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Abstract

A brief summary of the variational boundary-value prob-
lem formulation of the 2D finite element/boundary ele-
ment (FE/BE) method is presented. From this a poste-
riori error estimates and error indicators for the FE/BE
method are developed and applied to electromagnetic
scattering and radiation problems. The results obtained
indicate that these error estimates and indicators can
be obtained within negligible computational times and
can be used successfully to obtain valuable a postertor:
accuracy and convergence information regarding the re-
liability of the FE/BE method solutions.

1 Introduction

The 2D finite element/boundary element (FE/BE)
method! has been used extensively over the past few
years for solving electromagnetic problems numeri-
cally [1, 2, 3, 4, 5]. The method has proved to be
highly successful and applicable to specifically scattering
and radiation problems concerning inhomogeneous, ar-
bitrarily shaped objects. However, the solution time and
memory requirements of the method become impractical
when electromagnetically large problems are considered.
These limitations of the FE/BE method are obviously
dependent on the computational hardware available.

A FE/BE method solution results in approximnated
field values in the regions under consideration. The ac-
curacy of these solutions is dependent on the specific
problem at hand as well as the approximation functions
used with the FE/BE method. A priori knowledge of
the accuracy and reliability of the FE/BE method is ob-
viously an important consideration which has been in-
vestigated by a number of researchers [6, 1, 7]. Another

1The technique is also referred to as the finite element /moment
method or finite element fintegral equation method in the litera-
ture; there are sometimes differences in detail but the basic con-
cepts are the same.
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important consideration would be an a posteriori error
estimate of FEM or FE/BE method solutions. Reliable
a posteriori error estimates could serve as criteria for re-
quired accuracies as well as convergence checks for the
FE/BE method solutions obtained. A posteriori error
estimates for the FEM as well as the BEM have been
under investigation for the past few years and have been
applied successfully to a number of general engineering
problems [8, 9, 10]. However, very little has been pub-
lished on this topic in the computational electromagnetic
literature and only recently has work started appearing,
for example [11, 12]. A recent special issue of this jour-
nal contained several papers on error estimation, none
specifically on FEM error estimates although the paper
by Hsiao and Kleinman considers boundary integral er-
ror control [13]. Some commercial FEM programs in-
clude error estimates and adaptive meshes, but the al-
gorithms are often proprietary.

In this paper, a brief summary of the FE/BE method
formulation will be presented (section 2). A number of &
posteriori error estimates and error indicators for FE/BE
method solutions of electromagnetic problems will be
formulated in section 3. These include local (in each
finite element) and global Element Residual Method
(ERM) error estimates [8, 9, 10], L?-norm boundary field
and boundary field derivative error estimates [14, 15], a
L%-norm Neumann boundary condition error indicator
and a radar width error indicator. It will be shown that
these are highly efficient error estimates with negligible
computational times compared to the solution times of
FE/BE method solutions. The a posteriori error esti-
mates and error indicators developed will be applied to
a number of FE/BE method solutions of electromagnetic
scattering problems. The results obtained will be used
to investigate the accuracy, reliability and applicability
of the different error estimates and error indicators when
applied to FE/BE method solutions of 2D electromag-
netic problems.

In section 4 general conclusions on the work presented
in this paper will be drawn and further research that
needs to be done will be discussed.



2 The 2D FE/BE Method

In this section the 2D FE/BE method formulation will
be presented?. The development of this formulation is
not new, but the specific notation used is crucial for the
development of the FE/BE method error estimates. A
thorough understanding of the mathematics behind the
FE/BE method is essential for the development of any
kind of error analysis associated with the method. A
rather informal discussion of the functional analysis for-
mulation of the FE/BE method will be presented in this
paper. This discussion is sufficient to prepare the reader
for the development of the error estimates. (Details of
the formal functional analysis formulation of the FE/BE
method can be found in reference [16).)

The formulation will be presented for 2D Transverse
Magnetic (TM,) polarized scattering problems.? The
TM. scattering formulation is a special case of the more
general 2D scalar Helmholtz equation formulation. This
equation serves as the governing equation for a variety
of 2D electromagnetic problems, including static elec-
tric and magnetic problems®, as well as closed and open
boundary electromagnetic problems for TM, and TE,
polarization. The FE/BE method and the a poster:-
ort error estimate methods considered in this paper are
applicable to all the above mentioned electromagnetic
problems.

2.1 Variational boundary-value problem
formulation of the FEM

Consider figure 1. For 2D scattering problems involving
a TM, polarization incident field, the 2D electromag-
netic field equation can be written as a boundary value
problem [6, pp.185] [1, pp.72-73]. (Throughout this pa-
per the electric field component associated with the TM,
polarized field, E;, will be denoted by E):

V—l-VE+c,k§E=0 in Q (1)

Hr

20nly two-dimensional problems will be considered in this pa-
per. Variation in the 2D z — y plane will be assumed (for all fields
and structures} with no variation in the z-direction {extending to
infinity).

3The convention for polarization in a 2D plane which will be
used throughout this paper is as follows: For TM, polarization
the magnetic field vector has only z and y components, thus A
is always transverse to the z plane. In this case F has only a 2
component. For TE; polarization the eleciric field vector has only
z and y components, thus E is always transverse to the z plane.
In thie case & has only a z component.

