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Abstract − Three methods for evaluating integrals 
containing the Green’s function singularity are studied 
from the standpoint of numerical accuracy at levels 
required in high order calculations.   A significant source 
of potential error was found to be common to all 
methods.   Suggestions for improving the accuracy of all 
three are proposed. 
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I.  INTRODUCTION 
 

In a recent paper [1], the authors developed an exact-
to-machine-precision method for the evaluation of the 
free-space Green’s function on a rectangular patch.   This 
result was then used to examine the singularity extraction 
and singularity cancellation methods as a function of the 
ratio of the sides of a rectangular patch, using the 
corresponding exact result for comparison.   It was found 
that the aspect ratio of the patch, and the triangles 
contained therein, had a significant effect on the accuracy 
associated with the schemes studied.   In order to 
overcome the accuracy problems identified, a number of 
remedies were proposed.   These remedies mainly 
involved using higher precision in the calculations, 
making them unattractive to potential users.   Since paper 
[1] was published, a paper by Khayat and Wilton 
introduced a new singularity cancellation method using 
an arcsinh transformation [2], possibly overcoming the 
drawbacks of the remedies just referred to.   Here we 
examine the arcsinh method in comparison to the two 
methods, already studied, and augment the conclusions of 
the previous paper.  In addition, we identify one of the 
principal causes of error in our implementation of the 
three methods. 

The objectives here are to: 1) examine the arcsinh 
method and compare it with the earlier results, 2) explain 
the cause of the inaccuracies found in all three methods 

and 3) test all three methods over the widest range of the 
aspect ratio of the patch that may be encountered in 
practice. 

The range of aspect ratios is determined by 
consideration of test point locations on a patch.   In 
practice, the domain of a patch is divided into four 
rectangular sub-patches each with a corner at the test 
point.  The location of the test point, and hence the aspect 
ratio of each sub-patch, is controlled by the quadrature 
rule employed to perform the required integrations.  As 
shown in [1], this can lead to a sub-patch aspect ratio up 
to 1:10-10. This observation determines the range of 
aspect ratios over which the tests are performed.   The 
ratio may seem extreme, but the primary motivation for 
this work is to obtain accuracy near the limit of machine 
precision, which is an important requirement in high 
order numerical solutions of integral equations. 

 
II.  REVIEW OF METHODS 

 
The integral to be evaluated has the form, 

I(x, y) = f ( ′x , ′y )
e− jkR

R
d ′x d ′y∫∫          (1) 

where f is usually a bounded, well-behaved function, k = 
2π /λ  where λ is the wavelength, and  R  is given by, 

             R = x − ′x( )2
+ y − ′y( )2

                   (2) 

The accurate evaluation of equation (1) is most 
difficult when the test point (x,y) is within or near the 
source cell over which the integral is performed, due to 
the O(1/R) behavior of the Green’s function, e-jkR/R. 

In the earlier paper [1], we examined the singularity 
extraction, SE, procedure and the Duffy transformation 
[3].   These methods are fully described in that paper.   A 
third approach for evaluating equation (1) is the arcsinh 
transformation proposed by Khayat and Wilton [2] which 
is described next.  For a rectangular domain 0 < x ' < a , 
0 < y ' < b  and the test point at x=y=0, the domain is 
divided into triangles along the line y’ = b/a x’. We 
introduce the change of variable indicated in equation (3) 
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in the first integral and the substitution of equation (4) in 
the second integral. This leads to equation (5) or, 
equivalently, (6).   The integrands in equation (6) are 
bounded and amenable to numerical quadrature. 

For a number of specific functions f, including 
f(x,y)=1, one of the integrals in each of the double 
integrals arising from the Duffy and the arcsinh 
approaches can be performed analytically. To ensure a 
fair comparison with the SE procedure, we do not take 
advantage of that step in the following, although in 
practice it would make sense to do so. 

