vertex of 7,. Quantities in 7, are defined
similarly except that the vector p,” is directed toward the
free vertex of T, rather than away from it. The vector
basis function f, representing the electric surface current
density associated with the ™ edge is then defined as

[ ¢, . .
“p, » el
Mﬂ
10)
f(r)=4 £  _ - (
(F) Zp, ., reT
24,
0, otherwise

where £, is the length of edge n and A, % is the area of
triangle Tni.

The method of moments is applied by next testing (8)
with suitable testing functions. The testing functions are
chosen to be the expansion functions f, defined in the
preceding paragraph.  Thus, (8) is tested with f ,
m=1,2,...,N, and the result can be represented as

<Ef, > =ju<Af, > + <V f, >

(11
+1cy xF.f, >
€
where the syminetric product is defined as
<fg> = j'f-gdS (12)
§

and where the curl term in (11) is understood to be
evaluated in the limit as the observation point approaches
the surface from the interior, as indicated in (8). The
Galerkin solution procedure implied by (11) when the basis
and testing functions are the same has often been
approximated in previous triangular patch code
implementations. In this work the expressions for the terms
in (11} are presented without these approximations.
Appropriate approximations may be made to reduce the
amount of numerical integration required if desired.



The evaluation of the magnetic vector potential term
and the electric scalar potential term as they appear in (11)
is discussed in [22]. However, in this work the vector
potential is evaluated directly in terms of its vector integrand
rather than expressing the result as a sum of scalar integrals
times constant vectors as in [22]. This is done to simplify
the implementation of the full Galerkin testing procedure,
which involves double surface integration. As in previous
work, however, integrations are performed on source
triangle, observation triangle pairs rather than on source
basis function, observation basis function pairs. One then
finds that the vector potential integrations are all of the form

I3 £
A9 = ] _'p(r-r,.)- I —J_(r'-r)Gds'ds
24 1,249

TP
0 Ry
=M I ] (r-r)) (') ____2d5'ds
167APAY 7R

TPTY

AR I ' - j)%dS' dsl | reTP r'eT?
rid T9 (13)

where R= | R | = [ r-r' | , the indices p and g refer to the
observation and source face numbers, respectively, and the
indices i and j are local indices referring to the three
different testing and basis functions, respectively, that exist
within the testing and source faces. Then, for example, ¢,
refers to the length of the edge with local edge number j and
is associated with the fh (local) basis function, while the
position vector r; locates the vertex opposite the edge with
local edge number j in face g. The quantity I in (13) is a
control variable that is set to 1 if extraction of the singular
term in the integrand is to be performed, and that is set to
0 if no singularity extraction is to be performed. When the
singularity extraction procedure is performed, the integration
of the singular term over the source region can be evaluated
analytically as

Lag
3

] (' -r j)%dS‘

T?

_Jqp—R_p.dS' +(p—pj)J ”

9
=b(r) +(p-p)a (v)

where the integrals for b%(r) and 4%(r) have been evaluated
in {26]. The cylindrical coordinate vectors p in (14)
represent the projections of the corresponding global
position vectors r onto the plane of the source triangle as
described in and as indicated in Fig. 2, where a local
coordinate system has been illustrated for use in evaluating
a variety of integrals [26]. The definitions for b¥(r) and
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a?(r) are repeated here for completeness:

a9ty =Y 894, [Pn(G)
G J J'[ J J (15)

—ldl(tan“(P}‘)-tan“(F;))]

bi(r) = %? 0y [(Rf)zln(cj) “OR - Rj_] (16)

where
GJJ‘J 5 OR a7
Ry +¢; R~
0,4+
R (1

The remaining quantities appearing in (15)-(18) are defined
as indicated by Fig. 2.

Line Segment

Figure 2. Geometrical quantities associated with
the line segment C lying in plane & and the
arbitrary observation point r.