4In these cases, the 2D scalar Helmholte equation reduces to
the 2D Laplace or Poisons equations.

41

with Dirichlet boundary condition on a perfectly con-
ducting region

E=0 on PDO
(2)

and Neumann boundary condition on the fictitious
boundary

oF

N on I'M (3)

where gy are the prescribed values for 22 on TV, The
boundary-value problem of equations 1 to 3 can be writ-
ten as a variational boundary-value problem [6, pp.219]:

j (VE. 190 — ¢ k2Ev) da = _/ grvdI'™ (4)
a B '™

with © an arbitrary weighting or testing function on
Q. Using conventional finite element procedures [17][16,
pp.14], equation 4 can be written in matrix form:

SIE]+ (T 02 = 0 6

with [S] the FEM system matrix, {E] the unknown field
coefficient column matrix, [T] the FEM boundary condi-
tion system matrix and [3E] the field derivative column
matrix. Equation 5 is the FEM matrix equation for TM,
polarized, 2D electromagnetic problems. The solution
of the FEM matrix equation 5 yields the approximated
field solution, E, if g1 of equation 3 is known and used
to construct the column matrix [4£].

Ny
/F

()

Figure 1: Finite region, {1, in whick the FEM will be
applied, enclosed by a boundary, V1. A is an exterior
free-space region extending to infinity.

2.2 The boundary element method

Many practical electromagnetic field problems, such as
scattering and radiation problems, are open boundary
problems. The domain of these problems extends to in-
finity, making the finite element method unsuitable for



the solution of such problems. One way to overcome this
problem is to couple the finite element method with an
unbounded region method such as the boundary element
method. In this way, the advantages of both the FEM
and BEM are exploited [1][5)].

A fictitious boundary denoted by 'V can be defined
around the structure under consideration dividing the
solution region into an interior region, €2, and an exterior
region, A (see figure 1). A BEM solution of the normal
field derivatives on I'V* can be used as Neumnann bound-
ary condition for the boundary value field problem in £2.
The FEM can thus be applied to the field problem in
2 with appropriate boundary conditions (obtained with
the BEM solution) on I'M1,

Consider the exterior region A bounded by I'V* and
infinity. For electromagnetic field problems, the homo-
geneous free-space Helmholtz equation must be satis-
fied in this region. The variational form of the bound-
ary element method integral equation (I, pp.299][14,
pp.41][16, pp.17] can be written in the BEM matrix
equation form [16, pp.19]:

a‘é ine
[H][E} - (6] [5‘;] = [F*] (6)
The matrix elements of [H], [G] and {F*"¢] can be calcu-
lated using the boundary element integral equation [186,

pp.17] and the matrix elements of [E] and [g%] are un-

known field coefficient values which can be obtained with
the BEM solution. The elements of matrix [F*"] contain
external source information. In the rest of this paper, E
represents the FEM and E the BEM computed solution.

2.3 Coupling the FEM and BEM

For a closed region, £}, a FEM solution is obtzin-
able if certain boundary conditions are known. These
could be Dirichlet and/or Neumann boundary condi-
tions. For open boundary problems one can use the
fictitious boundary (discussed in the previous sections)
as closure of the finite, interior region, 2, with inhomo-
geneous Neumann boundary conditions specified on the
fictitious boundary I'V*. By using g;@; of equation 6 as
the Neumann boundary condition on I'V1, a solution of
the FEM in Q is obtainable. That is, g; of equation 3
can be set equal to g% of équation 6 on I'V:. (The mi-

nus sign is due to the direction of the normal n' — see
figure 1):
_ 8E N
N = _ﬁ on T (7)
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Using the above equation together with equations 4
and 5 leads to a modified FEM matrix equation

| s

Setting E of equation 5 equal to & of equation 6 on I'V:
and coupling the two matrix equations 6 and 8 (each con-
taining two unknown coefficient column matrices) is thus
equivalent to solving the FEM matrix equation of equa-
tion 5 with the Neumann boundary condition of equa-
tion 7 on I'M:,

OF

py (8)

[S)(E] - [T] [

3 A Posterior Error Estimates

A reliable a posteriori error estimate for a FE/BE
method solution would enable one to obtain valuable
convergence information without having to solve the
same problem, using a larger number of unknowns. The
error estimate can thus be used as a convergence check
for practical electromagnetic problems for which no an-
alytical solution exists. This would be especially advan-
tageous when electromagnetically large problems, reach-
ing the practical solution time and memory limits of the
computer at hand, are considered. This is true regardless
of the computational power available.

Local and global finite element method error estimates
have been under investigation for the past decade [8,
9, 10]. Of these, the Element Residual error. estimate
Method (ERM) seems to be the most reliable and the
easiest implementable method. Applications of this
FEM error estimate method were directed mainly' at
mechanical and fluid-dynamical problems although the
method is applicable to a wide variety of positive defi-
nite FEM type problems [18]. The governing equation
for static electric field problems (Laplace’s or Poisson’s
equation) is positive definite, and the successful appli-
cation of the ERM to such problems has recently been
published [19]. The ERM applied to wave equation type
problems, of which electromagnetic scattering and radi-
ation problems are examples, will be considered in this
section. Although the FEM system equations for such
problems are not necessarily positive definite, an element
residual type error estimate method will be introduced,
which is applicable to such problems.

