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Abstract—We present the use of an adaptive set of basis
functions used in conjunction with the MoM to solve the
linearized scalar inverse electromagnetic scattering
problem. The basis functions, which are whole-domain
and harmonic, are selected to provide a perfectly
conditioned solution under the first-order Born
approximation when multiple frequency experiments are
considered. In order to iteratively solve the full non-
linear problem by the Distorted Born Iterative Method
(DBIM) and/or the Born Iterative Method (BIM), we
introduce a single parameter into the basis function
expansion to demonstrate that it is possible to maintain a
well-conditioned linearized inverse problem by selecting
the parameter value that minimizes the condition number
of the discrete matrix operator. The proposed technique
eliminates the need for Tikhonov regularization or
equivalent regularization schemes commonly applied to
the single-frequency, pulse-basis formulation of the
linearized inverse scattering problem.

Keywords—Inverse imaging, Distorted Born, Born,
Iterative methods, regularization.

I. INTRODUCTION

It is well documented that the continuous, non-
linear, time-harmonic, scalar inverse scattering problem
in electromagnetics is ill-posed [1], [2]. In fact, using
monochromatic interrogation and a first-order
linearizing assumption such as the Born approximation
[3], the linear inverse problem results in a Fredholm
integral equation of the first kind that retains the ill-
posedness of the full non-linear problem. As the
resulting operator has a null-space, no unique solution
exists and one must select one of an infinite number of
solutions by imposing additional constraints, a process
known as regularization [2], [4].

It is beneficial to examine the cause of the ill-
posedness of the problem in order to choose a suitable
regularization technique. In the linearized inverse

scattering problem, the smooth nature of the kernel tends
to suppress the effects of high-frequency spatial
variations of the unknown contrast function on the
measured field values, thereby making the high-
frequency contrast components irrecoverable from the
field data [4]. Thus, a suitable regularization technique
should, in some way, limit the high frequency
components of the reconstructed contrast function.

A common way of solving the linearized inverse
problem is to discretize the unknown contrast function in
terms of a pulse basis expansion [5], [6] which, in itself,
imposes no constraint on the maximum spatial frequency
of the reconstructed contrast. Due to the ill-posedness of
the continuous problem, the resulting discrete linear
system is ill-conditioned [4] and, without regularization,
directly solving the system yields a solution with little to
no physical significance. Consequently, one of two types
of regularization methods is commonly applied to the
discrete system. The first, Tikhonov regularization,
imposes a penalty constraint weighted by a
regularization parameter. The parameter attempts to
balance the error in the residual against the error inherent
in the high spatial-frequency components [4-6].
Tikhonov regularization is capable of providing
solutions that converge to the unknown contrast function
when an iterative solution of the full-nonlinear problem
is adopted [5], [6]. Unfortunately, the first-order
approximation is often highly oscillatory depending on
the type of penalty function selected (as shown in the
numerical results of [5]) and gives little insight as to the
physical nature of the true contrast.

The second popular regularization technique is the
so-called truncated singular value decomposition
method (TSVD) [4], [7]. As its name implies, this
approach truncates the singular value reconstruction of
the solution thereby constraining the high spatial-
frequency components of the pulse-based solution. In
fact, TSVD can be shown to be “essentially equivalent to
Tikhonov regularization when the penalty matrix is taken
as the identity matrix” [4]. Under this equivalence the
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truncation order substitutes as a regularization
parameter.

While for both Tikhonov regularization and TSVD
there exist mathematical methods for determining a
suitable value of the regularization parameter [4], [7], the
solution is often quite sensitive to the parameter value
and selecting an appropriate parameter can be both
difficult and computationally expensive. The tools are,
however, quite powerful and in cases when one has no
choice but to regularize the problem by the
aforementioned methods, they enable a meaningful
solution to be obtained. The inverse scattering problem
does not, however, necessarily require formal
regularization provided that the problem is formulated
carefully. Our approach is to select equations that arrive
at a discrete system where only a single, meaningful
solution is possible. Further, we wish to choose our
equations in such a way that the Born Approximation
remains a meaningful first-order solution i.e., it is a
smooth first-order approximation to the unknown
contrast.