The first step in the evaluation of the scalar potential
term in (11) involves the use of a vector calculus identity
for surface integration [27] and the particular properties of
the basis function or testing function at the edges of its
domain of support. The scalar potential term is thus re-
expressed as



<VEf > =- LI)(VS -f,)dS (19)

When the integration process is performed on a face-by-face
basis, the integrals which must be evaluated are of the form

JJ

TPTY

e
AmjmedAPA?

PR
das'ds
R

&7 =

i (20)

where, as in the vector potential term, the source region
integration can be expressed in terms of bounded and
singular integrand portions as

j e
T4

The last integral on the right in (21) contains the singular
integrand and can be evaluated analytically. The result is
simply a9(r) as given by (I15).

-JkR_J
1

2dS' +I | —dS' 21

A SLR (21

kR
e as

R

The singularity extraction process described above for
the magnetic vector potential and the scalar potential terms
was performed for all source-face, testing-face combinations
in the original implementation of the triangular patch
computer code (i.e., J, was set to 1 for all source-face,
testing-face combinations). This seems unnecessary for the
general case and it may lead to numerical inaccuracies in
matrix element computations when the source face and
testing face are far removed from each other and the testing
face also lies near the linear extension of one of the edges
of the source triangle. The errors appear to result from the
evaluation of G; as given by (17) when the {,* tend to
cancel the R* ‘terms. For widely separated source and
testing faces, these errors can be eliminated by setting I =0.
Similar errors may also occur for nearby source and testing
faces when the subdomain scheme is not completely regular.
Therefore, two forms for G; are given in (17). The first
should be used when the fj‘L- are both positive, the second
when the Eji are both negative, and in other cases either
expression may be used.

The accurate evaluation of the electric vector potential
term in (11) using singularity extraction procedures has been
previously addressed for the isotropic case [23, 28). For
this term, if the source face and the testing face are not the
same (i.e., for a non-self term) the curl operator may be
carried under the source integral and appropriate vector
identities may be applied. Thus, the integration required for
a source face ¢ and an observation face p becomes
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it

1 Pq
[_<VxF(r),fm> —f Ifm-MxVGdS'dS
€ TPTY
=y j Iﬁ’[fm-(gs-J)]-VGdS‘dS @2)

TPTd

+q j J(fm-ﬁ’)(_Z_S-D-V‘GdS'dS
TPTY

where the magnetic surface current M has been related to
the electric surface current J through the IBC relationship,
and where f_ is the portion of the mth testing function
within face p. The result in (22) has been expressed in a
form in which the terms representing field components
normal and tangential to the plane of the source are easily
separated.

We consider first the field component tangential to the
plane of the source triangle. For this component the
contribution to a matrix element for the portion of the
testing function f; residing in face p and the basis function
i;- in face g is

gL,
o 4474
(23)
[ dj (c-r)-Z_* (') K(R) dS'dS
TF T4
+ISJ' (c-r)+Z -Alds
TP
with
1+jkRye F*R~I (1+14k>R?
KRy = (LR )

R3

where £, is the length of edge n, A" is the area of face n,
d=ir *R, r, is the position vector to the triangle vertex
opposite edge n, and where I_is either one, if singularity
extraction is to be performed, or zero, if not. The vector
function qu in (23) which results when singularity
extraction is performed is defined by

Af = -dUr)+(p Vir)

. d
pJ_F;r

+dk®b¥(r) + Yadk*(p-p Da U(r)

24)

where U9, and V9 are defined as:



UYr) =) &;1a(G)) 25
j

IZOED M ALY [tan™ 1F}) —tan™ 7} )] @
I

Other qguantities appearing in (24) are defined in (15)
through (18). The details of the evaluations leading to (24}
through (26) are given in [2%] and [30]. Evaluation of the
electric vector potential integrals has been performed via a
similar procedure in [28]. Another alternate procedure has
been described in [31].

The source-region integration appearing on the right
side in (23) is performed numerically. The term in (23)
containing the source-region integration can be rewritten as

£.E.
S DERLY EZ[(r—r) 4,Z & +I]1ds
iz | a4” q] I - b
44749 | L1 i on
where
1+jkR)e /R~ (1+14k*R?

