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ABSTRACT: When analyzing wire antennas, the "thin-wire" kernel is often used as a convenient
approximation to the exact singular kernel in the electric-field integral equation. In this paper, it is
shown that the thin-wire kernel is a poor approximation to the true kernel, but its use does yield
good values for input impedance over a significant range of parameters (e.g., wire radii, size of
subsectional cells). The validity of the thin-wire kernel when used within the electric-field integral
equation appears to be due to the fact that the approach is often a good approximation to the
Extended Boundary Condition (EBC) formulation. Although it is often implied in the literature that
use of the thin-wire kernel will produce "convergent" values for input impedance, in actuality there
is no guarantee that results improve as more cells are taken along the wire. Despite widespread use
of the "thin-wire" kernel, there are inherent difficulties in the validation of codes based on this
approximation.

1. INTRODUCTION

One question of importance to the computational electromagnetics community is: Do the
results from moment-method codes using different basis and testing functions converge to the
same solution? In an attempt to answer this question, several integral equation formulations were
used to generate numerical solutions for the input impedance of linear dipole antennas. As is
common practice when modeling wire antennas, these formulations incorporated the “thin-wire"
kernel within the electric-field integral equation. Unfortunately, it was impossible to determine if
the results from these formulations converged to the same solution as the number of unknowns
used within the numerical model increased, because the results for impedance failed to converge.
In this paper, it is shown that the lack of convergence was due to the use of the thin-wire kernel
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within the electric-field integral equation. In addition, several conclusions are presented relevant to
the validation of computer codes of this type.

The thin-wire kernel is presented in Section 2, followed by a description of the initial
validation study in Section 3. In addition, Section 3 presents results for the input impedance of
linear dipoles produced by two different codes that incorporate the thin-wire kernel. Section 4
presents data generated using the exact kernel. Finally, a discussion of the EBC method is
presented in Section 5. Use of either the exact kernel or the EBC formulation appears to improve
the convergence behavior of the numerical solutions.

2. THIN-WIRE APPROXIMATION TO SINGULAR KERNEL

During the past two decades, many publications concerning numerical solutions for
impedance of wire antennas have employed the "thin-wire" kernel as a convenient approximation to
the exact singular kernel in the electric-field integral equation. If we consider a hollow, linear
dipole with constant radius a, excited by a ¢-invariant feed, the exact form of the electric-field
integral equation (EFIE) is
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In this paper, Equation (3) will be referred to as the "thin-wire" kernel, and the combination of
Equations (1) and (3) as the "thin-wire" equation. Solutions to either the thin-wire equation or the
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exact equation are typically obtained via the method of moments [1-11]. The advantage to the use
of (3) instead of (2) is the relative ease by which the moment-method matrix elements are
computed. The use of (3) typically requires a one-dimensional numerical integration over a non-
singular integrand for all the elements; the use of (2) usually requires two-dimensional numerical
integration over an integrand that contains a singularity that must be dealt with as a special case.
Thus, considerably more work is required to implement the exact kernel, both in terms of the
numerical computation and in the complexity of the computer code.

The validity of the thin-wire equation has been discussed by many authors, who usually
conclude that the equation is valid only when the wire radius a is much less than the wire length
and the wavelength. King suggests that the equation is valid only when Ba < 0.1 [3]. Tesche
presents data showing a comparison between the thin-wire kernel of Equation (3) with the exact
form of Equation (2), and clearly illustrates that results from the thin-wire equation diverge from
those of the rigorous EFIE as the dipole size increases (length and radius) relative to the
wavelength [6]. In order to develop guidelines for the use of the thin-wire equation in the context
of the method of moments, it is necessary to incorporate information about the dipole radius with
information describing the cell sizes in use. Imbriale and Ingerson applied the thin-wire equation
to thicker wires, and introduced the concept of an equivalent radius that appears to correct for the
rapid numerical divergence sometimes encountered [8]. Elliott concluded that the thin-wire
equation is valid as long as the segment being integrated within the method of moments is at least
several wire radii in length [10]. However, Poggio previously studied several different
approximations to the exact kernel, and identified their regions of validity [5]. He concluded that
the "blind" use of any approximate kernel was inappropriate. These and other publications identify
limitations associated with the thin-wire kernel, but none appear to provide comprehensive
guidelines for its use. This is in spite of the fact that the thin-wire kernel has a long history of use
in computational electromagnetics.