With this in mind, we note that in special cases the
Born approximation is capable of annihilating the null-
space of the discrete operator giving a unique first-order
solution. Specifically, under plane-wave incidence, the
measured field data may be identified as the spatial
Fourier Transform of the unknown contrast function [3],
[8]. Therefore, by applying an inverse Fourier Transform
to the field data we may uniquely obtain the contrast up
to some maximum spatial-frequency, a result that is
sometimes referred to as Fourier Imaging. Thus, in
Fourier Imaging, it is by multiple frequency experiments
that we “regularize” the problem (in so far as we manage
to make the solution both physical and unique).
Essentially, we are adding information. Fourier
techniques also have the advantage of a smooth, first-
order approximation to the unknown contrast function
[2].

In this paper, based on the idea that Fourier Imaging
offers a well-conditioned first-order solution, we first
derive a perfectly conditioned MoM formulation of the
inverse problem by expanding the contrast function in
terms of whole-domain complex exponential basis
functions, i.e., the Fourier series harmonics. Second, as
the limitations of the Born approximation are well
known, we present a parameterized set of harmonic basis
functions suitable for iterative solution schemes for
solving the full non-linear problem such as the Born
Iterative Method (BIM) [5] and the Distorted Born
Iterative Method (DBIM) [9].

As the focus of this paper is to illustrate the benefits
of the proposed basis function expansion, we focus
primarily on applying the basis functions to the (D)BIM
solutions for the simple 1D, lossless, noise-free problem
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which serves as a well documented benchmark for new
inverse solution methods [1], [7]. To show that the
theory can be extended to higher dimensions, we include
a 2D formulation for the BIM. For both the 1D and 2D
cases considered, we show successful reconstruction
results.

What is presented herein is an elaboration of the
work we have presented at various conferences during
the past year [10-13]. We provide all details of the
formulation and show results for both the BIM and the
DBIM on the same problems.

II. THE MOM SOLUTION TO THE 1D
SCATTERING PROBLEM UNDER THE BORN
APPROXIMATION

Consider the 1D integral equation for
electromagnetic scattering,

0

inc

E(x) = E "(x)+ ké J (e(x) - 1DE(x")G(x, x")dx'" (1)

—00

where E(x) is the transverse component of the electric
field, E""“(x) is the incident electric field, e(x) is the
unknown relative permittivity as a function of position
and where k, is the wavenumber of free space.
Throughout this paper an e/®! time dependence is
suppressed where i = /1 and o is the radial frequency
of the electric field. The free-space Green’s function
G(x,x") 1s,

1 ik |x—x'| 1 ik s(x—x")
G(x,x') = ==¢e ™0 = g "0 2
(%) = ke 2ik," @
where s = 1 if x>x" and s = -1 if x<x’. For the
incident field, we consider plane waves propagating in
either the positive or negative x direction i.e.,

Eim(x) = ¢ Tkos'x 3)

where the direction of propagation is negative for
s =-1 and positive for s’ = 1. Assuming a
permittivity contrast which is spatially bounded to a
domain D = [x,, x,], the infinite integral in (1) collapses
to D. Applying the Born approximation, namely that
scattering is weak and the field within the domain D may
be approximated by the incident field, (1) becomes,

E(x3kg, s, 8") - e thos'x =
X2
ik, _: I .
7_2Qe—zkosx'|‘88(x,)e—zk0(s —$)x dx'.

“4)

Xy
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Above, 3¢(x) is the contrast function used to denote the
unknown relative permittivity contrast g(x) — 1. To solve
for the unknown contrast, we begin by expanding 5g(x)
in terms of 2L whole-domain complex exponential basis
functions,

L L
Se(x) ~ z aleik’x + Z blefik’x. 5)

I=1 =1

For reasons which will be made clear, the spatial
frequencies are selected as k; = IAk—Ak/2, for
I=1,..,L,where Ak isselected as (2n)/(x,-x,) ie.,
the fundamental wavelength is selected as twice the size
of imaging domain. The Ak/2 shift is essential as it
implicitly adds a DC component into each harmonic over
the imaging domain. As a result, we eliminate the need
for an explicit DC basis function.

