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Abstract

A method of estimating the error committed in nu-
merical solutions of integral equations is presented. It is
shown how the error can be computed in spaces other
than L2, why this is reasonable and sometimes neces-
sary. The appropriate function spaces are also shown to
lead to bounded condition numbers even for first kind
equations.

Introduction

The numerical solution of the integral equations of
electromagnetics has been the subject of intense study
in the electromagnetic community for over thirty years,
following the work of Andreasen {1]. While tremendous
strides have been taken, at this time it is fair to say that
many problems remain intractable due to the large elec-
trical size of the scattering object and the oscillation of
the kernels in the integral equations now in use. Further-
more, except for very simple canonical shapes, there are
no computable, mathematically rigorous error estimates
available. Here we discuss two aspects of these outstand-
ing problems, deriving a—posteriori error bounds which
can be computed without the knowledge of an exact so-
lution and developing a hierarchy of spaces in which to
calculate a condition number, which clearly shows how
first kind operators can be well conditioned.

Residual Error Estimates - General Remarks

In the numerical solution of integral equations one is
invariably faced with the problem of estimating the ac-
curacy of a numerical solution. The significant advances
in establishing convergence of Galerkin approximations
(moment methods) are based on asymptotic error esti-
mates in terms of mesh width. Here we consider the
solution of integral equations using finite element meth-
ods, that is, locally supported trial and test functions,
e.zg. hat functions. Not only can it be shown that the
approximate solution converges to the actual solution as
the mesh width goes to zero but also the optimal asymp-
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totic orders of convergence can be determined in many
cases. However, asymptotic error estimates do not suf-
fice to estimate the actual error for finite mesh widths.

The boundary and domain integral equations that
arise in electromagnetics are either of first or second kind
while the integral operators are either weakly singular,
singular or hypersingular, that is, the kernels have singu-
larities which are integrable, Cauchy, or non-integrable
respectively. The equations may be written in the form
of an operator equation

Lu=f (1)
where L denotes a linear integral operator, and where
the kind of equation and the singularity of the kernel
determine appropriate normed function spaces X and ¥V
for which L : X — Y is a continuous linear boundedly-
invertible mapping of X into ¥. These properties imply
the existence of constants ¢;,ce > 0 independent of u
such that

ey | Zully < |lulix < co||Lully, YueX

(2)

which means that |Jufx and [[Lu]y are equivalent
norms, that is, || Lu|y may be used as a norm in X.

One fruitful approach to measuring the quality of an
approximate (numerical) solution of (1) is based on the
use of residual errors. For f € ¥ let w and u, € X be
ezact and epprozimate solutions of equation (1), respec-
tively. Hence, u satisfies (1) and for the error

elug) i=u—ug € X, (3)
we easily derive the following relation

Le(ug) = Lu — Lu, = f — Lug = r(us) {(4)

where r{ug) € Y is referred to as the residual error at
u,. Equations (3) and (4) together with (2) lead to

()

c1 lir(ually < lle(us)llx < c2 lir(ua)lly -
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This relation shows that the error |le(u,)|lx is bounded
by a constant times |r(u}{ly but more importantly,
because of the equivalence of the norms, the quantity
Ir{us Yy actually measures e{u,). That is, the space X
may be equipped either with norm |- [|x or ||L - |y and
it is with respect to the latter that e(u,) is measured.
Moreover, practical estimates of the constants ¢; and ca
may be obtained as described below.

Residual Error - Smooth Closed Boundaries

To illustrate these ideas more concretely we consider
specific integral equations, the usual integral equations
which occur in scalar scattering by an acoustically soft
(Dirichlet boundary condition) surface, I'. In two dimen-
sions this corresponds to scattering of TM waves where
the electric field has one component and it is parallel
to the axis of the infinite cylindrical body. The usual
boundary integral equations that arise from Green’s the-
orem are

[ ole T )l ds = W) (6)

6 inc

28n()+/a o) o) = () (7)
where
, eikR a
g(r,r') = 4:rrR in IR (8)
= 4 HM(kR) in R?