A L?-norm boundary field error estimate, which has
been applied to linear acoustic problems [14, 15), and a
L%*.norm boundary field derivative error estimate have
been investigated and will be modified for application to
the BEM part of the FE/BE method solution. A L3-
norm Neumann boundary condition error indicator



for the FE/BE method will also be introduced. The L*-
norm error estimates and error indicator will be used
to develop far-field error indicators for FE/BE method
solutions of electromagnetic problems. These far-field
error indicators are especially important when consid-
ering electromagnetic problems concerning radar-width
and radiation intensity results, obtained with the FE/BE
method solution.

The mathematical development of the error estimates
and error indicators presented in this section, is based
on the functional analysis formulation of the FE/BE
method, presented in section 2 and, in more detall, in
reference [16].

3.1 Error Estimates for the FEM

The Element Residual error estimate Method (ERM) for
FE/BE method solutions of electromagnetic scattering
problems will be formulated in this section. This is an
a posteriori error estimate method, and can be applied
after a FE/BE method solution has been obtained. Let
us denote a “first” approximated electric field solution
obtained in § as E' and a “second” {higher order) field
solution as E2. (Note that € is the closure of Q, i.e.
the domain  and its boundary I'V'). The ERM will be
applied after solution E* has been calculated and yields
an estimate of the relative FE/BEM electric field error:

EY=E-F' (9)

The above mentioned error will be quantified in terms
of a norm (as required by the ERM). For static elec-
tric field problems an appropriate norm is the energy
norm [19] which yields a quantitative error value of the
stored energy in the region under consideration. For
electromagnetic problems a similar norm asseciated [16,
pp.248] with the stored electric and magnetic energy in
the closed region § will be employed. This norm will be
called the electromagnetic energy norm (EM-norm) and
is given by [16, pp.249):

M
2 2
(E2EM)" = (I1E*1§Y) (10)
k=1
with M the number of finite elements and
(g = [ (ReldvE P+
S Hr
Ref{e ko }|E'?)?) df2y (11)

the local EM-norm associated with finite element .

The ERM will thus vield a quantitative error estimate
of the stored electric and magnetic energy in the region
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(2. This error estimate will be denoted by (1|®?||§¥ ).
The EM-norm satisfies the requirements for a norm gen-
erated by an inner product [16, pp.246] and is not
unique for ERM error estimates applied to electromag-
netic problems. Other norms could be developed and
might lead to improved error estimate results. It will
however be shown that the EM-norm introduced here re-
sults in reliable ERM error estimates for FE/BE method
solutions of general {2D) electromagnetic problems (in-
cluding problems involving lossy materials).

3.1.1 Local ERM error estimates

An estimate, (H@”Hﬁ;’“)z, of the actual error
(||;E'”||§i‘4r)2 in each finite element, £, can be ob-
tained by solving the following local problem [10,
pp.129][20][16], related to the EM-norm (a sub- or su-
perscript k denotes that a quantity is associated with
finite element 2z ):

f (Re{—iT}VQiz LVl 4 Re{cfkg}d)igv”) d =
L11% r

/ rlyi? 4o +1§1‘/ { OF, }v“’d'r +
k k = T 110)]
e 2 Jra On(n)
El
/ (gl - %—-—i) v12dY,  for all v}cz
Y, N1 e
12

In this equation v}’ is the weighting functions on
present in the FE/BEM solution E? but not in the solu-
tion E!. Ty is the side of the triangular finite element
2, connecting {4 with its I** neighboring element ().
Also, r} is the local element residual of the governing
equation (equation 1) associated with E?, with

rl=-v. :—kVEg — efkiE]; (13)

{5‘;%7} is the jump in normal derivative between el-
ement ) and its neighboring element, element Qyy,

) )

Equation 12 appears formidable but can be written in
the following matrix form for each finite element, $2; [16,
pp.103]:

1 6E.%(!)
ur® 8

OE}
Bnk(;)

1 om
pE One(ry

[Sk(12)}[wk(12)] — [Fk(12)]

with [S¥(12)] a square matrix with matrix elements which
can be calculated using the integral on the left hand side

(15)

(12)



of equation 12; [¥*(!?)] is a column matrix with ma-
trix elements the unknown local error estimate coeffi-
cients; [F*(2?)] is a column matrix with matrix elements
which can be calculated using the integrals on the right
hand side of equation 12. The elements of [S¥(}?)] can
be computed rapidly using tables for the result of in-
tegration over a prototypical element along the lines of
[17, Chapter 4]. (Details are given in [16, Appendix F]).
Solving the local matrix equation, equation 15, is equiv-
alent to solving the local element residual error estimate
equation, equation 12, yielding ®1% and thus the local
error estimate (||(I>12||§f‘)2 Note that equation 15 is a
very “small” matrix equation involving only one finite
element (at a time). This equation can thus be solved
within negligible computational time.