Upon substitution of (5) into (4) we obtain a single
equation in 2L unknowns,

%Zeikosx(E(x;kO, S’Sy)ie—ikos’x) _

0

L X L *2 (6)
z al-.'efi(ko(s’fs)fk,)x’dx, + Z bIJ'efi(kﬂ(s'fs)+k,)x’dx/_
I=1 x I=1 x

While a typical approach to obtain a system of equations
from (6) would be to test, or weight the equation by
means of 2L different inner products on the domain D
[14], we must take a different approach because the
domain of the left-hand side of (6) does not coincide with
D. Instead, we consider 2L independent scattering
experiments. Using multiple scattering experiments is a
typical way of creating a sufficient number of equations
[6], [9], but normally (in higher dimensions) one has the
ability to construct the different scattering experiments
by taking different angles of incidence, rather than
different frequencies. This freedom does not exist in the
1D problem. Instead, we construct L experiments with
an incident field propagating in the positive x direction
where the scattering amplitude is measured at a single
location x, <x, such that s'—s = 2. For each of these
experiments the incident field wavenumber & is
selected as k,,/2 for m = 1, ..., L. Next, we construct L
experiments where the incident field propagates in the
negative x direction (taking corresponding
measurements at a single location x, >x, such that
s'—s =-2). Again we select the wavenumbers
ky = k,/2 for m = 1,...,L. For incidence in the
positive x direction we obtain the following L algebraic
equations:
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%e—i(km/Z)xu(E(xa’ km/z) _ e*i(km/z)xu) =

[

L X L X @)
z al.[e—i(km—k[)x,dxl + Z bl'[e—i(km+kl)x'dxr
I=1 x I=1 x

while for propagation in the negative x direction we
obtain,

%ei(km/Z)xh(E(xb;km/z) ik Dxy =

0
Lo Lo (8)
z alIei(km+k,)x'dx, + z le'ei(km—k,)x'dxr.
I=1 x I=1 x4

Due to our previous choices of k; in the expansion (5),
the functions e*»* are orthogonal over the imaging
domain and the combined system of equations consisting
of (7) and (8) is perfectly conditioned. We write the

system as,
10| |al _ |f
bl -1l

where I is the identity matrix, a = [a,, a,, ...,a;]T and
b =[b,b,, ...b]T are vectors of the unknown
contrast expansion coefficients and f and g represent
vectors of the left-hand side of (7) and (8), respectively,
appropriately scaled by the width of the imaging domain.
Clearly, this demonstrates that by using the proposed
whole-domain basis functions and a multitude of
scattering experiments we are able to produce a
perfectly-conditioned system under the Born
approximation. In fact, it can be shown that this result is
equivalent to Fourier Imaging. Before presenting
appropriate basis functions for iteratively solving the full
non-linear problem, we summarize two common
iterative techniques, namely the DBIM and BIM.

ITI. THE DISTORTED BORN ITERATIVE METHOD

The pertinent theory of the DBIM may be found in
[9] and is summarized herein. As is common to many
iterative techniques for solving the inverse scattering
problem we consider equation (1) as two distinct
equations used alternatively in a two-step updating
procedure. At each iteration n, we identify from (1) the
data equation when xg¢D. We assume an
approximation to the fields within D (such as the Born
approximation for the first iteration) and solve for the
updated contrast function 5" . The key to the DBIM is
that instead of computing 5™, we compute 8827')



defined as the difference between 8¢ and 5" ",

This is accomplished by numerically computed a
Green’s function G(bnfl) from 3¢ and the field
values acquired at the (n- l)th iteration such that the
distorted data equation becomes,

E(x)-E" D(x) =
X
kﬁj 56l () E" )G Vix, x)dx!

X1

x¢ D (10)

where E(x) is simply the true total field which is a
measurable quantity at x ¢ D and E" 1)(x) is the total
field produced by the contrast set D

To compute the numerical Green’s function G(b") ,
we use,

G(hn)(x, x') =
X2

(11)
G(x,x")+ kéjSa(n)(x")G(bn)(x", x")G(x, x")dx"

X1

where we must first solve (11) for all source points
x" € D when x € D. We may then use (11) with x ¢ D to
compute G(b")(x, x") at any location in space.