= [@-rpd [( K iled 3*( i ' as

74 R @8)

which has been previously evaluated numerically in the
isotropic IBC case [29, 30]. The double dot product with
the IBC dyadic in (23) has been represented as a double
summation in (27). The portion of (23) resulting from
analytical integration over the source region can be
expressed similarly as

£.f.
-1,4"1 —d j(r—r,.)-gs-A;?ds
T | 44PA49 29
f.1.
=fJ 1 iJ b as
“ar 44749 Lr-EIsE Pirtys
where
b:r = (r—ri) . ar (30)
and
B_ q
b =4, Alr) &)

No new numerical or analytical integral evaluations are
required for the field component tangential to the plane of
the source in the anisotropic case. The terms obtained for
the isotropic case are merely combined with different
coefficients.
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The component of the scattered electric field normal to
the plane of the source triangle and arising from the
magnetic current contribution in (22) is

nj(fﬁ-’-ﬂ')jc

TP TY

Z -f})-v'Gas'ds (32

The dyadic notation iz (32) can be rewritien using the
double summation as

2| | [tee) w1 [ (2, @ 1) V'Gasas
44749 1, f1
=-_1
ar | a4 PA q j N(r)r; sE (2 1] &5
(33)
where N(r)=(r-r;) *i’ and
Lo = - [ [, ']V’ Gas (34

T9

The integral for (r) can be expressed in a more
convenient form for 1mplementatlon by using the identity
aVh=V(ab)-bVa and the fact that &_is tangeatial to the
source plane. One then obtains

Lir)=- I V{l4, (' -r)IG} dS +
79

I G V[, (r'-T)]dS’
Te

- j [8,+ (¢ -r)IGade’ + j GH,ds'
ard 79

L A
Il

(35)

where {1 is the outward-directed unit normal to the triangle
boundary lying in the plane of the triangle and H; is a
constant vector obtained by evaluating the gradient operation
in the second term of (35):

Hsj =V {4, [sjq(rw 1 -l'j) ""Ej- 1(1"_1_1'j)]}
-h. -h.
=4 +f. ridJ VY'Y J-1
2]
- -ﬁ[(ﬁs Sl Xl XA~ (8" £ )l X))

(36}

This result is obtained by expressing the vector basis



function variation (r’-r;) in area coordinates [28], as
indicated in the first line of (36), where & is the area
coordinate having value one at the vertex r; and value zero
at the vertices r;,; and r; ;. The gradient operation on the
jth area coordmate variable is then conveniently expressed
in terms of the beight of the jth vertex, &, and a vector
directed normal to the jth edge, l} (=i). us, L 5(F) can
be expressed as

I(r) =H [ GPds'+H, J G*ds’
74 T4

[4,+ (' -r)IG* ade’
8T9

- - L b s .
j [a,- (' -rpIGPaar
ard

S 0 ol ; Y ) e Lo

7} q g9 & 9 (37)

In (37) the superscript b indicates a term which is bounded
or has a bounded integrand (when I, is appropriately
chosen), while the superscript u indicates a term which may
be unbounded or may have an unbounded integrand. The
superscript L indicates a line integral term, while the
superscript A indicates an area integral term. The bounded
and unbounded kerne! terms are given by

-jkR
gb- &t (38)
R
and
Gu-k (39)

Thus, the terms involving the field component normal
to the plane of the source triangle can be expressed as

EE
447417

= EEEZ,,HS, a,)

r~1s=1

I NI, +17"] ds
TP

(r)] ds

D%

=131

13

z jN(r)ﬁ - [1; (r)+
(40)

where the area integrations over the source region are
defined by

IR _

- [ ey @D
T
and
1) = a %) 42)

while the line integrations around the source triangle are
given by
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Lb r
L (r) <[4, 1]2 ukj L Gbde
k-l gre 43)
a J‘*l] E “kI ~1GEde
4,71
and
§iel 0
1@ =18, 4 ] E n,cj 2 ae
LI &
44)
J+1 £
RACRYINDY ﬁkj JT‘def
k=j=1 B*Tq