The specific form of equation 12 is important to ensure
the following relation between the global error estimate,
$!2 and actual global error in the EM-norm [20][10,
pp.126,pp128}:

IE|iE™ < C17|@1?|5M (16)

with C1? the global error estimate inequality constant
for the error estimate ®!? in the EM-norm. It is obvious
that the accuracy of the global error estimate depends on
the value of the constant C'2 in equation 16. C'? is de-
pendent on the order of the basis functions used as well
as the shape of the finite elements. In practice C'? =1
is assumed with all error estimates. A better approxi-
mation of C1? would, however, improve the accuracy of
the error estimates {10, pp.129](8].

A discussion of the contribution of each term of equa-
tion 12 to the error estimate will now follow. This should
give a qualitative understanding of the ERM and specif-
ically its application to EM problems.

The weighted residual integral term

The first term on the right hand side of equation 12
is a weighted residual term. The “first” solution E' re-
sults in a field solution E} in element ;. The residual
71 will be zero everywhere in €, if E' is the true (or
exact) field solution. This is due to the fact that equa-
tion 13, with r§ = 0, is a form of the governing equation
which will be satisfied by the true field solution. If E!
is an approximate finite element solution the residual i
will be non-zero and can, in general, vary in numerical
value over the finite element Q. The numerical value of
the weighting functions, v}Z, on Qi is zero at all nodal
points on §; associated with the basis functions of the
solution E!. The numerical value of vj? on {2 is one at
all the nodal points on 2 associated with the solution
E?, but not with the solution in E. At non-nodal points
v}? is a value between zero and one varying to the order
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of the basis functions used with E2. Multiplication of
the residual r} with v;* and integration over Q; is thus
equivalent to weighting the residual with vi? over .
This weighted term will thus have a relatively large nu-
merical value if the residual is, on average, large in the
regions where the “new” nodal points, corresponding to
the “new” basis functions of E? on 2, will be situated.
The weighted term will have a small numerical value if
the residual is, on average, small in the regions where
the “new” nodal points, corresponding to the “new” ba-
sis functions of E? on £, will be situated.

Weighted normal derivative continuity integral
term

The second integral term on the right hand side of
equation 12 is a weighted normal derivative continuity
term on Yy, If E' is the true field solution, continu-

1
ity between the terms ;ﬁw%ﬁ- and Elf?ﬂi—ffﬁ of equa-
tion 14 must hold on Ti(y. This continuity requirernent
is related to the zero divergence requirement [21, pp.127].

1
This means that {-—‘?E*—} of equation 14 must be zero

M
for E! a true field soh:tion. The different local basis
functions (or approximation functions) in each finite el-
ement € result in discontinuities on Ty for E! an
approximate finite element solution. In the integral of

equation 12, {%} can, in general, vary on Tiy. The

1
term {%{5} is weighted by the restriction of the v}?
to Tk(g).

Weighted Neumann boundary condition inte-
gral term

The third integral on the right hand side of equation 12
is a weighted Neumann boundary condition integral on
Y'Y, The Neumann boundary condition will be sat-
isfied exactly with E* the true field solution, making the

quantity (91 - E:lt)l
) ) My Tan‘_""l
imate finite element solution, the Neumann boundary

condition on T N TM will be satisfied approximately

BE;
and the term (91 - ﬁ)

zero. If Kl is an approx-

will be non-zero. In
'rkn[‘fﬁ

. . aE;}
the integral of equation 12, (91 - ﬁf) ‘T;,n[""l

1
genera.l, vary on Tan‘Nl . The term (91 - %%:') |T N
(401 e}

is weighted with the restriction of v}? to Tp NTH1.

can, in

3.2 Error Estimates for the BEM

In this section, two L2-norm [6, pp.50,72] error estimates
for the FE/BE method solution, E', will be introduced.
Both error estimates are associated with the accuracy



of the field solution on TVt and are related to global
field and field derivative errors on T'¥1. These error es-
timates are estimates of the “true” errors; that is the
errors in E! relative to the true field solution [14, 15].
Boundary errors appear to have been seldom used in
computational electromagnetics as a measure of solution
accuracy; the only example we are aware of is [22], which
includes plots of the tangential electric {error) field along
a wire antenna.

3.2.1 The boundary field L?-norm residual error
estimate

The first L2-norm error estimate is associated with the
accuracy with which the boundary element approxima-
tion functions can approximate the actual fields on the
boundary I'V:. The FE/BE method solution yields field
and field derivative coefficients which, together with the
boundary element basis functions, can be used to ap-
proximate the fields and field derivatives on TV, These
field approximations can be used to calculate the fields
at any point in the exterior region A, using a numerical
approximation of Huygens’ principle [16, pp.57]. The
ficld approximations can also be used to calculate the
fields on TVt using the following equation [14, pp.40]:

L OU(F,,T)
2-/’ [El Py )
CNLU(F,) ( ) on (1"5)

BENF) . L
_W\F(ra,n)

+2E(F,) (17)

E\7) =

dri(7,)

On the boundary, the FE/BE formuiation ensures that
EY(7,) = E'(,) and they can be used interchangeably
here. The quantities 7, and 7, are the BEM observation
and source points on 'Vt W(F,, 7,) is the 2D homoge-
neous Green’s function and E*"%(7,) is the incident elec-
tromagnetic field value at 7,. E'(F,) is the approximated
field on I'V calculated using equation 17.