Next, the domain equation is used to update the field
within the imaging region from the updated contrast
5t = Sezn)+68<"7l). Formally, we consider x € D
and solve

E™(x) =
X2
inc (12)

")+ kg [ 56" (x)E"™ (x)G(x, x")dx'.

X1

We may solve the full non-linear inverse problem by
repeating the following procedure beginning with
n=1:

+  Solve for 8&” from (10) using the field
computed from (12) at iteration n—1 and
(n) —
update 8¢ . In the case of n=1 we
approximate the field wusing the Born
L ) _ (0) _ ginc
approximation, hence 8¢’ =0, E~ =E
and GZO) =G.)

*  Solve for the numerical Green’s function at the
observation points x ¢ D from equation (11)
and solve for the updated field within the
imaging domain from the current contrast
function using (12). From the field solution
within D, use (12) to directly compute E™ at
the observation point(s) x ¢ D .
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IV. THE BORN ITERATIVE METHOD

While the DBIM attempts to re-use information of
the profile at each iteration by formulating the problem
in terms of 5&!" , a simpler iterative scheme that simply
computes 88(’5 at each iteration without computation of
the numerical Green’s function may be used. This
method, namely the BIM is detailed in [5]. The BIM data
eC}uation may be obtained from (10) by setting
Gbnfl)(x, x") = G(x,x") and SS(bn) = 5™ for all n.
Also, it is necessary to set E”~(x) = E"(x) on the left
hand side of (10). The BIM domain equation is the same
as that of the DBIM.

V. AN ADAPTIVE, WHOLE DOMAIN BASIS
FORMULATION FOR THE DBIM/BIM

The iterative procedure summarized in the previous
section makes use of two integral equations for
iteratively solving the non-linear, scalar, electromagnetic
inverse scattering problem under the linearizing
assumption of the Born Approximation. The domain
equation (12) (which has the same form as (11)) is a
second-kind integral equation and is not ill-posed. For
instance it can readily be solved by expanding the
unknown field quantity into pulse basis functions and
using point-matching. Consequently, the solution to
equations (11) and (12) will not be discussed further.
Conversely, the data equation, corresponding to a
linearized inverse problem, is ill-posed as discussed in
Section 1 and we must either use standard regularization
techniques or formulate the problem carefully. We
consider therefore, the basis function expansion for the
unknown contrast presented in Section 2, which, despite
the ill-posedness of the problem gave an ideally
conditioned matrix. It is clear however, that the
orthogonality property used to produce this ideally
conditioned system will vanish at subsequent iterations if
the basis function expansion (5) is used. Instead, for
iterations n > 1 in the DBIM we expand the contrast in a
parameterized set of basis functions,

L L
68E}n)(x) ~ z agn)ei[x(n)klx + Z bgn)e—i(x(")k,x (13)
1=1 1=1

where o™ is an iteration dependent, real-valued
parameter used to dynamically modify the basis function
expansion of the unknown contrast function with the sole
purpose of minimizing the condition number of the
discrete matrix. (A similar expansion is used for 8¢ in
the BIM.) The motivation for minimizing the condition
number of the matrix is discussed in Section 7.
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Specifically, if we substitute the expansion (13) into
(10), making the dependence on the measurement
location and incident field direction explicit via the
parameters s and s', (while dropping the explicit
dependence on k, for brevity) we obtain,

(E(x s, s')fE(nfl)(x, 5)) =

Z ag”)k I io
I=1
L 0

+Z b(”)k J. *1(1 k,xE(V! 1)(

=1 —0

My o (= _
ke’ gl 1)(x’, s, 5')G§,n 1)(x, x', s)dx'

')G(” l)(xx s)dx'.