3. INITIAL VALIDATION STUDY

To investigate the validity of numerical models for wire antennas, the input impedance
results from several different moment-method codes were compared. The objective of the
comparison was to determine whether the numerical solutions from each code converged to the
same result for input impedance. To focus on the effect of different basis and testing functions, the
geometry (linear dipole) and feed model (frill source [7,12]) were identical in each code.

Program CENFED from the text by Stutzman and Thiele was available for the case of pulse
basis functions and Dirac delta testing functions [11], and a second code SINGAL was generated
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by the author which used subsectional sinusoidal-triangle functions for basis and testing. It is
suggested that the type of basis-testing function pair used by SINGAL produces "rapidly
converging” solutions [11]. Both of these codes were based on the exclusive use of the thin-wire
kernel. One-dimensional numerical integration was required in each case to compute the entries of
the moment-method matrix. The input impedance was defined as the reciprocal of the current at the
feed location in the center of the dipole. The frill feed used in both codes was tested on the axis of
the dipole rather than the actual surface, following the approach employed within CENFED. Both
codes neglected currents on the dipole end caps.

Based on Figures 7-5 and 7-12 from Stutzman and Thiele [11], it was expected that both
CENFED and SINGAL would produce input impedance solutions that began to converge to some
value when the number N of basis functions along the dipole approached 100 per half wavelength
(CENFED) or 25 per half wavelength (SINGAL). Typically, these figures are plotted on a linear
scale which tends to flatten the curve as N is increased. Mittra and Klein recommend plotting
impedance as a function of 1/N, in order to facilitate a better estimate of the limiting value as N
increases [13]. Figures 1a and 1b show the input impedance produced by CENFED as a function
of 1/N, for a dipole of length 0.47 A and radius 0.005 A (where A denotes the wavelength). Of
interest is the fact that there are two distinct curves in these figures, one obtained with N equal to
an even number and another obtained with N odd. In Figure 1a, the even and odd curves appear to
coalesce at approximately N=100. More important is the fact that the curves for input impedance
do not appear to converge as N increases. This is especially evident in Figure 1b.

SINGAL was also used to model the identical dipole geometry, and results for input
impedance as a function of N (for N odd) are displayed in Figures 2a and 2b. In this case, the
results are plotted on a logarithmic scale, so that a successive doubling of N contributes to an equal
increment along the horizontal axis of each figure. Although slightly different curves could be
obtained for even values of N, there was little difference between SINGAL's results for N even
and N odd. Noteworthy, however, is the fact that these curves appear to be straight lines; they
lack any indication of convergence to a finite result.

It is clear that the above data do not converge as the number of expansion functions is
increased. Yet, numerous examples of this type of data showing agreement with measured results
are available in the literature. For example, Figure 7-6 from [11] shows excellent agreement
between the output of CENFED with N=100 and measured impedance data. Thus, for certain
parameters, valid results can be produced by these codes. However, based on Figure 1, it is
obvious that data from CENFED for N less than 100 is questionable (because of the large
difference between even and odd N). In addition, as N increases beyond 100 the numbers
continue to change. As a result, the user of this type of moment-method code can not reliably get a
"better" answer by increasing N.
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Figure 1.
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Input impedance produced by CENFED (thin-wire kernel; pulse.
basis functions and Dirac delta testing functions) for a dipole with

length L=0.47 A and a=0.005 A. The data is plotted versus 1/N,
where N is the number of basis functions. a) real part; b) imaginary
part.
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Figure 2. Input impedance produced by SINGAL (thin-wire kernel,
sinusoidal-triangle basis and testing functions) for a dipole with