A boundary field residual can now be defined as®:
Riw, (7o) = EYF,) — E* (7)) (18)

with Rllwx(ﬁ,) the BEM residual for the FE/BE method
field solution, E'(F,), at 7,, on T,

5Note that E?(v5) is the approximate field solution {at 75 on
T'N1) obtained with the “first” FE/BE solution. The function
E1(7%) is thus of order equal to the order of the FEM and BEM
basis functions. The function E'(7;) is also an approximated field
solution (at 7, on ['M1) obtained with equation 17 (and thus in-
directly from the “first” FE/BE method solution}. The function
EY(7,) is of much higher order than E*(7,) due to the presence
of the Green's function, ¥(7s, 75}, and the incident field function,
Ein¢(#,), in equation 17.
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A global boundary field LZ-norm residual error esti-
mate can be obtained using equation 18:

104l = [ Rbw(FIR AN (19)

It is evident that the residual Rly, () will be zero if

E! is the true field solution and %—f—:gl))- is the true field

derivative solution on '™, for then the approximate
fields, E'(7,) and E*(7,) will both be equal to the true
field solution at 7,. From equation 19 it is also evident
that the boundary field error estimate, ||©]v, {|2,, will be
zero if E1 is the true solution. Asymptotic exactness and
upper and lower bounds for the error estimate |0y, |12,
have not yet been obtained for general FE/BE method
solutions (although this has been done for some special
cases {14, pp.56]) mainly due to the difficulties arising
from the non-local nature of the BEM when applied to
general electromagnetic problems,

Typically, this error estimate, which indicates the de-
gree of accuracy of the BEM part of the solution, con-
verges more rapidly than the FEM error estimates, as
will be seen in the examples given in §3.4. However, it
remains a useful estimate and is required for the far-field
error indicators to be developed in §3.3.

3.2.2 The boundary field derivative L:-norm
residual error estimates

Procedures similar to those described in the previous
subsection can be followed to obtain a BEM residual
for the FE/BE method field derivative solution [186,
pp.1086]:

BEMNF,) OE ()

o )
Bpw, (7o) = an' (7)) | on (7o)

(20)

%%:—")2 is the normal derivative of E'(7,) of equa-
tion 17. The first term on the right of equation 20 is the
field derivative computed using the BEM part of the so-
lution (and has the same order of accuracy as the FEM
part, since the BEM expands both the field and field
derivative to the same order); the second term is com-
puted numerically using the Green’s function of equa-

tion 17.

A residual for the FE/BE method Neumann bound-
ary condition is [16, pp.108]:

_ OEMF)  BEM(T)
T on'(F,)  on'(F.)

R%‘Nx (FO) (21)



This estimate differs subtly from that in equation 20,
in that the residual Rllwl (75) is the difference (at 7,, and
on I'"1) between the normal field derivative of EL(F,),
obtained by numerically differentiating the FEM part of
the solution, and the normal field derivative obtained ex-
plicitly from the BEM part of the solution (whereas the
estimate of equation 20 is the difference between the so-
lution obtained directly with the BEM and that obtained
indirectly from the BEM via the Green’s function inte-
gral of equation 17). The terms in equation 21 differ due
to the indirect enforcement of the Neumann boundary
conditions — see section 2.3 -— and the different orders
of approximation functions (the field derivative solution
computed with the FEM is of one order less than that
computed with the BEM).

Explicit numerical results for these estimates will not
be given in this paper, but these estimates are used in
§3.3 and implicitly contained in the results presented in
§3.4 and have thus been defined here.

3.3 Far-field error indicators

The FE/BE method solution results in approximate val-
ues for the field and field derivatives on the boundary
M1 From this one can calculate the field value at any
point (in the near, intermediate or far-field) in the exte-
rior region, A, using a numerical approximation of Huy-
gens’ principle (16, pp.57] (the exterior BEM equation).

A far-field residual quantity can be defined as:

- L OU(F,, 7))
1 ]
-/FNI(;') [RI‘Nl (ra) BH'(F,)

— R, ()97, 7)] dD™ (7)) (22)

RMF,) =

where the residuals of equations 18 and 21 have been

substituted into the BEM equation in the place of E!(7)
i P

and %.—((,:—:)l, respectively. Ry, (7) of equation 20 can be

used instead of KLy, (), but the indicator would then

be related to the accuracy of only the BEM part of the
FE/BE method solution.

The far-field residual R!(7,) will be zero if E! is the
true solution, for then both residuals, Rl (%) and
}u?ll..N: (73), used in the above equation, will be zero.

A radar-width error indicator can now be calculated
using the far-field residual, R'(7,), in the radar-width
equation [16, pp.57] instead of E1(*¢3)(F,):

R\(%)|*
Einc

7(¢) = 2z, (23)
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A radiation intensity error indicator can also be calcu-
lated using the far-field residual, R}(7,), in the radiation
intensity equation [16, pp.109] instead of EY("3d)(F,):

K(¢) = 2x|| |RM(7)) (24)

These error indicators estimate the possible error in the
radar-width and radiation intensity due to the errors
in the approximate FE/BE method field, £, and field
derivative solution. Both these error indicators will be
zero if E? is the true field solution.