(14)

Applying the same testing procedure as the one adopted
for the first-order solution we obtain an iteration
dependent linear system which we write in compact form
as,

(n—=1) p(n-1) _
E}, E, . 2™ _ f(n 1) (15)

(=1 gni=D| | ) (n-1)
E21 E22 b

where E(l'l'f " and Egrff " are matrix representations of

those terms in (14) corresponding to the coefficients a
while E12 “" and Egz " correspond to the terms
involving b . Equation (15) reduces to equation (10)
for n = 1 under the Born Approximation with o(!) = 1.
In the case of the BIM, the right hand side is iteration
independent.

The matrix in (15) will, in general, be dense and
“poorly” conditioned if the parameter a™ =1 is
selected. Therefore, we minimize the condition number
™ of the matrix by performing an optimization over
the parameter o™ Experience has shown that the
function C'"(c") is not unimodal as shown in Fig. 4
and hence a global optimization routine is required and is
discussed in Section 7.

VI. EXTENSION TO THE BIM IN 2D

In 2D the time-harmonic, lossless, non-linear, scalar
inverse scattering problem for transverse magnetic (TM)
fields may be mathematically represented by the 2D
version of the non-linear integral equation (1),

N 2 S, S S, L,
E(p:k) = ko [ [ 8e(p)E(pRIG(p, p'sko)dx'dy’ (16)

—00—00
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where a cartesian coordinate system is assumed and the
posmon vector is given by p=xx+yy.
E, ‘(psk) = E (p k- Emc(p,fc) is the z-component of the
the scattered field defined as the difference between the
total Field E_(p;k) and the incident field E. (p;k). The
fields are parameterized by the wavevector
fc =k x+ kyy , and the wavenumber k, is given by

ﬁc| In (16) we assume the 2D, free space Green’s
functlon G(p, p'k),

amn

N 1.2
G(p, p'sk) = ZI.HB) 0

where ng)(x) is the zeroth-order Hankel function of the
second kind. In the far-field, this Green’s function may
be replaced with its large argument approximation,

G(p, p' k) » ——x. (18)

Again, we consider incident plane waves now defined
as,

EM(p:k) = eikp (19)

Under the assumption of a rectangularly bounded
imaging domain D = {p:p, e [xl,xz], Py € vy 1)
such that the contrast function 8&(p) = 0 Vp ¢ D, and
under the Born approximation, the integral in (16)
collapses to D and becomes,

2 VaXo TN
o k(i+D) o s giklp =P
ES(p) = A de(p')etk P'———dx'dy’ (20)
0w T
11

where the explicit parameterization by k has been
dropped for brevity. Now, making an additional far-field
assumptlon we approx1mate the phase term as
lp-p'l~p-p-p where pp and approximate the
amplitude term by |p—p’|~./p. Then, the integral
equation becomes,

L k(i et

: Se(p)eik PP P drdyr (21
E'(p) = 41%:[[ H e(p)e ' dy'.(21)

By writing the incident field wavevector k as k = koll
we may further reduce the integral equation to,



V2%
ES(p) = B(psko) [ [Ba(pne™ ™ P Pdvdy  (22)

Y1%

where B(p:k,) has been used to representing the leading
terms in (21). Once again, we expand the unknown
contrast function in terms of whole-domain, harmonic
basis functions as,

U \%4
Se(p) ~ 3 3 aujvei((kwkxﬁ-k},vk},).5) 23)
u=—(U-1)yyv=—(V-1)

where k,, = (u—1/2)Ak,, and k,, = (v=1/2)Ak,.
The coefficients a, , correspond to the unknown
amplitude of the (u, v)th basis function, while U and V
limit the number of basis functions selected. For
convenience we now impose a natural ordering on the
pairs (u, v) such that we may re-write the basis function
expansion (23) as,

L
se(p)= S aeh P L =12,
I=1

LAUV (24)

where each ! corresponds to a unique pair (u,v) and
where ki _is given by the corresponding value
Kk + k.

