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ABSTRACT: Several new modified nodes based on the
symmetrical condensed node with stubs are proposed to
solve the difficulty of the TLM method in modeling problems
highly dependent on frequency. These nodes avoid the
problem of indirect modeling at critical points, such as
bends and corners, thus providing more accurate results
and flexibility in the modeling of conducting parts. The new
nodes are applied to specific problems of rectangular
waveguides loaded with rectangular irises of finite width to
verify their capability to predict resonant phenomena.

1 INTRODUCTION

Time-domain numerical methods are a powerful and useful
tool for solving electromagnetic and other physical
broadband problems. These methods allow neatly direct
treatment of non-linearities, non-homogeneities, time-
varying systems, and other situations. However, the most
outstanding characteristic of time-domain algorithms is that
they provide information for a wide range of frequencies in
only one time-domain computer run. Results obtained by
these methods have proven to be satisfactory for many
practical applications; nevertheless, in specially difficult
situations such as resonant problems, large memory and
CPU time are often required.

The difficulty of accurately predicting resonances with the
Transmission Line Modeling method (TLM method) is ot
new and has been discussed in the literature for certain
specific cases {1]- [3]. In [1] the origin of the problem is
explained by the difference between the path length
followed by the individual voltage pulses at the TLM nodes
near sharp zones and the actual path they should follow in
the original problem. The difference in length turns ioto a
delay or advance in time and thus into a shift in frequency.
This frequency displacement is also related to the rapid
variation of the field distribution at these points, behavior
that a coarse mesh is unable to reproduce [4]. A very fine
mesh would soive these problems, but would be extremely
expensive in memory and CPU time requirements. The
problem is solved in {1] by modifying the properties of the
medium close to a wire in order to adapt the speed of the
pulses that surround the wire and so eliminate the time
delay appearing in the standard TLM solution.

Despite the satisfactory results provided by this solution, it
presents the disadvantage of requiring the modification of
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Fig.1.- Indirect modeling of a 2D corner

the surrounding medium instead of dealing with the actual
problem, the indirect modeling of sharp regions. The
standard modeling of conducting zones short-circuits the
link Iines between nodes, however the information of the
conducting geometry is available from not only one node
but from a set of adjacent nodes. The situation is shown in
Fig. 1 for a bidimensional conducting corner located at the
(i,j) node. The corner is modeled by short-circuiting link
lines between nodes (i,j) and (i+1,j), and link-lines between
nodes (ij) and (i,j+1), letting vohtage pulses travel freely
from these nodes to node (i+1,j+1). This means that the
information fully describing the comer is contained in four
adjacent nodes, two nodes in each cartesian direction. The
corner is in practice modeled by a coarser mesh two-nodes
wide and it may therefore represent an important source of
numerical errors. One way to lessen these errors is to
develop new nodes that directly model complex geometries
without the need of using adjacent nodes. This idea was
applied in [2] for treating half conducting planes by
including modifications to the standard symmetrical
condensed node without stubs, that is to say, using the same
mesh size in each cartesian direction. Finally, a specific
treatment of edges and corners with the TLM method has
recently been presented in [3] for the modified version of
the method known as the Alternating Transmission Line
Matrix scheme.

Many practical situations must take into account numerous
complex geometries in addition to that presented in [2].
Moreover, it would be usefitl if the modified nodes allowed
the use of a different mesh size in each cartesian direction,
and therefore the inclusion of inductive and capacitive stubs
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is advisable. The aim of this paper is the numerical
modeling of resonant problems, such as microwaves loaded
with rectangular irises of finite width. As will be shown, the
standard TLM treatment of these problems reveals a
signiﬁcantshiﬁinthermnantﬂ-equencies,soanumberof
new TLM nodes with stubs providing accurate but low-cost
solutions will be presented and tested for both resopant and
non-resonant situations.

Fig.2.- Geometry of the problem
2 SPECIAL NODES

A typical geometry of a resonant problem is a waveguide
loaded with a rectangular iris of finite width (Fig.2). Let us
propose some new TLM nodes with stubs that represent a
direct model of the specific region and also aliow the
numerical field to follow the path of the actual field A great
mumber of nodes can be developed, but only those necessary
for the modeling of the problem sketched in Fig.2 will be

presented in this paper.