3.4 Numerical Results

The error estimates and error indicators formulated in
the previous sections have been applied to a variety of
electromagnetic problems, with promising success {16).
Two examples will be considered in this section. It will
be shown that a combination of the different error esti-
mates and indicators can be used as a reliable a poster:-
or: estimate of the accuracy and convergence of FE/BE
method solutions.

3.41 A Scattering Example

The first numerical example which will be considered is
for electromagnetic scattering from the lossy (using prac-
tical material parameters) dielectric right-circular cylin-
der of figure 2 excited by a TE, polarized, plane incident
field at a frequency of 2 GHz. (The TE, error estimates
are analogous to the TM, estimates given in the preced-
ing sections). Local error estimates and actual errors are
compared with each other in figures 4 and 5%. In table 1
percentage global estimated errors (in the appropriate
norms) are compared to actual percentage errors. Note
that in tables 1 and 3, percentage estimated and actual
errors of more than 100% are denoted by >100%. Per-
centage error estimates are, in general, not much larger
than 100%, even if the actual percentage error is much
larger than 100%. A percentage error near 100% does,
however, indicate that the solution at hand is not at
all close to the true, or converged, solution. It is evi-
dent that the global EM-norm error estimate is a good
estimate of the actual error. The global percentage er-
ror estimates compare reasonably well with the actual
global percentage errors. Important to note is that the

8The finite clement numbers in all the “local EM-norm error
comparison” figures in this section have been arranged in such
a way that the corresponding actual EM-norm error values are
presented in increasing order. The error estimate values plotted
are local EM-norm error estimate values in the corresponding finjte
elements.



global EM-norm error estimate clearly identifies the so-
lutions which are not at all close to convergence, and
gives a reasonably accurate estimate of the percentage
errors for the solutions which are close to convergence or
have converged to the true solution.

Figure 2: Double dielectric right-circular cylinder
{er1 = 1.24 1.5, v = 1.5 4+ j2, 1y = 0.2m, r; = 0.3m).
The cylinder is excited by a plane wave incident field
with TE; polarization. (Note that the time conven-
tion is e~¥t))

A “dB” error margin can defined as:

A¥(¢) = 10log{7(¢)} ~ log{+(s) — %(8)}|

where 7(¢) is the radar-width calculated using the
FE/BE method and ¥(¢) is the far-field error indica-
tor of equation 23. Notice that ¥(¢) and thus A¥(¢)
will be zero if E! is the true field solution.

(25)

The “dB” error margin for the first and second or-
der FE/BE method solutions of the radar-width of the
scattering problem under consideration are shown in fig-
ure 6. The first and second FE/BE method solution as
well as the analytical solution of the radar-width are also
shown.

All error estimates and error indicators indicate that
the second order basts function FE/BE method solution
for M = 1502 (MfX* = 67) and M, = 90 (My/) = 5.4)
has converged to an acceptably accurate solution (a max-
imum field error in the FEM region of around 5% and in
the radar-width of 0.1dB). This is confirmed by the ac-
tual errors and the radar-width results presented. These
errar estimates and error indicators have been obtained
within negligible computational times: (see table 2) com-
pared to the computationally expensive FE/BE method
solutions.. This is especially true for the FE/BE method
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Figure 3: Radiating 2D horn antenna, with a = 0.55m,
b=0.2m, c =045m, d = 0.35m, e = 0.2m and f = 0.05m.

solutions concerning second and third order basis func-
tions and relatively large numbers of finite and boundary
elements.

3.4.2 A Radiation Example

The second numerical example which will be considered
18 for electromagnetic radiation from the 2D horn an-
tenna of figure 3. The horn antenna is excited by the
TE; mode aperture field (frequency: 750 MHz):

E,=E; cos(?) (26)

Local error estimates and actual errors are compared
with each other in figures 7 and 8 and it is again evi-
dent that these local error estimates clearly identify the
regions where the largest EM-norm errors occur. In ta-
ble 3, percentage estimated errors (in the appropriate
norms) are compared to actual percentage errors. The
L?-norm boundary field error estimates indicate that
enough boundary elements are used to approximate the
fields on the boundary for all values of M} considered.
This is even true for My = 35 (M,/A = 4.5) with first
order boundary element basis functions. (Note that in
this case the error estimates show that encugh bound-
ary elements were used. The actual errors are quite large
due to the fact that too few finite elements were used).
The EM-norm ERM error estimates indicate that the
second order basis function FE/BE method solution for
M = 859 (M/A = 145) and M; = 76 (My/A = 9.8) has



converged to a satisfactorily accurate FE/BE method
solution. {This corresponds to around 100 elements per
square wavelength). This is confirmed by the actual EM-
NOTIM errors.