Substitution of the basis function expansion into integral
equation (22) yields,

ES(A) L )% o
— P Za,jje“”5’>e”‘o<’<*P>'P’dx'dy'. (25)
Blpskg) =

I=1 yx

Thus, (25) represents a single equation in the L = 4UV
unknowns «;,. To obtain more equations we now
considering multiple incident fields at different angles
of incidence and various frequencies. Specifically, we
note that if we take any incident field where k = p, we
obtain,

N L %
Ei(p) _ zalJ'J'ei(fcz'5')ei(22-5')dx'dy', (26)
B(p7k0) I=1 yx

To create a set of L equations in L unknowns we vary
the incident field wavevector in a manner analogous to
the 1D case ie, we let the physical wavevector
k=%k,/2,for m = 1,2,...,L. This results in,
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N L )%
L) g [ [eithe et Mgvdy . (27)
Blpsk,,/2) T

= y1%

where we have taken a different measurement location
p. for each equation. Note that p,, must be both in the
far field, and in the direction of k,, to validate previous
assumptions. Finally, we note that if we select
Ak, = (2n)/(x,—x,) and Aky = (2n)/(y,—y;) then
the basis functions are orthogonal to the kernel of the
integral operator over the domain D which reduces the
inverse problem (27) to a perfectly conditioned linear
system analogous to (9),

I-a=f. (28)

Again, like the 1D case, at subsequent iterations
beyond the first-order Born Approximation, we use the
basis function expansion,

L
6s(n)(5') ~ Z azei“('l)(’?t P

I=1

L=1,2..,4UV (29)

where, as discussed in Sections 5, the parameter o™ s

used to minimize the condition number of the discrete
operator.

VII. NUMERICAL RESULTS

The iterative procedure using the adaptive basis
function expansion previously described was
implemented and tested. Herein we show the 1D results
for a relative permittivity contrast selected to be the
positive cycle of sinusoid with period 0.4 m centered
over the domain x = [-0.1,0.1] having an amplitude of
2 and a rectangular contrast of amplitude 1 existing
over the same domain. Data was acquired at the locations
x = —0.4 and x = 0.4 m while the imaging domain was
restricted to D = [-0.3,0.3] m. The contrast was
expanded using 20 basis functions i.e. L = 10 and a
direct search of the parameter space was performed over
the range [1, 1.4]. The results of the 1D-DBIM and BIM
are shown in Figs. 1 and 2, respectively. As expected, the
DBIM method converges faster than the BIM [5], [9].
Note that in Fig. 1, the Distorted Born reconstruction for
the sinusoid converges at iteration 2 and therefore, the
curve for iteration 6 lies on top of the curve for iteration
2. The profile error from iteration to iteration for both
methods is shown in Fig. 3 while the
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Fig. 1. 1D DBIM profile reconstruction results: sinusoidal (a), rectangular (b).
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Fig. 2. 1D BIM profile reconstruction results: sinusoidal (a), rectangular (b).
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system condition number versus parameter value a™

are shown for the two methods in Fig. 4.

For the 2D case, we show the results of the BIM for
a contrast function that consists of two Gaussian pulses,
centered at (x,y) = (0.2,0.2) m and (0.3, 0.3) m within
a square imaging domain that extends in both dimensions
from 0.0 to 0.5 m. The standard deviation of each pulse
is 0.025 in both spatial dimensions. The pulse closer to
the origin was given a maximum amplitude of 2 while
the other, an amplitude of 1 . To iteratively reproduce the
contrasts we used 144 basis functions (selecting
U = V = 6). Figure 5 shows the true contrast function
and reconstructed profiles after the Born approximation
and the sixth iteration.

In all cases, the forward solution was obtained from
a MoM formulation using a pulse basis over the imaging
domain.