The first node presented is the transmission-line model of a
90° bend in a conducting object oriented as shown in Fig.3,
corresponding to point A in Fig2. The node is a
symmen'icalcondensednodewithsmbs(notrepmemed)
including several modifications. First, those standard-node
lines that are completely short-circuited by the conducting
planes have been removed. Second, those lines that are
partially short-circuited now have a characteristic
impedance or admittance proportional to the part that has
not been short-circuited. By doing so, for example, lines 1
and 13, associated with E,, have been removed, the
characteristic impedance of lines 3 and 5 is Z,/ 2 and Z,,
respectively, Z ,=1/Y , being the characteristic impedance
of the standard-node link-lines. Finally, the capacitive stb
in the y-direction, line 14, has an admittance of 7Y,Y, /4,
Y,beingtherelaﬁveadnﬁuanceofthelineintheoﬂginal
node with stubs. This value is obtained by considering that
thecapaciﬁvesmbE,ofoﬁginaladmitanceY,Yo,isformed
of four capacitive lines of admittance Y,Y, /4, three of
which are half short-circuited by the conducting planes.

The following preliminary form of the scattering
matrix for this node can be obtained in the usual way by
applying Maxwell's equations [5]):
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Fig.3.- Node for the 90° bend A in Fig. 2
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where the different parameters are given by
Z_ pop=—2_  k=0=8-3,
4+2 4+ Z 3

Z ., _4-7¥

a-=

d=0=2b,

c=
2(4+2)
Z

14(4 + YY)~
4_7Y ib,

e=- +
2(4 +2)

f-u 16

. h=m=e=
14(4 +Y) 3

Z  8+14Y

TTEY)
2Z

8 3@ +2) 21(4+Y)’

8+14Y ._._ 16

2Z

Y342y 21(4+Y)°

Y gy

4 +7Y

l_

Z

3@ +2) 21(4+Y)

, ﬁ=t=ﬂ=€=2& ,

2’

n=- >
3(4+2) 21(4+Y)



MORENTE et & IMPROVED MODELING OF SHARP ZONES IN RESONANT PROBLEMS €9

W= 2Y ,Q-_-Y = 4 s
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It must be noted that Y and Z in each parameter of (2) take
the appropriate subscript according to the lines

corresponding to it.
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Fig.4.- Node for modelling point B in Fig.2

The second node that we propose for modeling a rectangular
iris is shown in Fig.4. This node describes point B in Fig.2.
The admittance or impedance of each line is obtained as for
the preceding node. The scattering matrix for this node is:

56 7 8 9101112151617 18

5]a c b-h c n -p

6l c a ¢ h b n P

71b ¢ a c D p

8] d d g -q
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where the parameters appearing in (3) are given by:
a= Y + Z , C=e= 2 .

2(4 +Y) 2(4 +Z) 4 +Y
bee Y v L dek=qms= 2,

2(4+Y) 2(4+2Z) 4 + Z

m=Y“4, o= 2Y ’°=r=4-Z_ @
Y+4 4 +Y 4 +Z

The flat conducting zones such as point C in Fig.2 are
simulated with a half node similar to that presented in [2]
but with three extra stubs to add the capacitance and
inductance needed for synchronism. The modified
scattering matrix for a flat conducting plate in the x-z plane
is:

3 4 7 81112141618
3a c ¢ b-h k -n
4] ¢ a-h b ¢ kn
7 d g d m
8l ¢c b h a ¢ k-
11{ b ¢ ¢c a h k n
12]d d g -m
14 ¢ ¢ e € j
16 f i - 1
181 -f f 4 1
®)
with the parameters given by:
ar= -Y + Z . c = 2 s
24 +Y) 2(4+2) 4 +Y
b: —Y - -Z ,d=m= 4 ,
24 +Y) 2(4+2) 4 + Z
f:l: zz ’g=£’ h:n:-t.l_,
4 + Z 2 2
J:Y"‘, k=cY, 1=4-2 (6)
Y +4 4 + Z

In the case of the inner bends, such as point D in Fig.2, the
planes short-circuit all the lines except three: link-lines 7
and 8, of characteristic impedance Z, /2, and line 16 of
characteristic impedance Z, Z, /4, Z ,and Z | being the
corresponding values for the standard node. The scattering
matrix is:

71a b ¢
8lb a -e
6l ¢c < d

where the parameters in (7) are given by:
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Finally, internal corners (point E in Fig.2) short-circuit all
theljminasymmenicalcondensednodeand,therefore,no
scatteringmairixisrequiredalthesepoin&'l‘hisisadirect
consequence of the field vanishing at this point. In fact,
bend nodes adjacent to a particular comer have no lines
directed to the comer, so there is no actual need for a corner
node.
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Fig.5.- Circuit S, parameter for a WR28
waveguide with a non-resonant iris. Dimensions:
a=28, b=14, a,=b,=8, and t=2, in Al units where
AlF0.25mm.