B = |r—r'! and the normal to I points into the exterior of
. To simplify the equations we introduce the shorthand
operator notation for equations (6) and (7)

Bu

6n = ¢ ©)
1 du Bu'ne
( =I+D"— 3 = om {10)

where the operators § and D' are implicitly defined in
(6) and (7). As is well known neither the first nor the
second equation is uniquely solvable for all frequencies.
However, the combined field equation

ou du u'ne

Lg— = &n e S on
is uniquely solvable for all frequencies provided Re 7 % 0.
In this example it suffices, provided I is smooth, to lock
for solutions in L?(T") and measure the residual in the
same space, that is X =Y = L%(I"). Then equation (5)
shows that the residual error in L3(I") provides both an
upper and a lower bound on the error e{u,) in L*(T).
The constants ¢; and ¢z may be estimated in terms of
the minimum and maximum singular values of L (see [6])

Ou inc (11)

( I+D’) +inu
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which themselves may be approximated, when the equa-
tion is discretized, by the singular values of the stiffness
matrix (impedance matrix). If we look a little more care-
fully into this simple well known problem, we find that
we have not yet told the whole story. The solution we
seek is the normal derivative of the total field, a physical
quantity. The energy in any bounded subdomain exte-
rior to I is measured in terms of the L?-norm of not
only the field quantity u, but also Vu. Such functions
are said to belong to the Sobolev space H} (ext T'). The
boundary values, or “trace”, of functions in this space
are in L?(T") but in fact they have additional integrabil-
ity properties which are described by the following norm

lal} = lull3 + f f Ju(r u(e)l*

where n = 2 or 3 (depending on the dimension of the
Euclidean space) and |ju/|o denotes the norm in L2(T).
If the field quantities have higher derivatives which are
square integrable in bounded subdomains of the exte-
rior of T, then they are said to lie in H[? (ext ') where
m = 1,2,3,4,... denotes the highest order derivatives
which are sguare—integrable.

The boundary values of
such functions which we denote by u| , the restriction

dsds’' <oo (12)

of u to T, will also be smoother and are in the space
H™%(T) which means that the (m — 1) derivative
satisfies the relation (12) and all lower order derivatives
(including the order zero) are in L*(T').

If m > 2, then the normal derivative of u, which of
course will not in general be as smooth as |, will lie
in the Sobolev space H™~#(['). In such cases both u

and £% will also lie in L*(T) so it makes sense to look
for solutions of (11) in L*(T") and also to measure error
in this space as well. However when m = 1, the normal
derivative lies in a larger space than L?(T') and in fact
lies in the dual of H%(T'), the space of all bounded linear
functionals on H#(T'), which is denoted by H- #(I). The
norm in this space is defined as

11[2—;“1-1) ds!
su 13
foul-y = I P (13)
v#0

Of course, while the norm in H(T), (12), is more dif-
ficult to compute than that in L?(T), it is still possible.
However, the norm in H~%(I') is immensely more diffi-
cult to actually compute without further modifications.

Residual Error - Open Surfaces

Historically the preferred formulation of a problem in-
volves a second kind equation, with a weakly singular
integral operator if possible, as in the above example.
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For such equations the space of square integrable func-
tions, L?, is a suitable setting since both the data and the
solution lie in this space. Moreover this is the space in
which computations are most simply performed. How-
ever first kind equations occur as naturally as second
kind equations, and work over the past twenty years
[3,5,8,9] has shown that many of the eperators involved
are boundedly-invertible (i.e., isomorphisms), just as for
second kind eguations when considered in the function
spaces appropriate to the physical problem involved.

In fact, for open surfaces the only naturally arising
intégral equations are of first kind. In this case the ap-
propriate solution space may not be L2 no matter how
smooth the data f is! For example, when the scatterer is
a conducting strip of width 2q, then the solution of the
EFIE is singular of order 1/v/2? — aZ at the end points
and is not in L2

If we consider the Dirichlet problem as above in the
case when I has no interior, that is the scatterer collapses
to a strip or plate, then Green’s theorem yields only the
first kind equation

Lw := f g(r, ) w(r)ds’ =u™(x), rel, (l4)
r

where I' denotes the open surface (strip or plate) and
Bu
!
={=—| - 1
wi) = |5 (15)