Contrast Error vs Iteration n
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Fig. 3. 1D error convergence: DBIM (a), BIM (b). The
values corresponding to the rectangular contrast have
been increased by a factor of 100 for clarity.
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VIII. DISCUSSION

While a rigorous mathematical investigation of the
effects of our parameterized basis function expansion is
subject to ongoing research, we can suggest three
immediate reasons why this technique is a good
candidate for solving the linearized inverse scattering
problem. First, the very nature of the basis function
expansion limits the high frequency components of the
reconstructed profile which, as discussed in Section 1,
contributes to the ill-posedness of the original problem.
Second, as the condition number is defined as the ratio of
the largest to smallest singular values of the operator
matrix, we are implicitly demanding that the solution to
the discrete system, corresponding to the basis function
coefficients, is not overwhelmed by unconstrained high
frequencies. This can be seen by ordering the singular

Matrix condition number vs o over iterations
T T T T T T
Iteration n = 2
= = —lterationn =3
[ Iteration n =5
== lterationn =7

Matrix condition number C™(a™)

L L L L
1 1.05 11 115 12 125 13 135 14

a(n)
o Matrix condition number vs o over iterations
10 T T T T T T -
Iteration n = 2 ¥
= = —lterationn =3}~
i =5l
q Iterationn =5 N
! ~ '~ lterationn =7/}

Matrix condition number C™(a™)

.
1 1.05 11 115 12 125 13 135 1.4
o(n)

(b)

Fig. 4. 1D condition number as a function of a(") for
various iterations: DBIM (a), BIM (b). Condition
number values have been increased by a factor of 10
times the iteration count for clarity.

67



68

values of the discrete operator in non-increasing order
and noting that the corresponding singular vectors have
a non-decreasing number of zero crossings. frequency
[4]. Lastly, and perhaps most importantly, if we consider
the multiple-frequency approach in conjunction with
minimization of the condition number as a sort of
regularization technique itself, the selection of the basis
function parameter (which, in this context would double
as the regularization parameter) is well-defined: we
select the value of the regularization parameter which
minimizes the condition number of the discrete operator.

Two comments should be made. First, at an arbitrary
iteration , the function (o™ is not unimodal and
an optimization technique is required to determine the
optimal value of o™ . For the results shown in this
paper, as the optimization space is over a single
parameter (for both the 1D and 2D formulations), we
have used a direct search over the parameter space.
Empirically, we have found that at each iteration, the
condition number has a global minimum on the interval

" 1 where,

ot(n) e[l, O nax

ocf:a)X = Jmax(Re(Ss(”)(x)) +1). (30)
The previous expression is motivated by the fact that the
basis function parameter is present as a phase term in the
basis function expansion and should therefore be in some
way proportional to the field velocity in the medium.
Fig. 4 shows typical behaviour of the condition number
as a function of the regularization parameter.

Clearly, minimizing the condition number of the
matrix involves the repetitive computation of the discrete
operator for each o™ e [1, (xx'ax] and its condition
number. Fortunately, the number of harmonic basis
functions required to satisfactorily reproduce an
unknown contrast function is generally much less than if
a pulse basis expansion was considered. As a result, the
condition number evaluation does not pose significant
computational strain.

Second, in many cases the condition number of the
operator matrix is not unreasonably large. Nevertheless,
minimization of the condition number is still required to
obtain a good solution. Thus, at each iteration, it is
essential to pick al™ corresponding to the minimal
condition number and not to one that appears
“sufficiently small”.

IX. CONCLUSIONS

Herein we have shown that it is possible to avoid the
use of common regularization techniques in the iterative
solution to the inverse scattering problem by carefully
formulating the experiments used to construct the

ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007

discrete linearized inverse problem. Specifically,
adopting a multiple-frequency formulation with adaptive
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Fig. 5. 2D BIM profile reconstruction results: True
contrast (a), first-order (b), and after six iterations (c).



basis functions and a global optimization over the basis
parameter provides a well-conditioned matrix at each
iteration. We have demonstrated the applicability of our
adaptive basis functions to both the DBIM and BIM
methods in 1D as well as to the BIM method in 2D
(application to the 2D DBIM method poses no
theoretical problems). Our current concerns are
convergence to high-contrast profiles but this seems to
be a problem which may be inherent in the Iterative Born
techniques [2]. Even if this is the case, we plan on
applying our approach of properly formulating the
problem to other (possibly non-iterative) solution
methods in order to determine exactly in what cases the
usual regularization methods are avoidable. Future work
will include a rigorous analysis of the ability of the
proposed basis functions to reconstruct profiles in the
presence of noisy field data. Also, we will consider an
analysis for an optimum number of basis functions at
each iteration.
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