3 NUMERICAL RESULTS

In order to establish the performances of the new nodes
mentioned in the previous section, some circuit-S
parameters of rectangular waveguides loaded rectangular
irises have been calculated using the TLM method for both
the standard mesh of symmetrical condensed nodes and for
a mesh including the new nodes proposed above.

The first case studied is a WR28 rectangular waveguide of
dimensions a=2b=7.112mm with a non-resonant square iris
with sides a,=b,=2mm and a thickness of t=0.5mm. The
mesh size, Al in all the cartesian directions, is adjusted to

exactly model the iris dimevsions. Concretely, Al is .

0.25mm, so a,=b~8, and t=2, in Al units. With this node
size, the waveguide transverse dimensions are a=28 and
b=14 nodes length. These dimensions are of course identical
for both TLM simulations, the only difference is that in the
standard formulation conducting zones are halfway between
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nodes, while in the modified scheme the whole geometry is
displacedadistameAllZineachCamﬁandirecﬁonbmthe
relative positions and sizes are maintained. In this manner
anydiﬁerennebetweenboﬂlﬂ.Msinulaﬁonswﬂlbecnly
due to the effect of the specific nodes. The time step used is
4.169-10" 5, which corresponds to the maximum allowable
value for this mesh size. The waveguide has been excited by
aGaussianpulsewiﬂmbandwidthoflOGI—Iz,modulaxedai
40GHz. To eliminate artificial reflections at the limit of the
mesh, wide band absorbing conditions based on finite
impulse-msponseﬁlterstheotyhavebeenmedatbothends
of the waveguide [6). The amplitude of the S,, parameter for
thestandardandtheproposed‘IIMsoluﬁonisplottedin
Fig.5, together with the TE 2 mode matching results taken
ﬁom[ﬂﬁncomparison.Goodbehaviormbeobservedfor
the standard and the proposed solution. Nevertheless,
alﬁ:ougherro:sateofoom-sepresem,thereismsigniﬁcant
improvement since the problem is not critically dependent
on the frequency such as a resonant probiem would be.
These similar results are also observed for the
comresponding phase values. It is worth noting that this
behavior can also be observed in open problems such as
scattering ones. In fact, the standard and the proposed
solution with different mesh size in each direction have
been used for predicting the near field scattered by an
infinitely long square conducting cylinder and by a
conducﬁngcube.Asindicatedabove,rcsrﬂisobﬁinedshow
nosigniﬁcantdiﬂ‘uenc&sbetweentheampﬁmdeandphase
of both solutions.

The aim of the second example is to determine whether the
similarityinbehaviorforthestandardandthepmposed
TLM model still holds when applied to a problem that is
critically dependent on frequency. The above-mentioned
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Fig.6- Circuit S, parameter for a WR28

waveguide with a resonant iris. Dimensions:

a=28, b=14, a,=16, b, =4, and =2, in Al units,

with Al=0.25mm.
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WR28 waveguide with a resonant square irts of dimensions
a,=4mm and b, =lmm, and width +=0.5mm has been
simulated’ with a node of equal sides Al=0.25mm. The
lengths of the problem in Al units are a~28, b=14, a,=16,
b,=4, and t=2. The amplitude of the S, parameter for the
system is plotted in Fig.6 for the standard TLM solution, the
proposed TLM solution, and the TE ) mode matching
results taken from [7]. The figure clearly indicates that the
standard TLM mesh is able to predict the general behavior
of the parameter, but provides an erroneous value of both
the resonance frequency and the amplitude of 5, at this
point. In contrast, the proposed nodes provide an accurate
solution of the problem even near the resonant region.

4 CONCLUSIONS

In this paper, new modified TLM nodes with stubs have
been proposed to model the existence of special conducting
structures usually found in microwave systems. These nodes
eliminate the problem existing in the standard formulation
of the TLM method in which specially difficult points such
as corners and bends are omly indirectly modeled. The
improvement provided by these nodes is present but not
relevant if the problem is not critically dependent on
frequency, butt a significant improvement is demonstrated in
resonant problems. Finally, it is interesting to note that the
simultaneous use of standard and modified nodes provides
a greater flexibility to the TLM mehtod, since now
conducting parts can be located at the center or between the
nodes.
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