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Abstract: A parametric mapping of vector basis functions
is presented for curved-patch discretizations of surface
integral equaticns. The mapping of the vector basis
function maintains the normal continuity of the surface
current density at cell boundaries, and is therefore suitable
for use with the electric-field integral equation. Expressions
for the matrix elements associated with the electric and
magnetic ficld integral equations are developed.

1. Introduction

During the past two decades, the approximate
solution of surface integral equations by the method of
moments has matured into a well-accepted process.
However, the most widely-used procedures tend to employ
flat-cell models of curved structures and relatively low-order
basis functions to represent surface currents and fields.
Specifically, the Rao-Wilton-Ghisson (RWQ) triangular-
rooftop basis functions [1] commonly used to model
currents on surfaces in 3D provide only a constant normal
and linear tangential representation of the surface current
density. If higher accuracy in the results is desired, a low-
order representation is likely to prove inefficient.
Furthermore, flat cells limit the modeling resolution. In
this article, we discuss the use of a higher-order vector basis
set with continuity properties similar to the RWG
functions, in conjunction with a curved-cell scatterer model.

The incorporation of curved cells into moment-
method discretizations, although uncommon, has been
discussed by a number of authors [2-8]. However, a critical
issue in the discretization of surface integral equations such
as the electric-field equation (EFIE) is the need to maintain
continuity of the normal surface current density at cell
junctions [1]. The existing literature on curved-cell
representations fails to adequately address this issue.
References [2] and [3] assumed a piecewise-constant
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representation for the current density, while [4] investigated
both piecewise-constant and piccewise-linear representations.
Thus, these studies did not always impose normal continuity
because of the nature of the basis functions. In addition, [2]
and [4] only consider the magnetic field integral equation
(MFIE), which is less sensitive to discontinuities in the
current density. References [5] and [6] employed mixed-order
vector basis functions on curved triangular and quadrilateral
cells, respectively, and a similar approach has been reported
in [7]. These articles consider the use of low-order basis
functions similar to the RWG functions and do not
specifically discuss the continuity properties of the curved-
cell representation.

Higher-order scalar polynomial basis functions have
been investigated by numerous researchers in the context of
finite element solutions [9-10]. Higher-order vector
functions are less well known, but have also been studied
[11-13]. In general, if the scatterer model incorporates
curvature, there is little additional effort required to
implement higher-order basis functions (other than the
additional unknowns for a given number of cells, which may
be offset by improved accuracy).

In this paper, we briefly review the scalar
transformation required to treat the EFIE and MFIE applied
to two-dimensional scatterers. We then consider the
mapping necessary to define curved-cell vector basis
functions compatible with 3D surface integral equations.
The development is based on a cell-by-cell coordinate
mapping obtained via Lagrangian interpolation polynomials.
Other specific representations of the surface (e.g., splines)
could be implemented in a similar manner. For illustration,
we present preliminary results for a curved-cell
implementation using vector basis functions one
polynomial order greater than the RWG functions.



2. Discretization of 2D surface integral
equations using an isoparametric quadratic
representation

To motivate the use of higher-order basis functions
and curved-cell models, this section briefly reviews their
application in 2D. Two-dimensional method-of-moments
discretization schemes employing flat-cell models of the
scatterer contours and piecewise-constant or piecewise-linear
basis functions have been widely used [14]). The scatterer
models can be improved by using cells with parabolic
curvature. Suppose t is a parametric variable with the
interval —1<t<1 used to describe a single cell. The cell can
be defined by the three points (x;,y)). (x2.¥2), and (xa.ys),
and the mapping

x(t) = x; By(t) + x5 Bo(t) + x3 B3(D) @
y® = y1 B1(1) + y2 Bx(t) + y3 By(t) @

where
B, 0= -tigl—) 3)
B,)=1-¢ @
B,0)= t(t+ 1) )

are quadratic Lagrangian interpolation functions. It is
convenient to also use quadratic Lagrangian interpolation
polynomials to represent the surface current density, which
is known as an isoparametric expansion. For a smooth
scatterer, and the TM polarization, the current density within
a cell can be replaced by

3
0= Y jaBy®

n=1

-1<1€1 ()]

Thus, within each cell there are three overlapping basis
functions that contribute to the representation. Each basis
function interpolates to the current density at one of the
three “nodes” that define the cell shape, according to (1)—(2).