The area integration terms given in (41) and (42) were
evaluated in the isotropic case and are again simply
combined with different coefficients in the anisotropic case.
The line integrations indicated in (43) and (44), however,
did not appear in the same form in the isotropic case.
Therefore, new numerical and analytical line integral
evaluations are required for the anisotropic IBC case. The
new analytical integral evaluations required are indicated in
(45) below.

j Ed£’=0
R

S ger < R £ “3)
J. "E -f_[ ;-0- |+1 n( 41)]
3,79 i1

Sige e LR R - n(G

7 7Ry =Ry~ E0(Gy )]
8,,T* i-1

The line integral term in (40) that may have an unbounded
integrand can then be succinctly expressed as

Lu &1 .1
LO=11a 11 Y o, L]
k'};}i (46)
-1a, ,.11): 0]
where
-gi{R,; R - £3En(Gp] , k=a-1
k
o_ . - 47)
Ly _;_[Rk Ry -GGl , k=a+l
k
0 k=c

3




The special case in which the source and observation
triangles are the same must also be reevaluated for the
anisotropic case. The self term for the anisotropic case may
be written as

<flpaxM]> =tg<flZ +f]>
8, (48)
st [G'p) L, (0 paS
S(AQ) T

If the vector variation of the basis functions is expressed in
terms of the area coordinates and the dyadic dot products
are given in double summation form, the self term becomes

f
s [EZ A RIONE SRR PR
g1 s-1
d {8 1@ 1) + £ (01T}
= 1)
= Z, o o1+
4(Aq),‘215‘21 rs[xlr ,s:l,]l
"0 r QG t s die1 o1
“ 01 % s die 1o
oy i joa)
(49)
where
O = €4 (50)
and
1 -4 i m=n
12’ 51
b | [ Eabadtadt, = b
1
170 £2~0 57 ms#n

The preceding expressions have been implemented in
the evaluation of the impedance matrix for the triangular
patch scattering code. The resulting system of linear
equations is solved in the usual manner for the surface
current distribution. Once the surface current distribution
on the scatterer has been computed, the far scattered electric
field may be determined from

E° = -C(H7 i G [T-2(J - £)]dS’ + C(r) LGf ( xM)ds’
(52)
where
o) = I e (53)
TI'I'
and
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G = ekt ®) (54)

After substitution of the JBC relating the electric and
magnetic current, the § and ¢ components of the far
scattered electric field can be represented as

2 2
Ey= -nC(r)LGfJ-{a—): T I@xA) 4,74, } ds'
re1s-1 (55)
and
. 2 2
E4 = -nC() LGfJ {d+X Y [@xi)-4,12,4,} a8’
r~1s-1 (56)

The far scattered electric field may then be represented
conveniently in terms of pattern integrals Fy and P as

ES = -5C(n[Py +Pyd] (7

where the pattern integral due to a single source face g is
given by

Pq"is Lt jG (r'-r)-{&

a - 2eSi— | Gy Ty

i-1 ZAqTq (58)
+)'_j):[(axf)xﬁ] 4,Z 4 }ds
r~1s~1

with & replaced by either 6 or ¢. In (58), 5,= 11, the plus
sign being chosen if the basis function for edge i is directed
away from vertex i in face g, and the minus sign being
chosen if the basis function is directed toward the vertex.
The integration over the source region in (58) can be
performed analytically to obtain

Es l Ieﬂc(f l'cq) [(r’-r,-)dS'

re (59)

3
=8 50 Ty e (1¥0r)
i=1

where
2 2
y=d&+ EZj[[(aexf)xﬂ']-:ﬁur]zmas (60)
r~1s-1

Thus, the final result may also be expressed as



3
Paq=%f"v-{*"f]ie:ejk(f"m)[ﬁ‘(l‘cq'rf) (61)
i 1

2 2
+(@xt)* Y Y W X4,)Z,4,c 099-1))]

r1s-1

IV. Numerical Results

The procedures described in the previous section were
initially implemented into a modified version of the original
triangular patch code [22] and were subsequently
incorporated into the more sophisticated IBC3D scattering
code [30]. Numerical results are presented here for several
spherical and cylindrical geometries with isotropic or
anisotropic surface impedance boundary conditions. Results
obtained using the triangular patch code and body of
revolution codes are compared.