length L=0.47 A and a=0.005 A. a) real part; b) imaginary part.
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The source of the divergence in Figures 1 and 2 is believed to be due to the use of the thin-
wire kernel. If viewed as an approximation to the exact kernel, the thin-wire kernel is
fundamentally incompatible with a moment-method approach (which should improve in accuracy
as the cell sizes are reduced) because it becomes less valid for smaller cells. The observed
divergence of the impedance data is at odds with much of the literature, where the prevailing
opinion seems to suggest (or assume) that the input impedance produced by the thin-wire equation
converges as the number of basis functions used in a moment-method procedure is increased. In
addition, Miller and Deadrick observed that the use of the thin-wire kernel resulted in a non-
physical oscillation in the current at the ends and middle of a center-fed dipole [Figures 4.3 and 4.4
of reference 9]. They do not explain the oscillation other than to say that it is "numerically
generated." Because the thin-wire kernel is usually considered a good approximation to the exact
kernel, it is often suggested that one could improve the performance of a thin-wire computer code
by replacing Equation (3) by Equation (2) for the closely-spaced terms in the matrix, and using
Equation (3) for the remaining terms. This is sensible if, in fact, Equation (3) is a reasonable
approximation to Equation (2). Below, we show that this is often not the case.

4, COMPARISON OF MATRIX ELEMENTS PRODUCED BY THIN-WIRE AND EXACT
KERNELS

To study the difference between the exact and thin-wire kernel in detail, an additional
computer code was created using the exact singular kernel from (2) and subsectional sinusoidal-
triangle basis and testing functions. Care was taken to ensure that the matrix elements could be
evaluated accurately (to 4 or 5 decimal places, if desired) so that meaningful comparisons could be
obtained. The matrix elements were computed using adaptive numerical integration algorithms
from the IMSL software library. When the source and observation regions within these integrals
coincide, the singularity in the exact kernel is extracted and integrated analytically, following an
approach similar to that implemented by Wilton and Butler [14]. The computer used for this study
was the CDC CYBER 175, which uses 60 bit registers for arithmetic operations.

Although it is possible to directly compare the exact and thin-wire kernels, it is more
meaningful to compare the entries of the moment-method matrix. Data for the diagonal impedance
matrix elements produced by the use of Equations (2) and (3) are compared in Tables 1 to 8.
These data are based on the use of sinusoidal-triangle basis and testing functions. It is clear that
the numbers arising from the two kernels exhibit good agreement for the non-singular part of the
equation (Tables 1 - 4) but are very different for the singular portion (Tables 5 - 8). In fact, there
is a considerable degree of difference in these values even over the range of cell size often
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Re{Zmm} as a function of cell length / for radius a=0.0025 A.

TABLE 1

Re{Zmm} as a function of cell length [ for radius a=0.01 A.

IV thin-wire exact
0.001 0.000197 0.000197
0.002 0.000789 0.000789
0.005 0.004932 0.004932
0.010 0.019732 0.019731
0.020 0.078957 0.078953
0.050 0.49485 0.49483
0.100 1.9992 1.9991
0.200 8.3296 8.3292
0.500 73.092 73.088
TABLE 2

Re{Zmm} as a function of cell length / for radius a=0.05 A.

LA thin-wire exact
0.001 0.000197 0.000197
0.002 0.000789 0.000788
0.005 0.004929 0.004925
0.01 0.019717 0.019701
0.02 0.078899 0.078837
0.05 0.49449 0.49410
0.1 1.9977 1.9961
0.2 8.3234 8.3168
0.5 73.036 72.977
TABLE 3

I(A) thin-wire exact
0.001 0.000193 0.000190
0.002 0.000774 0.000759
0.005 0.004836 0.004741
0.01 0.019345 0.018966
0.02 0.077411 0.075893
0.05 0.48516 0.47564
0.1 1.9600 1.9215
0.2 8.1658 8.0051
0.5 71.623 70.183
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TABLE 4

Re{Zmm) as a function of cell length [ for radius a=0.2 .

I\ thin-wire exact
0.001 0.000140 0.000101
0.002 0.000560 0.000402
0.005 0.003502 0.002513
0.01 0.014008 0.010051
0.02 0.056052 0.040219
0.05 0.35127 0.25203
0.1 1.4187 1.0176
0.2 5.9045 4.2298
0.5 51.373 36.453
TABLE 5

Im{Zmm) as a function of cell length [ for radius a=0.0025 A.