 
III. METHODOLOGY 

 
The present study investigates the numerical 

accuracy obtained from the preceding methods, using 
single and double precision for some or all of the 
calculations, for the case f(x,y)=1. Many bounded 
functions could be used for f(x,y). The procedure used to 
determine the reference values requires that a function of 
the form  f(x,y)= xm ym, where   0 ≤ n,m , be used. 
However, a constant f(x,y) is considered sufficiently 
challenging.  The domain of integration is a patch that has 
one side of dimension  0.1λ  and the other of dimension 
10-n λ, where   1 ≤ n ≤ 11.  The test point is at one corner. 
As discussed in [1] it is instructive to examine a wide 
range of cell aspect ratios, and we consider K  ranging 
from 1:1 to 10-10 :1. This is particularly important when 
using high order basis functions and/or over-determined 
systems where many test points are present on the patch. 
As a baseline for comparison, a reference result for 
equation (1) was obtained using the approach of [1].  The 
reference was evaluated in Multi-Precision arithmetic [4] 
using an epsilon value of 10.0-400. The reference values 
are shown in Table 1 to double precision accuracy. 
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Table 1. Values for the value of the integral defined in 
equation (1) for the range of aspect ratios used in this 
study. 

 

Aspect 
Ratio Real Imaginary 

1 1.615721995380920E-01 -6.012599373499612E-02 

0.1 3.898233302555344E-02 -6.145640913466086E-03 

1.00E-02 6.201218961036034E-03 -6.146987225913048E-04 

1.00E-03 8.503815540084963E-04 -6.147000690637945E-05 

1.00E-04 1.080640082293225E-04 -6.147000825285354E-06 

1.00E-05 1.310898591857477E-05 -6.147000826631829E-07 

1.00E-06 1.541157101160280E-06 -6.147000826645292E-08 

1.00E-07 1.771415610459726E-07 -6.147000826645428E-09 

1.00E-08 2.001674119759131E-08 -6.147000826645429E-10 

1.00E-09 2.231932629058536E-09 -6.147000826645429E-11 

1.00E-10 2.462191138357940E-10 -6.147000826645429E-12 

 
The double integrals examined here were evaluated 

using the product of adaptive Gauss-Kronrod-Patterson 
quadrature rules [5], starting with 15 nodes and 
proceeding to 511 nodes if/when needed. The integration 
cycle was terminated when two consecutive values 
differed by less than 2ε  (where ε  is the operating 
precision). 

The different singularity-handling schemes were 
evaluated using the relative error. 

               Error = log10

I − Iref

Iref

 .                  (7) 

Here, I and Iref are the values of the relevant integral 
and the reference value, respectively, evaluated in the 
stated machine precision. The smallest error is limited by 
the precision of the compiler used for the calculations.   
Here those limits are -6.92360 and -15.6536 for single 
and double precision, respectively. 

The work reported here was conducted using 
Fortran90. The available compiler did not include the 
inverse hyperbolic functions. Consequently sinh-1(K) was 
initially calculated using the widely accepted definition 
[6, p178], 

 

            sinh−1 x( )= ln x + x2 +1( )  .             (8) 

 

299 ACES JOURNAL, VOL. 23, NO. 4, DECEMBER 2008



IV.  RESULTS 
 
When the above singularity removal methods are 

evaluated in the various machine precisions, for f(x,y)=1, 
the findings in Tables 2 and 3 are obtained (the relevant 
results for SE and Duffy from the earlier study are 
reported here for ease of comparison purposes). The 
results indicate that all methods degrade in accuracy as 
the cell aspect ratio increases. Tables 2 and 3 report error 
in the real part of the integral. For the imaginary part, 
both the SE and Duffy methods maintain accuracy over 
the entire range tested. On the other hand, the arcsinh 
method showed deterioration in the imaginary part that is 
similar to that observed in Tables 2 and 3 in the real part 
as the aspect ratio is decreased. 

 
Table 2. Relative error in the real part of equation (1) 
when using single precision. 
 

 Singularity Removal Method. 