Consider the TM EFIE, and the vse of Dirac delta
testing functions (located at the interpolation nodes) to
complete the discretization. The entries of the system
matrix involve integrals of the form

1,“:13?:% B,OHPWR) I ()

lp
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where m and n now denote global indices,

= &/ by = xOP 4 [y - YO 1 ®
and J is the Jacobian
dx¥ (dyY
(%) (=) ®

The Jacobian can be evaluated using the mapping in (1)-2),
which yields

)=

d X1 — X

== (32 1)+(xi—2x2+x3)t (10)
dy (¥ya—

E( 5 )+(y1 2y, + ya)t (11

within a particular cell. In general, the integrals defined by
(7) must be evalvated by numerical quadrature. In the case
where R, vanishes within the intervat of integration, the
Hankel function singularity can be extracted, splitting the
integral into two parts. The first integral can be computed
by quadrature; the second can be evaluated analytically over a
flat cell. As an alternative approach, the original integral
can be evaluated using a quadrature rule that specifically
incorporates the logarithmic singularity [15-16].

For the TE MFIE, a similar discretization ¢an be
developed, using an expansion similar to {6) for the
transverse component of the current. The off-diagonal
matrix entries involve integrals of the form

rle X Bn(l’){ sinQ (1) 2
4j deen p

X x(t)
Ry
Ym—¥()
Rn

where the Jacobian J is defined in (9), R, is defined in (8),
and 2 denotes the continuous angle between the x-axis and
the tangent vector to each point on the cell. If node m lies
at an intercell node, the diagonal matrix entries for the MFIE
have the form

- ¢cosQ(t) }H(lz)(kRm)J(t’)dt’ (12)

Z..m-——+1,°:“”+1°““°' a3)

where T, denotes the total mtenor wedge angle formed by
the conductor at node m, and I°'P and I,°"" ¢ have the
form of (12}, except that a small region in the vicinity of
node m is excluded from the integral. (The integral was



evaluated using an “open” quadrature formula that did not
sample at the endpoints of the interval; a region on the order
of 107 & is easily excluded by this procedure.) If node m
lies in the cell interior, the MFIE diagonal entries are

1 1
Z =—5+ S

'men (14)
where again a small region around node m is excluded from
the integral.

To illustrate the accuracy of the isoparametric
Lagrangian approach, Table 1 shows the TE surface current
density induced on a circular cylinder by a uniform plane
wave. Resuits from a curved-cell discretization of the MFIE
using piecewise-quadratic basis functions are comparad to
similar solutions obtained using a flat-cell discretization
with piecewise-constant and piecewise-linear representations

of the cument density. For a density of 40 unknowns/A,
there is a consistent improvement in accuracy as the basis
function order is increased. The curved-cell results exhibit
four decimal places of agreement with the exact solution,

In general, nhumerical experimentation using a range
of cell sizes tends to confirm that the error in the 2D surface
carrent density follows the predicted interpolation error of
O(h®*") as h—0, where h is the relative cell size and p is the
polynomial degree of the basis functions {(p=2 denotes
quadratic functions, for instance). Thus, it is more efficient
to obtain high accuracy by increasing the polynomial order
than by reducing the cell sizes. Additional results using this
type of mapping with a combined-field formulation are
presented in {17].

Table 1
Comparison of the current density induced on a circular cylinder with circumference 1 A by a TE plane
wave propagating in the ¢=0 direction. MFIE results obtained with pulse, linear, and quadratic basis
functions and Dirac delia testing functions are compared with the exact solution, for a 40 unknown
discretization. The quadratic case employs parabolic cells defined by (1)(2); the other rcsults were
obtained using flat cells.
MFIE MFIE MFIE
(0] pulse basis, linear basis, quadratic basis, exact
flat cells flat cells parabolic cells
{magnimde}

o 0.8907 0.8891 0.8883 0.8882

45 0.6733 0.6729 0.6722 0.6722

%0 1.1751 1.1708 1.1714 1.1713
135 1.6232 1.620t 1.6199 1.6199
180 1.7094 1.7076 1.7073 1.7071

(phase)

o 66.29° 66.66° 66.56° 66.56°

45 113.41 113.57 113.56 113.56

90 -164.88 -164.80 -164.82 -164.82
135 -125.83 -125.82 -125.84 -125.84
180 -110.77 -110.82 -110.83 -110.83