A “dB” error margin for the FE/BE method solution
of the radiation intensity can be obtained using the radi-
ation intensity error indicator of equation 24. This error
margin, denoted by AK(¢), can be calculated as (this is
similar to the radar-width error margin of equation 25):

AK($) = 10|log{ K(8)} — log{K (¢} — K(8)}| (27)

Note that K (¢) and thus AK(¢) will again be zero if
E1 is the true field solution. The “dB” error margins for
the second and third order FE/BE method solutions of
the radiation intensity of the problem under considera-
tion are shown in figure 9. The second and third order
FE/BE method solutions, as well as the converged solu-
tion of the radiation intensity are also shown.

it should be kept in mind that the local error esti-
mates, obtained with equation 12, are dependent on: the
frequency and polarization of the incident electromag-
netic field; the field values in the finite element under
consideration; the order of the approximaticn functions
in the finite element under consideration; the shape of
the finite element under consideration; the accuracy of
the “first” FE/BE method solution £'; and finally, the
accuracy with which the fields on the boundary I'** are
approximated by the BEM part of the FE/BE method
solution E!. The global error estimate is dependent on
all local error estimates and the size of the finite element
region under consideration.

Bearing all this in mind it is evident that the local
and global ERM error estimates are, in general, accept-
ably accurate estimates of the actual local and global
errors. Some of these above mentioned factors can be
taken into account to improve the local and global error
estimates {16, pp.143] [10, pp.129](§]

The results also indicate that the boundary field 1.2-
norm residual error estimate, ||©f.x, [[3. is not a good
quantitative estimate of the boundary field error. This
is due to the fact that this error estimate is a measure of
the error in the boundary field for the BEM part of the
FE/BE method solution, without consideration of the
actual coupling to the FEM part of the solution. The
actual boundary field error is, however, dependent on
the FEM and BEM part of the FE/BE method solution.
As such, the boundary error estimales must be used in
conjunction with the FEM error estimates.

QOunly when the FEM part of the solution is of accept-
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able accuracy and the BEM part is highly inaccurate is
this L?-norm error estimate an accurate quantitative es-
timates of the boundary field error. This would occur
if enough finite element basis functions but insufficient
boundary element basis functions had been used — this
has not occurred in the examples given in this paper.

It is evident from the far-field error indicator results
(figures 6 and 9) that, used together, the error margins
and error indicators can be very useful in determining
the accuracy of FE/BE method radar-width or radiation
intensity solutions.

4 Conclusions

The variational boundary-value problem formulation of
the coupled FE/BE method for application to general
2D open boundary electromagnetic problems has been
presented. This formulation has been developed over
the past few decades and has been used successfully by
engineers for numerically solving previously intractable
electromagnetic problems. (This work is not new but
was required as a basis for the rest of the paper.)

ERM local and global error estimates, L*-norm
boundary field error estimates and far-field error indi-
cators have been developed and investigated. This was
done for 2D FE/BE method solutions of electromagnetic
scattering as well as radiation problems. The global EM-
norm ERM error estimate results obtained for electro-
magnetic scattering and radiation problems were not as
accurate as the ERM energy norm error estimates for
static electric field problems [19] [16, pp.126]. This is
due to a number of factors, including the dependency
of the EM-norm error estimates on the frequency of the
electromagnetic field, the dependency on the accuracy
of the coupling of the BEM with the FEM, and the
non-local nature of electromagnetic fields. It was, how-
ever, shown that the EM-norm error estimates provide
valuable post-processed information regarding the accu-
racy and convergence of the FE/BE method solutions.
This was shown to be true for electromagnetic radiat-
ing as well as scattering problems of arbitrary shaped
(lossy and lossless) objects {16]. The local EM-norm
ERM error estimate results obtained show that the esti-
mated error distributions in the FEM region compared
satisfactorily with the actual error distributions. Fur-
ther investigation could lead to improvement of the lo-
cal as well as global EM-norm ERM error estimates.
(Improved element residual error estimate methods, for
non-electromagnetic problems, have aJready been devel-
oped [9, 20] and seem to work well).

Results presented have show that the boundary field



L% norm error estimate is not a quantitatively accurate
boundary field error estimate for the FE/BE method so-
lution, in particular when the FEM part of the solution
is considerably in error. This is because the BEM part
of the solution may be accurately matching an inaccu-
rate FEM solution at the boundary. The boundary error
estimate must not be considered in isolation, but with
due cognisance of the FEM error as well.

The radar-width and radiation intensity error indica-
tors, developed for the FE/BE method solutions, were
used to obtain “dB” error margins which proved to pro-
vide exceptionally useful post-processed radar-width and
radiation intensity error information. (These do incor-
porate, via the boundary field derivative error estimates,
information about the accuracy of the FEM part of the
solution as well). We should comment that Lee in partic-
ular has recently emphasized the role of “global” errors,
caused by dispersion error: we have not considered this
here [23].

It was also shown that all these error estimates and
indicators can be obtained within negligible computa-
tional times compared to the computational times of the
FE/BE method solutions. This is due to the nature of
the error estimate and error indicator methods as well
as the highly efficient algorithms employed {16].

Adaptive finite element methods are closely linked to
a posteriori error estimates and could be used to im-
prove the efficiency of general FEM solutions. The a
posteriori error estimate methods can be used to iden-
tify the regions where the fields need to be approxi-
mated more accurately (for example where the fields vary
more rapidly), and the finite element mesh can thus be
adapted to ensure superior basis function distributions
in these regions [10]. Although not shown in this paper,
the authors have also worked on this topic [16, pp.168].