Aspect Ratio SE Duffy Arcsinh 

1 -6.92369 -6.92369 -6.92369 

0.1 -6.41765 -6.92369 -6.92369 

1.00E-02 -5.94832 -6.92369 -6.04523 

1.00E-03 -5.07121 -6.92369 -5.57357 

1.00E-04 -3.90065 -4.09225 -4.95281 

1.00E-05 -2.42700 -2.08886 -4.01513 

1.00E-06 2.73E-03 -1.10230 -2.55098 

1.00E-07 2.37E-03 -0.70402 -1.99378 

1.00E-08 2.10E-03 -0.53765 -1.33035 

1.00E-09 1.89E-03 -0.43983 -1.37764 

1.00E-10 1.71E-03 -0.37390 -1.42028 

 
Table 3. Relative error in the real part of equation (1) 
when using double precision. 

 

 Singularity Removal Method. 

Aspect Ratio SE Duffy Arcsinh 

1 -15.6536 -15.6536 -15.6536 

0.1 -15.6536 -15.6536 -15.6536 

1.00E-02 -14.1219 -15.6536 -14.9000 

1.00E-03 -13.5385 -15.6536 -14.2413 

1.00E-04 -12.2983 -11.2123 -13.6050 

1.00E-05 -11.7914 -5.33437 -12.3036 

1.00E-06 -10.1758 -3.62397 -11.6391 

1.00E-07 -9.18065 -1.50125 -10.5242 

1.00E-08 -8.38368 -0.85638 -9.28591 

1.00E-09 -8.43096 -0.64213 -8.46256 

1.00E-10 -6.14382 -0.52264 -8.50283 

V.  DISCUSSION 
 

It was observed in [1] that the performance of the SE 
method can be improved to full precision if the extracted 
term is evaluated at the next higher precision level. It was 
also pointed out that the Duffy method could be similarly 
improved if the SE procedure was applied to the integrals 
involved in the Duffy procedure. This results in two 
bounded integrals and two extracted terms. For the 
improved Duffy method, the extracted term must also be 
evaluated in the next higher precision [1]. In this study, 
we also found that the arcsinh method can be improved 
by employing the next higher precision for the evaluation 
of the integration limit, sinh-1(K) using equation (8). 

A review of these remedies for the SE and improved 
Duffy methods revealed that the need for higher precision 
arose in connection with those extracted terms that have 
the same form as equation (8) for sinh-1(K), namely 
log K + K 2 + 1( ) [6, p. 420].   Further investigation, 

involving the use of three different commercial Fortran90 
compilers, revealed that there is significant 
rounding/truncation error in the evaluation of that 
function for small K .  (Compilers that provide an 
intrinsic function for sinh-1(K) worked correctly.)  As an 
alternative to the use of higher precision as recommended 
in [1], we employed the Newton-Raphson procedure [6, 
p. 355] to evaluate the function 

  
lo g K + K 2 + 1( ) by 

solving for x in, 
 
                 f = sinh x( )− K = 0  .                  (9) 
 
The Newton-Raphson procedure was terminated 

when two consecutive values differed by less than 2ε  
(where ε  is the operating precision).  A code fragment 
for the evaluation of sinh-1(K) is provided in Figure 1.  
When sinh-1(K) in the arcsinh formulation, and 
lo g K + K 2 + 1( ) in the SE and improved Duffy 

procedures, was evaluated using the Newton-Raphson 
approach, the results shown in Tables 4 and 5 were 
obtained. 

When the Newton-Raphson method is used to 
evaluate sinh-1(K), or lo g K + K 2 + 1( ), in the various 

methods, both the real and imaginary parts of equation 
(1) retain essentially full precision for all three 
approaches. 

The procedures necessary to maintain essentially full 
precision with the three different methods when 
integrating the Green’s function are summarized in Table 
6. 
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Table 4. Relative error in the real part of equation (1) 
when using single precision and the Newton-Raphson 
method. 