We first consider a cylindrical scatterer geometry with
geometrical parameters as shown in Fig. 3. The cylinder is
assumed to have length I and radius a. A standard

;4——23——-4:-

Figure 3. Geometrical parameters for cylinder.

cylindrical coordinate system is used for the body of
revolution model with the z axis being the axis of
revolution. For the triangular patch code, the axis of the
cylinder was oriented along the y axis. Data obtained in the
rotated coordinate system of the patch code model,
however, are presented relative to the coordinate system of
Fig. 3 in each case.

The first example considered is that of a small cylinder
with length L=0.2A and radius a=0.1A. The triangular
patch model used to obtain the results presented is shown in
Fig. 4. This triangular patch model uses 16 linear segments
to model the geometry in the azimuthal direction, 4

segments along the cylinder radius, and 6 segments along
the cylinder length. The quadrilateral patches formed by the
azimuthal and generating contour segmentations are then
divided by a line segment to form the triangular patches.
The resulting patch model has 624 unknowns. The
monostatic radar cross section results obtained with the
triangular patch code and a body of revolution code
modified to solve the anisotropic IBC problem [20] are
shown in Fig. 5. For this case a #-polarized plane wave is
the excitation and the anisotropic surface impedance is

defined by Z_=i¢ , corresponding to a single non-zero, off-

diagonal element in the impedance dyadic (6). Results are
shown for the co-polarized and cross-polarized components
of the radar cross section. The agreement between the
results obtained by the two different methods is excellent.
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Figure 4. Triangular patch model for a cylinder of
length L=0.2A and radius a=0.1A.
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Figure 5. Comparison of monostatic radar cross
section results for a small cylinder with an
anisotropic impedance boundary condition.

Results were also obtained for a larger, resonant length
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cylinder of length L=A and radivs e=0.1\. One triangular
patch model used for this cylinder is shown in Fig. 6. A
second model with more unknowns is shown in Fig. 7. The
model of Fig. 6 has 220 triangular faces and 330 unknowns.
The model is generated using 10 linear segments to model
the surface in the azimuthal direction, 2 segments in the
radial direction, and 8 segments along the length of the

Figure 6. Triangular patch model of a cylinder
with 330 unknowns (L=X, a=0.1A).

Figure 7. Triangular patch model of a cylinder
with 570 unknowns (L=X, a=0.1)\).

cylinder. The model of Fig. 7 has 570 unknowns. It is
generated using 10 linear segments to model the surface in
the azimuthal direction again, but with 4 segments in the
radial direction and 12 segments along the length of the
cylinder. Results obtained for the triangular paich model of
Fig. 6 are compared with those obtained from the modified
body of revolution formulation in Figs. 8 and 9 for the co-
polarized and cross polarized radar cross section
compobpents, respectively. For the body of revolution
model, the generating contour was modeled by 32 linear
segments, resulting in 126 unknowns. The anisotropic
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surface impedance is again defined by Z =t¢. The
agreement of the results is generally very good except for
near-axial incidence and, for LS in the case of broadside
incidence. The disagreement between the data obtained by
the two different methods for axial incidence is believed to
indicate slow convergence (for both approaches) due to
discrettzation error. It seems likely that the error at
broadside incidence is partially due to insufficient resolution
of the triangular patch model in the azimuthal direction.
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Figure 8. Comparison of co-polarized monostatic
radar cross section results obtained with body of
revolution and triangular patch models.
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Figure 9. Comparison of cross-polarized

monostatic radar cross section results obtained with
body of revolution and triangular patch models.