109



3. Mapping vector basis functions to
curvilinear cells in 3D '

The previous section showed that higher-order basis
functions and curved cells can produce improved accuracy in
scalar problems. The process of mapping scalar basis
functions to curved cells in two and three dimensions is
explained in a number of textbooks [9-10], and is widely
understood. A transformation defined by a small number of
points (nodes) on the curved cell uniquely specifies the
mapped functions. Neighboring cells can be defined by
independent mappings that share nodes along the common
edges. Usually, the continuity of the scalar basis functions
is maintained across curved cell boundaries, although
derivative continuity is not. (Derivative continuity can be
maintained by alternative mappings involving spline
functions or Hermitian interpolation polynomials.}

One would expect to realize a similar improvement
in accuracy from the use of higher-order functions and curved
cells in vector problems, such as the 3D EFIE. When
transforming vector basis functions, however, there is an
additional degree of freedom embodied in the vector direction
of the function that was not present in the scalar case.
Thus, the vector mapping process is somewhat different
from that used with scalar basis functions. A local mapping
that describes the curved cell shape via Lagrangian
polynomials will generally not be able to maintain the
complete continuity of a vector basis function across cell
boundaries. For the treatment of surface integral equations
such as the EFIE, the surface current density must maintain
normal continuity across cell junctions, in order that the
surface divergence of the current remains finite at the cell
edges. Therefore, it is critical to define the vector projection
in a way that ensures normal continuity. In addition, to
treat surface integral equations the mapping involves a two-
dimensional surface in three-dimensional space. Crowley
has discussed the mapping of a tangentially-continuous
vecior representation (the complementary case), for
application to the vector Helmholtz equation [18]. A
covariant mapping preserves tangential continuity.
Apparently, no detailed discussion of the appropriate
parametric mapping needed for surface integral equations
exists at present in the electromagnetics literature. Normal
continuity can be preserved by using a contravariant
mapping, as described below.

For illustration, the following development
considers a curved quadrilateral cell shape; the same
expressions apply to triangular cells provided that the Iimits
of integration are modified accordingly. Consider a basis
function defined in the 2D reference cell (-1<n<l1, =1<€<1}.
This vector can be represented by its covariant components
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B=@B nn+ B HE as
or its contravariant components
=B Mn+ B DE 16
where the base vectors are given by

- dx -~ gy~ oz~

n= ﬁx""ﬁy""_z an

E= Sy g a8
and the reciprocal base vectors are given by

=g Slye i 19

8 R T~ @

In a skewed quadrilateral cell, the base vectors are tangential
to the cell edges while the reciprocal base vectors are normal
to the cell edges. The mapping from the 2> reference cell to
the curved patch in 3D can be defined by a transformation of
the form

x= ) % Byn,E) e

y= 3 ¥aByn&) 22)

Z=§Zn
n

where {B,} represents a set of scalar Lagrangian
interpolation functions (of any order), and the nodes (xg,yn)
specify the specific patch shape. Therefore, the Jacobian
relationship is given by

B,(n.8) 23)

a 2
IEEE HME
mly ¢ |_ o

Sl m mllm]= | @4
=TT || |2
oz oz

For use with surface integral equations, the basis functions
must be tangential to the curved patch at every point within
the patch, and ensure norfna.l continuity between adjacent
patches. These characteristics can be obtained if the



Cartesian components of the basis function in each cell are
defined by the contravariant mapping

&

where B, and Bg denote the contravariant components of the
basis function in the reference cell,
& & g_x_

o-nf(22-22) . (25-25) (5%-23) @

is the psendo-determinant of the 2x3 Jacobian matrix, and
we assume that the basis functions By, and By maintain
normal continnity in the reference cell. The factor Q defines
the scaling necessary to write the differential surface area

BX
By “61
B,

(25)

dS =Qdndg @n

in terms of the (n, £) coordinates.

When working with mapped basis functions, it is
convenient to perform the calculations directly in the (m,&)
system. Thus, we would like to express the integrals
arising from the EFIE in terms of M and £. For a basis
function defined by Equation (25), it is possible to show
that the surface divergence operation on a curved cell
simplifies to

v, é:Q{aaBn %} (28)

By combining Equations (27) and (28), the contribution
from one cell to the scalar potential integral within the EFIE
¢an be written as

1 ‘. B ‘o
«p_jm”(vs B,) G aS

el L

where G denotes the Green’s function. Since the testing
functions are also defined by the transformation in (25), a
general form for the complete matrix entry is

