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Abstract—This paper deals with the transient nu-
merical analysis of 2-d electromechanical devices
driven by thin wire coils. Their dynamical behaviour
is described by the Maxwell equations, by the consti-
tutive relations, and by the equations of motion. For
the solution of the electromagnetic problem the BEM-
FEM coupling method is used. A two-dimensional
watch stepping motor is presented as an example.

I. THEORY

A. Electromagnetic field equations for 2-d problems

Starting from the Maxwell equations, neglecting dis-
placement currents, taking into account the constitutive
relations [1]

—

B = uwH+J, (1
§ = w(E+oxB) (2)

and the Coulomb gauge
divd =0, (3)
as well as the magnetic vector potential fI, the equation
- %AA,+&1% = gzc-{--&;rotf- é, (4)

is derived [2]. Equation (4) describes two-dimensional
eddy current problems. § is the current density, g.¢_the
current density in the voltage driven thin wire coil, J the
magnetization, k the conductivitiy, k1 the conductivitiy
of massive conducting media and ¥ the velocity. The op-
erator d/dt in (4) denctes the total time derivative. The
following continuity conditions are valid on eventual inte-
rior boundaries

Az

1 -
—(rotA—-J) x 7
Ho

continuous,

(3)
(6)

continuous.

A possible magnetization J has been taken into account in
(4) by the equivalent magnetization current density rot.J.
In general, this formulation requires an iterative solution
of the problem [3].
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B. Thin wire coil

If the radius of the cross-section of a single filament is
smaller than the skin depth, the current density in the
turn may be assumed to be constant. In most cases the
section is the same for all turns and therefore the current
density may be assumed to be constant in the whole coil.
H there are spaces between conductors due to insulation,
this can be taken into account by considering an aver-
age current density and an equivalent conductivity [4],
[5]. With these assumptions the coil is considered as a
homogeneous conductor with a constant current density.
Considering for the sake of simplicity resting coils only
(¢ = 0), the current density of a threedimensional thin
wire coil reads

- 84 -

go = —kz(grady + i Es). (M)
@ is the scalar electrical potential, «2 is the equivalent
conductivity of the coil and Eg the impressed electric field
in the coil. Multiplying (7) with 7, the unit vector with
the direction of positive current through a filament, yields

—

gc = —hz(grade + Bt Es)-7. (8)
Integrating (8) along one turn ¢(7) of the coil results in
A
gow() = —kz § - T dl+ r2Esw(}, 9)
<)

w(7) = § d! = length of one turn.
(M

Afterwards an integration of (9) over the cross-section of
the coil is performed, yielding

(

o4

ot

K2

& 7) dV + k2 Es, (10)
v

gc=

V = volume of the whole coil.

Considering only two-dimensional problems, (10) can be
written as



94 _
+f(a . Tg)dV) + ko Py, (11}
Va
Vv = W+ Vg,
Vi, Vo = volumes of both halves of the coil,
7-‘1 = €z>
7_"2 = —gz-

Taking into account that the integrals in (11) do not de-
pend on z we get

A, A,
gzc = ""-‘%2.- ( 5t dﬂ.—/ 3t da) +K'2ESZ (12)
Ay

A2

Ay, Az = sections of both halves of the coil,
A=A +4, = 2N§,

N = number of turns of the coil,

) = c¢ross-section of one turn.

C. Eguations of motion

Only rigid body motions are considered. The most gen-
eral motion of a rigid body can be broken up into a trans-
lation of the center of gravity C and a rotation with re-
spect to . The translational part is governed by the
momentum law

p=F, #=L

; (13)

3

where m is the mass, 7, p are location and momentum of
C, respectively and F is the total force.

The orientation of the body is specified by the Euler
angles ®,0, ¥ [6]. The rotational part of the motion is
governed by the angular momentum law

L=M, (14)
where L is the angular momentum and M the total torque
with respect to €. The time rate of change of the Euler
angles can be expressed as a function of the angular mo-
mentum, the principal moments of inertia and the Euler
angles themselves. In the case of rotation around a fixed
axis, which is assumed to be the z-axis (& = @ = (,
¥ £ (), the general relation reduces to

L,

J: '
where J. is the moment of inertia with respect to an axis
through C parallel to the z-axis. Rotation around a fixed

axis is the most common case when dealing with electric
machines.

¥ = (15)
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Frem1 = Feema

Fremz = MeEmiz

FBEMes

Fig. 1. Structure of the considered domain
Orem = QFeM Y QFEM2,
Teem = Trean YTrEM2,  TBEMi = I'sEMit U TrEMI2

Q= Qrem YU ReEM

II. Ter BEM-FEM CouPLING METHOD

The coupling of the boundary element method (BEM)
and the finite element method (FEM) is used to solve
(4). The domain ) of the boundary value problem is de-
composed into (possibly) several FEM subdomains Qpgpm,
and one multiply connected BEM subdomain Qpgym, Fig.
1. The decomposition has to be such that conducting
and/or permeable bodies are described by the FEM. The
surrounding unbounded air space is treated by the BEM.
The boundary I'sgue does not give any contribution and
has therefore not to be taken into account.