) thin-wire exact
0.001 -72.084 -1691.7
0.002 -248.48 -1704.1
0.005 -829.94 -1733.7
0.01 -1286.9 -1708.0
0.02 -1398.9 -1546.9
0.05 -1094.6 -11229
0.1 -759.73 -766.91
0.2 -440.82 -442.51
0.5 41.584 41.328
TABLE 6

Im{Zmm} as a function of cell length / for radius @=0.01 A.

1) thin-wire exact
0.001 -1.186 -421.34
0.002 -4.693 -421.74
0.005 -27.261 -423.57
0.01 -88.072 -427.27
0.02 -206.67 -432.37
0.05 -337.17 -413.31
0.1 -325.19 -349.27
0.2 -230.22 -236.51
0.5 38.776 37.767
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TABLE 7

Im{Zym} as a function of cell length / for radius a=0.05 A.

(D) thin-wire exact
0.001 -0.0091 -90.448
0.002 -0.0364 -84.233
0.005 -0.2268 -84.246
0.01 -0.8969 -84.266
0.02 -3.4311 -84.287
0.05 -16.600 -83.961
0.1 -37.438 -81.361
0.2 -49.164 -68.174
0.5 24.257 19.822
TABLE 8

Im{Zmm} as a function of cell length / for radius a=0.2 A.

YN thin-wire exact

0.001 -0.0002 -29.584
0.002 -0.0006 -22.263
0.005 -0.0038 -21.052
0.01 -0.0151 -21.046
0.02 -0.0604 -21.015
0.05 -0.3712 -20.852
0.1 -1.4031 -20.446
0.2 -4.6888 -19.454
0.5 -19.163 -20.190

TABLE 9

Zym and input impedance for dipole with L=0.5 A and a=0.0025 A.

N 101 201
matrix entry
(thin-wire) -0.00058+j39.350 -0.00008+j12.787
input impedance
(thin-wire) 91.59+j48.45 92.44+j50.05
matrix entry
(exact kernel) -0.00058+j52.669 -0.00008+j26.959
input impedance
(exact kernel) 90.57+j47.15 90.82+j47.94
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described in the literature as the "accurate range" (i.e., the range where the thin-wire kernel is
supposedly a good approximation to the true kernel). From a study of these tables, it appears that
the cell length to radius ratio must exceed 10 for the thin-wire kernel and exact kernel to produce
similar diagonal matrix elements.

To investigate the difference in input impedance, results from the code based on the exact
kernel were compared to data from SINGAL. Both codes neglected end-cap currents, and the frill
feed employed with the exact kernel code was tested on the dipole axis (an additional
approximation). Figures 3a and 3b show the real and imaginary part of the input impedance of a
dipole with length L=0.47A and radius a=0.005A as a function of the number of basis functions,
for both the thin-wire equation and the exact EFIE. On a logarithmic scale, the exact kernel data do
appear to be converging. Observe that the values for input impedance produced by these codes are
very similar for N between 10 and 50. It is remarkable that the values for input impedance are so
close, when for these parameters the values of the diagonal matrix elements differed by as much as
a factor of 4. (Normally, the input impedance is very sensitive to slight changes in the diagonal
matrix elements.) Table 9 shows a comparison of input impedance and diagonal matrix elements
for a dipole with L=0.5\ and a=0.0025A. There is clearly more difference in the matrix elements

than in the input impedance.