”im-'vtb ds
——Jj(V"i‘m)d)dS

5} Gdnde @9

CE

3 }(bdnd& (30)

e

Using (25) and (27), the matrix entry associated with the
magnetic vector potential term in the EFIE can be writtén in
terms of the integral

fJne-{f [adcas}as
J‘n=-1-"§=—1'[| —1-'; (T Tmt]JJT[ ]Gdﬂ'd§ andg  (31)

Thus, in these integrals the scale factors arising from the
basis and testing functions cancel those arising from the
differential surface areas. The mamrix entries associated with
the MFIE can also be expressed over curved patches; for
instance the off-diagonal entries have the form

J' T-H'dS =

o -9 G

gz 9y 5
aG m T n aEs
ToTe|J) e 0 -] di’d 32

LU,,.L[“ 1| & 2 [BJdn Fang (32)

. SR C A

dy ox

while the diagonal entries differ in the usual way due to the
total field term and the Green’s function singularity.

The general expressions in (30)—~(32) provide a
convenient way of computing the matrix entries when a
piecewise-parametric representation is used to define the
curved surface. All integrals can be performed over the
square reference cell in the (n, &) coordinate system by
numerical quadrature. In the case of a triangular reference
cell, the limits of integration in (30)—(32) must be modified
to incorporate the triangular cell shape.

4. Higher-order vector basis functions for

surface currents

The surface current representation proposed in 1982
by Rao, Wilton and Glisson [1] has a constant normal
component and a linear tangential component (CN/LT)
around the cell edges. Better accuracy could be obtained with
higher-order polynomial functions. Functions have been
proposed that provide a linear normal, quadratic-tangent
(LN/QT) representation of the surface current density, and
exhibit finite divergence throughout the computational
domain [13]. As compared with an RWG representation,
where three basis functions overlap each cell, eight different



LN/QT basis functions overlap each triangular cell. Six of
these functions have support shared by two triangular cells,
like the RWG CN/LT functions. Each of these six
functions interpolates to the normal vector component of the
surface current at one end of a celi edge. These six functions
maintain normal-vector continuity with the adjoining cell,
and eliminate fictitious charge densities at cell interfaces.
Equivalently, the surface divergence of the representation
remains finite. Within a single cell, these six edge-based
basis functions can be expressed as

zxwy LiVL, %] (33)

where {L;, Ly, L1} denote simplex coordinates [9-10] within
a triangle in the x-y plane, and wy is the length of the edge
between nodes i and j. (L; and L, play the role of the local
coordinates 1 and £ in the expressions from the preceding
section, with L3 defined by Ly=1-1L,; —L,.) In addition,
there are two basis functions in each cell whose support is
confined to that cell. These cell-based functions can be
expressed in simplex coordinates as

zx 4w;3{L, Ly VL, ~L; L, VL;} (34)

zx d4wa3{L, L3 VL, ~L; L, VL3} (35)

These two functions have zero normal component along all
three edges of the cell, and together provide a quadratic
representation for the tangential component of the current
density. The LN/QT basis functions have been motivated
by the development of complementary techniques for
discretizing the curl-curl form of the vector Helmholtz
equation [19]. The basis functions belong to the mixed-
order divergence-conforming spaces originally proposed by
Nedelec [11], which include representations for arbitrary
polynomial order. For a triangular-cell model, the global
LN/QT representation consists of two basis functions per
non-boundary edge and two basis functions per cell. Figure
1 depicts these basis functions.

The 8 basis functions in Equations (33)—(35) are
linearly independent and can be used as testing functions
within a Galerkin implementation, if desired. However, for
simplicity we propose the use of piecewise-constant “razor-
blade” testing functions defined along linearly independent
paths that roughly correspond to the basis function
locations, as depicted in Figure 2.
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Figure 1.

Figure 2.

The linear-normal/quadratic-tangential (LN/QT)
basis functions defined on a triangular cell.
The upper two triangles depict the edge-based
functions, while the lower two depict the cell-
based functions.

N
NI e

Domain of support for the razor-blade testing
functions on triangles. The left cell shows the
path for the edge-based functions; the right
shows the path for the cell-based functions.