For the triangular patch model of Fig. 7, the results are
compared with those obtained from the modified body of
revolution formulation in Figs. 10 and 11 for the co-
polarized and cross-polarized radar cross section
components, respectively. The generating contour for the
body of revolution model in this case was defined by 56
linear segments, resulting in 222 unknowns. The agreement



between the results obtained by the two different methods is
generally very good, and it is clear that the increased
number of unknowns in both methods has improved the
agreement between the two methods for axial and broadside
illumination.
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Figure 10. Comparison of co-polarized radar cross
section results obtained with body of revolution and
triangular patch models.

~50 2 ] t g 1y
[+ 45 90 135 180

8 (degrees)

Figure 11. Comparison of cross-polarized radar
cross section results obtained with body of
revolution and triangular patch models.

We next consider the case of a sphere, both with an
isotropic IBC and with an anisotropic IBC. In both cases,
the results obtained using the IBC3D patch code are
compared with an independent IBC body of revolution code
(JRMBOR [32]). Comparisons are also made with the
predictions of Weston’s theorem [33] for the anisotropic
IBC case. Three different triangular patch models, with
260, 570, and 1616 unknowns, were used to represent the
sphere for the isotropic IBC case. The two models with the
larger number of unknowns are shown in Fig. 12.
Calculated backscatter cross-sections, normalized by 1ra2,
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where a is the sphere radius, are shown in Fig. 13 for the
isotropic IBC case (i.e., in (6) Z;;=Z5;,=0.1+/0.1, and
Z3=Z;;=0) as a function of ka=27wa/\, where X is the
excitation wavelength. For ka=3, the segmentations of the
three IBC3D models correspond to about 7, 11, and 18
triangles per wavelength. The JRMBOR result used at least
25 triangles per wavelength, and consequently, was
reasonably well converged. The plotted IBC3D results have
been radius-corrected to account for the difference in
surface area of the inscribed triangle model of the sphere
and the actual sphere. The radius correction factors for the
260, 570, and 1616 patch models were 0.988, 0.9%91, and
0.998, respectively. The IBC3D results are observed to
converge to the JRMBOR solution as the triangle
segmentation is increased. For the 1616, patch model, the
agreement is nearly precise for ka=2, with differences no
greater than a small fraction of a dB for ka=3.

«— Model 1
Triangles: 570
Vertices: 287
Edges: 855

Model 2 —
Triangles: 1616
Vertices: 810

Edges: 2424

Figure 12. Triangulated sphere models.

Note that the 260 triangle patch model has spikes at
ka=273 and ka=3.9. The spikes are an artifact of the
EFIE formulation used, and they appear at the internal
resonance frequencies of a perfect electric conductor (PEC)
scatterer having the same surface. The width of the spike
decreases as the number of patches increases, and, due to
the finite sampling in frequency, the 570 triangle model
shows only a small kink near ka=3.9. The JRMBOR code
result was obtained with a combined field integral equation
(CFIE) formulation using equal weightings of the EFIE and
MFIE, which tends to suppress the spurious internal
resonances [34].

IBC3D results and the JRMBOR results have also been
compared for the case of a sphere with an anisotropic IBC
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Figure §3. Comparison of IBC3D and JRMBOR
for an isotropic impedance sphere (Z,=0.1+/0.1).
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and size ka=1 in Fig. 14. The geometry is shown in the
figure, where the dashed line represents an axis of

symmetry of the body, and k is a unit vector in the
direction of propagation of the incident plane wave. The
plane of scattering is defined by these two lines, and the
angle 8 between them is the scattering angle plotted in Fig.
14. Vertical polarization (V) corresponds to the case where
the electric field is perpendicular to the plane of scattering,
while horizontal polarization (H) has the electric field in the
plane of scattering. The intersection section of the axis of
symmetry (dashed line) with the surface of the sphere
defines one pole of the sphere. The unit vectors 4, in (6)
are chosen to be everywhere tangential to the surface of the
sphere and directed toward the pole, while the unit vectors 4,
are in the azimuthal direction on the sphere surface. The
surface impedance for the case is then defined as