In conclusion: the a posteriori error estimates and in-
dicators show great promise, but can still be improved
upon. 1t can also be extended to a posteriori error esti-
mates for 3D FE/BE method solutions. The use of edge-
based elements for 3D formulations would not pose spe-
cial problems as far as error estimation is concerned, al-
though hierarchical edge-based elements may prove more
formidable than the nodal based equivalents if the er-
ror estimator is used to drive an adaptive meshing algo-
rithm.

Ultimately one would like to develop a FE/BE method
solver with error estimates and indicators which clearly
identify the different inaccuracies in the solution at hand
and use this information to automatically adapt itself
accordingly. Such a solver should provide accuracy and
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convergence information to the user providing him with
a very useful and reliable tool for solving practical elec-
tromagnetic engineering problems. That this problem
remains a very pressing one, and in particular that ad-
hoc estimates leave much to be desired, is clear from
recent work [24]. It is hoped that the more rigorous esti-
mate formulations presented in this paper will contribute
to progress in this field.
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E! first order approximation functions and E* second or-
der approximation functions

Computational time (hours:min:sec)
M FE/BE method solution Error estimates
E] | E..!
170 040:00:02 00:00:10 0Q:00:05
501 00:00:086 00:01:33 00:00:10
o717 00:00:23 00:08:59 00:00:21
1502 00:00:42 00:18:28 00:00:29

£E% second order approximation functions and E? third or-
der approximation functions

Computational time (hours:min:sec}
M FE/BE method solution || Error estimates
El 1 E.!
i7o0 00:00:10 00:01:25 00:00:07
501 00:01:33 00:12:27 00:00:14
977 00:08:58 01:28:58 00:00:29
| 1502 00:18:28 02:27:31 00:00:40

Table 2: Computational times (on a HP-720 work station) for the FE/BE method solution and error estimates (all
error estimates and error indicators combined) for the scattering problem concerning the right circular cylinder
in figure 2. M is the number of finite element used.

Field error Boundary
field error
4 k]
e e [Tl | Tl
=1 | TE | e 1 | Tt ]
L AT A renilleg
(%) (%) (%) (%)
El first order approximation functions and
E? sccond order approximation functions
112:35 79.90 >100 0.04 >100
182:35 68.57 >100 0.05 >100
450:57 52.64 51.76 0.01 42.56
859:76 40.73 36.79 0.00 16.70
ET second order approximation functions and
E? third order approximation functions
112:35 16.03 57.55 0.00 3.40
182:35 11.74 15.78 0.00 1.78
450:57 10.16 9.63 0.00 0.35
859:76 6.25 5.92 0.00 0.16

Table 3: Percentage error estimates compared to actual errors. This is for the electromagnetic radiation problem
concerning the horn antenna of figure 3. Frequency: 750 MHz, Polarization: TE, mode aperture source field. M
is the number of finite elements and M, the number of boundary element used.
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E! second order approximation functions and E? third order

E! first order approximation functions and E* second order
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Figure 4: Comparison of estimated and actual local EM-norm error values for the FE/BE method solution of the
electromagnetic scattering problem concerning the right circular cylinder of figure 2. The incident electromagnetic

field is TE; polarized at frequency 2 GHz. M =501 is the number of finite elements used.
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Figure 5: Comparison of estimated and actual local EM-norm error distributions for the FE/BE method solution
of the fields in and around the right circular cylinder of figure 2. The incident electromagnetic field is TE;
polarized at frequency 2 GHz. Dark elements indicate high error values and light elements indicate low error
values. This is for E! second order approximation functions and E? third order approximation functions.

52



E!: first order approximation l’unctionsL (Elz second order approximation functions

0 20
iror Margin

-

-t

=
T

pryes

A ‘e -
[
A....._...;...‘,..-A!-.._ SN 3 s Ji
i

Radar-width (dBsm)
3

Radar-width {dBsm)
A
[

[ ) &0 120 150 180 ]

20
Angle (phi}
[~ 1storder — Analytical | [~ 2nd order — Analytical |

Figure 6: Comparison of the radar-width values, obtained analytically and numerically (FE/BE method solution),
for the scattering problem concerning the right circular cylinder in figure 2. The “dB” error margins, A¥(¢), are
also shown for first and second order FE/BE solutions. Frequency: 2 GHz. Polarization: TE;. Number of finite
elements used: M = 1502, Number of boundary elements used: M, = 90.
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Figure 7: Comparison of estimated and actual local EM-norm error values for the FE/BE method solution of the
electromagnetic radiation problem concerning the horn antenna of figure 3. Frequency: 750 MHz, Polarization:
TE, mode aperture source field. M = 450 is the number of finite elements used.
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Figure 8: Comparison of estimated and actual local EM-norm error distributions for the FE/BE method solution of
the electromagnetic radiation problem concerning the horn antenna of figure 3. Frequency: 750 MHz, Polarization:
TE; mode aperture source field. Dark elements indicate high error values and light elements indicate low error
values. This is for E! szcond order approximation functions and E? third order approximation functions.
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Figure 9: Comparison of the radiation intensity values, obtained numerically (FE/BE method solution), for the
radiation problem concerning the horn antenna of figure 3. Second and third order basis function solutions, the
converged solution and the “dB” error margins, AK’(¢), are shown. Frequency: 750 MHz, Polarization: TE; mode
aperture source field. M and M, are the number of finite elements and boundary elements used respectively.
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