Application of the Galerkin method to the weak integral
form of (4) and (12) using nodal finite elements yields the
matrix formulation

(1K} + [0 S {AF™)

— [T{QFEM} = {F(Es.,J)}. (16)

{AFEM} are the potential values at the nodes in Qpgum
and {QFEM} are the values of Q@ = 33 — (J x ) - &,
at the nodes on I'rgm- [K] is the stiffness matrix, [C] =
[Crassive] + [Ceoit] the damping matrix and [T the bound-
ary matrix. .

Application of the BEM to (4) with k12 =0, J =0
vields another linear system,

[GHQPEM} = [H){AT*M},

where {ABEM}, {QPEM} are the values of the vector po-
tential and its normal derivative at the nodes on I'sgp;.
Eq. (16) and {17) can be coupled using the boundary con-
ditions (5) and (6) on the common boundaries Fypm =
I'semi (7] resulting in

(17)

(1x1+ et + 015 ) (455

= {F(Es:, )} (18)



III. CoMPUTATION OF FORCES

The ma,gnetic forces are calculated using the Maxwell
stress tensor [8], [9]. With this method, a normal force
density fn a.nd a tangential force density ft are calculated
on the boundary of the considered part as

> 1/B2 ~2
“_i(E_HOHt)n’ (19)
fi = BH,. (20)

The net force and torque are then computed by simple
integration of f and ¥ x f over the boundary. Assum-
ing that the boundary is a coupling boundary T'sem;y =
FFEM,, and the integration is performed on the BEM side
(J’ =0, B= poH), the required field quantities B, and
H, can be obtained from

B, = fi-rotd, (21)

. 1 = 1 -

H = —B=fix (—rotA X ﬁ) . (22)
o Lo

IV. CouprLING OF ELECTRICAL AND MECHANICAL
SysTEM

The diseretization of a device which contains moving
parts by finite elements only is not easy. Even small dis-
placements cause a distortion of the mesh, which leads in
general to a reduction of mesh quality. Large displace-
ments require frequent remeshing of the whole device,
due to the continuously changing positions of the mov-
ing parts. This disadvantage can be avoided by applica-
tion of the BEM-FEM coupling. With this approach, the
structure of the mesh does not change during the motion
because it moves with the material.

The electrical and mechanical equations are solved step-
by-step using the implicit Euler method. The weak cou-
pling is established by the following algorithm [10}:

 Solve the electromagnetic problem (18) at the time
t = nAt.

» Compute forces and torques for this state.

Solve the equations of motion (13}, (14) and (15) to
determine the displacements of the moving parts.

Modify the location of the moving parts using the
calculated displacements.

Next time step.

V. NUMERICAL EXAMPLE

A. Considered device

As a numerical example a watch stepping motor used in
alarm clocks is considered (Fig. 2, Fig. 3). The rotor con-

Fig. 3. Top view of the watch stepping motor

sists of a permanent magnetized ferrite with a remanent
magnetic induction of B, = 0.25T. The yoke of the sta-
tor is made of a nonconducting ferromagnetic sheet with
& constant relative permeability u,. = 5000. The driving
coil of the stepping motor consists of 6800 turns with a
resistance of 86002, Effects due to friction have not been
taken into account. The watch stepping motor is consid-
ered as a two-dimensional problem (Fig. 3).

B. Numerical results

Fig. 4 shows the voltage per length applied to the driv-
ing coil. The magnetic flux density in the motor and the
position of the rotor for ¢ = 0, ¢t = 0.04s, ¢ = 0.1s and
t = 0.2s are depicted in Fig. 5 - Fig. 8. Fig. 9 shows the
dypamic behaviour and the two resting positions of the
rotor, Fig. 10 the torque per length acting on the rotor.
In Fig. 11 the current in the driving coil is depicted. In
Table I the mesh and computation data for the stepping
motor can be seen. Comparing the numerically calculated
results (Fig. 9 - Fig. 11) with the measured data of the real
watch stepping motor shows a very good correspondence
of the typical features (current drop, resting positions).
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Fig. 4. Voltage per length applied to the driving coil
Fig. 7. Magnetic flux density in the 2-d stepping motor for ¢t = 0.1s
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Fig. 3. Magnetic flux density in the 2-d stepping motor for t = 04

Fig. 8. Magnetic flux density in the 2-d stepping motor for ¢t = 0.2s
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Fig. 6. Magnetic flux density in the 2-d stepping motor for ¢t = 0.04s Fig. 9. Angular position of the rotor
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Fig. 10. Torque per length versus time acting on the rotor
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Fig. 11. Current in the voltage driven coil

TABLE 1

MESH AND COMPUTATION DATA FOR STEPPING MOTOR

Number of nodes

Number of FEM elements
Number of BEM elements
Number of time steps
Time step At

Used memory

CPU time (Cray C94)

4931
1654
456
7000

0.1 ms
66.8 MB
1528 s

VI. CONCLUSION

For the correct numerical modelling of electromechanic
systems driven by thin wire coils, it is not sufficient to
treat the system as a sequence of static problems. For
complete description of the transient behaviour of such
devices, it is necessary to take into account, that the ve-
locity of the moving parts (rotor) affects the electric and
magnetic field. Furthermore the forces acting on the mov-
ing parts are determined by the fields. This interaction
has to be taken into account to describe the transient be-
haviour of an electromechanic device.

This interaction results in a torque vs. time and in a
current vs. time in the coil respecively as depicted in Fig.
10 and in Fig. 11.
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