ol

Results for the PEC sphere case are also shown (dashed
curve) in Fig. 14, and the IBC3D and JRMBOR results are
virtually indistinguishable. For the anisotropic IBC case,
the surface impedance is defined so that the product of the
diagonal matrix elements is unity. As a consequence, a
generalization of Weston’s theorem [33] to anisotropic
BORs [35] is applicable, and the backscatter RCS along the
axis of symmetry should vanish. It can be seen in Fig. 14
that the RCS along the axis of symmetry (=07, 180°)is 45
dB lower than the PEC case. Also shown is the comparison
between JRMBOR and IBC3D results (dotted and solid
lines, respectively). The agreement between the twe codes
is quite good except for the smallest cross-section regions of

4.0
0

0
0.25
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the curve, where increased model segmentation is required
to obtain more precise agreement. The generalized Weston
theorem also requires that the VV and HH polarization
results should be the same [35]. Both sets of numerically
computed results exhibit this behavior except over the region
of the curve where the cross section is small. The
JRMBOR results were obtained using a segmentation
equivalent to 40 triangles per wavelength, while the IBC3D
results were obtained using about 27 triangles per
wavelength.

IBC3D Model
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Radius: im

L [0 o e
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=
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—60 . . e .
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Figure 14. Comparison of IBC3D and JRMBOR
bistatic scattering cross section for an anisotropic
impedance sphere.

As a final example, we consider the case of another
cylinder with an anisotropic IBC. The cylinder model is the
same as that shown in Fig. 6, with length L=\ and radius
a=0.1x. The unit vectors 4; and 4, that define the
dyadic surface impedance are chosen to correspond to the
azimuthal unit vector ¢ and the generating arc unit vector
commonly used in BOR representations. Thus, 4&; is on
the cylinder surface and azimuthally directed with respect to
the axis of symmetry of the cylinder. Along the length of
the cylinder, the vector &, is parallel to the axis of
symmetry, but on the endcaps, 4, is radially directed. The
cylinder has roughly 8.5 triangles per wavelength. The
JRMEOR results were obtained using the CFIE formulation



with equal weight to the EFIE and MFIE. Fourier modes
zero through five and a Gaussian quadrature order of 30
were used. There were about 25 triangles per wavelength
for the JRMBOR model. Thus, one might expect the
JRMBOR caleulations to be more accurate than those of
IBC3D for this case.

Fig. 15 shows the comparison between the predictions
of IBC3D and JRMBOR when the cylinder has an
anisotropic surface IBC with unequal diagonal elements,
The plane of scattering and the horizontal and vertical
polarizations are defined in the same manner as in the
preceding case of the sphere. The HH results shown in Fig.
15 for a horizontally polarized transmitter and receiver are
almost coincident, while there is a worst-case discrepancy
of less than 2 dB for the VV polarization result at about
45°. This agreement seems quite reasonable considering the
rather crude segmentation of the IBC3D patch model.
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Figure 15. Comparison of IBC3D and JRMBOR
monostatic RCS results for a cylinder with an
anisotropic impedance boundary condition.

V. Summary

In this work the problem of electromagnetic scattering
from arbitrarily shaped, imperfectly conducting surfaces
modeled by an anisotropic impedance boundary condition
has been considered. The numerical solution has been
implemented using the electric field integral equation and a
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triangular patch model for the scatterer surface. The
anisotropic impedance boundary condition function has been
specified by a constant surface dyadic within each triangular
face. Good agreement between numerical results obtained
with the triangular paich model and a body of revolution
model has been observed for the scattering cross sections of
spheres and cylinders for both isotropic and anisotropic
impedance boundary conditions.
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