5. Preliminary results

To demonstrate the preceding ideas, we
implemented the basis functions in (33)-(35) using a
piecewise-parabolic surface representation defined by
triangular-cell quadratic Lagrangian polynomials. Each
patch is defined by the mapping in (21)—(23), using 6 scalar
interpolation polynomials

Bago(L1.Ls.Ls)=(2L, - 1)L, (36)
Bozo(Li Lo La) =Ly~ 1)L, €1
Booa(Ly.La, L3} =(2L3;—1)Ls (38)
Biio(L1,LaL3} =41 L, (39
Byor(Ly,LaLs) =4 L, Ly 40)
Bori(Ly,La,Ly) =4 L, Ls @0

and 6 coordinate values at the corners and mid-sides of each
cell. The first three functions have unity value at one corner
node, while the latier three functions bave unity value in the
center of one of the three sides.

The functions in (36)—(41) define the shape of the
curved cells comprising the scatterer, given six points per
patch from which to interpolate according to (21)-(23). By
converting from simplex coordinates to Cartesian
coordinates [10], one readily obtains the entries of the
Jacobian matrix defined in {24). The LN/QT basis functions
defined in (33)(35) are mapped to the curved cells using the
contravariant projection in (25), and used to represent the
vector surface current density. The matrix entries for the
EFIE are obtained from (30)—(31), with the integration
limits suitably modified for a wiangular reference cell.
Equations (30)}~(31) account for the curved-cell mapping, so
the only additional effort needed to implement the curved-cell
discretization is the computation of the Jacobian matrix at
points needed for the quadrature algorithm used to evaluate
(30) and (31). Since the integration is performed in the
reference cell, it is not necessary to explicitly define the
basis functions within the curved patches.

The evaluation of the matrix entries by numerical
quadrature is straightforward except when the source and
observation regions overlap, due to the Green’s function
singularity. In this case, the 1/R singularity is extracted and
evaluated analytically over a tangent plane, then added back
to the result of the quadrature,
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For illustration, consider a plane wavé illuminating
a perfectly conducting sphere of radius 0.2 A, where A
denotes the wavelength. Figures 3a, 3b, 4a, and 4b depict
the magnitude and phase of the surface currents around the
sphere. The surface current density is normalized to the
magnitude of the incident magnetic field. The incident field
propagates in the —z direction with the electric field polarized
in the —x direction. Exact solutions are compared to EFIE
results obtained using curved-cell and flat-cell models, each
of which consist of 48 cells and produce a moment-method
system of order 240. Both results employed LN/QT basis
functions and razor-blade testing functions. Clearly, the
curved-cell data more closely approximates the exact
solution, Since the basis functions provide normal
continuity but not tangential continuity, there are a few
places where jump discontinuities can be observed in these
plots. These discontinvities occur in places where the
tangential component contributes to the current density
shown in the plot, and they diminish as the model is refined
and the cell sizes are reduced. Figure 5 shows the scattering
cross section comparison for the same example. In this
case, the flat-cell model is inscribed within the actual sphere
and the scattering cross section differs substantially from the
true values.
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Figure 3(a). The magnitude of the 8-component of the
current density induced by a uniform plane
wave on a spherical conducting scatterer with
radius 0.2 wavelengths. Numerical results
produced using LN/QT basis functions with a
flat-cell model and a curved-cell model are
compared with the exact solutions. The
models contained 48 cells and produced a
system of order 240.
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Figure 3(b). The phase of the 8-component of the current
density for the example in Figure 3(a).
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Figure 4(a). The magnitude of the ¢-component of the
current density for the example in Figure 3(a).
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Figure 4(b). The phase of the ¢-component of the current
density for the example in Figure 3(a).
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The scattering cross section (dB A%) for a
spherical conducting scatterer with radius 0.2
wavelengths, shown for ¢=0. Numerical
results obtained using LN/QT basis functions
with flat-cell and curved-cell models are
compared with the exact solution. The models
contained 48 cells and produced a system of
order 240. The substantial difference in the
accuracy of the numerical results may be dug in
part to the fact that the flat-cell model was
inscribed within the desired sphere.

Figure 5.

6. Summary

In practice, the accuracy of most numerical
solutions is limited by the interpolation error associated
with the expansion, and the use of higher-order functions and
curved cells is expected to provide better accuracy and faster
convergence. This paper presents a procedure for defining
vector basis functions on curved cells, while maintaining the
normal-vector continuity of the representation. Expressions
for the matrix entries arising from EFIE and MFIE
discretizations are presented. The 3D procedure has been
implemented nsing LN/QT basis functions and curved
triangular patches defined by a scalar Lagrangian mapping.
Additional 3D results based on the EFIE, MFIE, and
combined field equation are available in [20].
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