5. DISCUSSION

The "thin-wire" equation has achieved widespread use because it produces useful results
for many applications. Surprisingly however, Equation (3) is a often a poor approximation to
Equation (2). In other words, numerical experimentation suggests that Equation (3) has a range of
validity much greater than one would expect based on a comparison to Equation (2). The validity
of the thin-wire kernel seems to be due to the fact that the thin-wire equation closely approximates a
completely different formulation, the Extended Boundary Condition (EBC) method proposed by
Waterman [15-16] and applied to dipoles by others [17]. (It is interesting that this point of view
was adopted early in numerical electromagnetics by Richmond [2], although it does not appear to
have achieved widespread appreciation. Recently, Burke [18] indicated that the EBC viewpoint
was being employed in connection with upgrades to the Numerical Electromagnetics Code (NEC)
for wires [19].) The EBC method requires the boundary conditions to be enforced interior to a
solid body, and makes use of the analytical continuation of the fields to ensure their enforcement
on the surface (thus, "extending" the boundary condition). An advantage of the EBC approach in
comparison to the conventional surface integral equations is the nonsingular kernel that arises in the
EBC method. A disadvantage is the inability of the rigorous EBC method to treat open structures
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Figure 3. Input impedance produced by SINGAL compared to data from a

formulation using the exact singular kernel for a dipole with length

L=0.47 ) and a=0.005 A. Both formulations use sinusoidal-triangle
basis and testing functions. a) real part; b) imaginary part.
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(including hollow dipoles). However, in many cases the computer modeling of thin wires does
not distinguish between the solid and hollow case, as any end-cap currents are neglected. The
primary difference between the EBC and thin-wire equations for a solid wire is the absence of end-
cap currents in the thin-wire equation. In general, as long as the physical end-cap currents are in
fact negligible, the thin-wire equation will be a good approximation to the EBC equation. Note that
the exact implementation of the EFIE would require the feed field to be sampled on the dipole
surface. In contrast, the EBC formulation requires the excitation to be sampled internal to the
body. It is interesting that many codes based on the thin-wire kernel (including CENFED and
SINGAL) employ the EBC treatment of the excitation.

There are many observed effects attributed to the thin-wire kernel that can be explained in
terms of the EBC perspective. As compared to a rigorous EBC formulation, the apparent
approximation in the thin-wire equation is to neglect the end-cap currents. Thus, it is not
surprising that Miller and Deadrick observed a non-physical oscillation in that region of the dipole
[9]. In unpublished numerical experimentation carried out by colleagues of the author, the
modification of a thin-wire program to incorporate basis functions on the end caps reduced the type
of oscillation observed by Miller and Deadrick by an order of magnitude. (The improved effect
was observed after the addition of one basis function to model currents on flat end caps. This did
not constitute a rigorous application of the EBC method, because many degrees of freedom are
necessary in order to analytically continue the fields to a flat end cap. Thus, the oscillation was not
eliminated entirely.) As hypothesized in Section 3, hybrid schemes involving a mixture of the thin-
wire and exact kernels should only produce reasonable results if Equation (3) is a good
approximation to Equation (2). Tests conducted by the author suggest that hybrid schemes
sometimes completely fail to produce correct results. This is despite the fact that both the exact
EFIE and the thin-wire equation, if not hybridized, produced very acceptable input impedance
results on their own for the same parameters. These findings support the notion that Equation (3)
does not have to be a good approximation to (2) in order for the thin-wire equation to produce
reasonably accurate results.

Figures 4a and 4b show the effect on input impedance of including a single basis function
to represent end cap currents. The curves clearly flatten compared to those of SINGAL. Although
the results based on the improved end cap model do not appear to be converging, it is felt that this
is primarily a consequence of the fact that only one basis function is employed at each end. Use of
additional basis functions at the end caps should be investigated to verify this conclusion.
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6. CONCLUSIONS

The "thin-wire" kernel has been widely used in formulations for the input impedance of
wire antennas. If used "blindly," it can produce reasonable results when an appropriate number of
basis functions are employed. However, the numerical results will not converge as the number of
functions is increased. This complicates the validation of codes employing the thin-wire kernel.
The initial validation study described in Section 3 failed to determine if results from different
moment-method codes converged to the same answers, because results did not converge when the
thin-wire kernel was employed. To date we have not pursued this study further, but it is apparent
that additional complexity will be required in the codes to obtain converging results. One
possibility is to employ the exact singular kernel and the associated two-dimensional numerical
integration. The alternative appears to be the incorporation of end cap currents within a rigorous
EBC formulation, which would enable the use of the thin-wire kernel for most of the required
matrix element computations. However, the EBC formulation may require many basis functions to
properly represent the end cap currents.
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