 

 Singularity Removal Method. 
Aspect 
Ratio SE Duffy 

 
Improved 

Duffy Arcsinh 

1 -6.92369 -6.92369 -6.92369 -6.92369 

0.1 -6.92369 -6.92369 -6.92369 -6.92369 

1.00E-02 -6.92369 -6.92369 -6.92369 -6.92369 

1.00E-03 -6.92369 -6.92369 -6.92369 -6.92369 

1.00E-04 -6.92369 -4.09225 -6.92369 -6.87076 

1.00E-05 -6.92369 -2.08886 -6.92369 -6.92369 

1.00E-06 -6.92369 -1.10230 -6.92369 -6.92369 

1.00E-07 -6.92369 -0.70402 -6.92369 -6.92369 

1.00E-08 -6.92369 -0.53765 -6.92369 -6.92369 

1.00E-09 -6.92369 -0.43983 -6.92369 -6.92369 

1.00E-10 -6.92369 -0.37390 -6.92369 -6.92369 

 
 

Table 5. Relative error in the real part of equation (1) 
when using double precision and the Newton-Raphson 
method. 

 

 Singularity Removal Method. 
Aspect 
Ratio SE Duffy 

 
Improved 

Duffy Arcsinh 

1 -15.6536 -15.6536 -15.6536 -15.6536 

0.1 -15.6536 -15.6536 -15.6536 -15.6536 

1.00E-02 -15.6536 -15.6536 -15.6536 -15.6536 

1.00E-03 -15.1955 -15.6536 -15.6536 -15.6006 

1.00E-04 -14.4545 -11.2123 -15.6536 -15.6536 

1.00E-05 -13.4821 -5.33437 -15.6536 -15.6536 

1.00E-06 -14.3435 -3.62397 -15.6536 -15.6536 

1.00E-07 -15.6536 -1.50125 -15.6536 -15.6536 

1.00E-08 -15.6536 -0.85638 -15.6536 -15.6536 

1.00E-09 -15.6536 -0.64213 -15.6536 -15.4311 

1.00E-10 -15.6536 -0.52264 -15.6536 -15.6536 

 
 

The integrals considered here are expressed in the 
Cartesian coordinate system.  In a non-Cartesian system 
the above remedies still apply — so long as closed-form 
solutions for the extracted terms are available.  The 
arcsinh method avoids this requirement, but does require 
that an invertible transformation be identified.  In more 
general constructions where cells might be mapped to 
curved surfaces, and the integrand contains an additional 
Jacobian, the preceding observations may not apply. 
 
 

Table 6. Summary of procedures for the high accuracy 
evaluation of equation (1). 
 

Method Approach 

SE 

 Must have closed-form integral for the extracted term 
 log K + K 2 +1( ) must be evaluated carefully, here 

by Newton-Raphson. 

Duffy 

 Only the improved form is viable over the whole range 
 Singularity extraction needs to be applied to the two 
main integrals 

 Must have closed-form integrals for the extracted terms 

 
log K + K 2 + 1( )

 must be evaluated carefully, here 
by Newton-Raphson. 

Arcsinh  
sinh−1 K( )

 must be evaluated carefully, here by 
Newton-Raphson. 

Duffy 

 Only the improved form is viable over the whole range 
 Singularity extraction needs to be applied to the two 
main integrals 

 Must have closed-form integrals for the extracted terms 

 
log K + K 2 +1( )

 must be evaluated carefully, here 
by Newton-Raphson. 

 
 

 
 

Fig. 1. Fortran90 code for inverse hyperbolic sine 
function. 
 

Function asinh(x) 
!  This program uses Newton-Raphson to calculate 
arcsinh(x) 
 implicit real*8 (a-h, o-z) 
 d0=float(0) 
 d1=float(1) 
 d2=float(2) 
 xlimit=d2*epsilon(d1) 
! 
 uold=d0 
!  Select a starting point – this is somewhat arbitrary 
 if(x .lt. d2) then 
  unew=sign(d1,x) 
 else 
  unew=sign(d1,x)*log(abs(x)) 
 endif 
 do while(abs(unew – uold) .gt. xlimit) 
  f=sinh(unew) 
  df=cosh(unew) 
  correction=(f – x)/df 
  uold=unew 
  unew=uold – correction 
 end do 
! 
 asinh(x)=unew 
return
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