We denote by [g—;‘;] the difference between the values of
Su

£ on each side of I'. There is no second kind equa-
tion in this case. Nevertheless this first kind equation
is uniquely solvable for Imk > 0, but w possesses sin-
gularities at the edges of I which means that w is not
in L2(T"). As before u € H} (extT') and u|.€ HY(T)
where H*/2(T) is defined as before except that [ is now
the open surface. But for open surfaces the definition of
the trace must be clarified to allow different limits de-
pending from which side the surface is approached. In
general the trace may have different values depending
on the direction of approach. The jump in the trace, the
difference between the two (possibly different) limiting
values of u, is better behaved than the individual traces
since the singular behavior at edges will be lessened. For
the Dirichlet problem for the strip, it is well known that
the field itself is not singular at the edges but behaves
as the square root of distance to the edge. However the
jurp in the traces will be even smoother. The appropri-
ate space for the jump of the traces is thus not H'/2(T")
but a smoother (smaller) space, H%/2(T'). This space is
defined as follows. Let I be an extension of T to a closed
surface so that ' ¢ T. The norm in H¥/2(T) is defined
exactly as before, (12), with T replacing I'. HY%(T) is
the subspace of H1/2(T") which contains all functions in
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H/2([") which vanish outside of I'. The norm of H/2(I)
is therefore

2z onl

0 onT\T
(16}

Having defined the two spaces, H1/3(I') and the proper

subspace H/2(T'), the corresponding dual spaces may

be defined as

lull grreery = lluoll gaszey where ug =

(HYAT)Y == H™VA(T) (17)

and
(HYT)Y :== H~Y(T). (18)

The norms in these negative order Sobolev spaces may
be defined in a similar way as (13) but they are both very
difficult to compute. The important fact is that w, the
solution of the integral equation (14), lies in H~1/2(I),
which is the dual of H'/2(T"), not in H-Y/2(T). The er-
ror, e{w,), will also lie in A~1/2(T), so that even if the
exact solution were known, it would be very difficult to
calculate e(w, }. However it has been shown [11] (see also
[4]) that the operator L defined in (14) maps H~1/3(T') to
H1/2(I'} and is one-to—one, onto and continuous. Thus
the residual error r(w,) will lie in H*/%(I') and hence
is computable. Moreover the residual error may also be
computed in L?(T') but this will always be an underesti-
mate.

Condition Number

Another aspect of error analysis which we wish to
address is the role of condition number as an indica-
tor of accuracy in numerical solutions of integral equa-
tions. The conventional approach to numerical solutions
involves discretization of the integral equation and solu-
tion of the resulting linear system using any of a variety
of methods. The condition number of the system is usu-
ally used as an indicator of its stability.

The condition number of an operator L, or its dis-
cretized matrix form, is given by

Cond(L) = LIl 1L~ (19)

but this requires that the proper definition of the oper-
ator norms be used. If L : X — Y then

Loy -1 1L wlx
Lt = sup and L = su et
Ik vex |vilx 1= vey  Tuly
wEC w#ED
(20)

This definition presumes the boundedness of L and L™!
in the appropriate norms. Indeed the Sobolev spaces in-
troduced above provide the appropriate spaces for the in-
tegral operators of scattering theory. However the spaces
differ depending on the particular operators. That is, the
operators S and 31 + D’ have different mapping prop-
erties, and this has been a topic of intensive investiga-
tions over the last two decades [3,8,9]. If X and Y are
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both L2(I") then we refer to the condition number as the
L? condition number. If the integral operator maps the
Sobolev H*(I') into H*(I') continuously, then the order
of the operator is defined to be the number a := s —{.
It has been shown [5,8] that the L? condition number
of the discretized form of an integral operator of order
a varies as O(h~1%) where h is the mesh width of the
discretization. Sinee second kind operators of the form
identity plus compact perturbation have order o = 0,
(s = t), the condition number of second kind operators
is bounded (= O(hY)) and this is one reason for their
popularity. However many numerical investigators have
found that despite their high condition numbers, some
first kind operators give rise to linear systems whose so-
lutions are better behaved than equivalent second kind
equations, e.g. [2,10]. The Sobolev space setting de-
scribed previously provides a first step toward under-
standing the cause of this unexpected behavior.

First we abserve that when the operator is discretized
(projected onto a finite dimensional subspace) the condi-
tion number is expressed in terms of the singular values
of the discretized operator (the stiffiness or impedance
matrix) as

max
0Sn<N

min A,
0<n<N

cond({Ly) = (21)

where Ly is the matrix form of L, N is the dimension
of the subspace and A, are the singular values of Ly,
and A2 are the eigenvalues of Ly Ly. If {u}Y < H*(T)

and {v,}¥ C H(T), then the stiffness matrix Ly has
the following elements:

(Lun y 'Um)gz () - (22)

Since these inner products will vary with ¢, we write
cond;(Ly) to indicate the inner product used to form
the matrix elements. Once the matrix is defined the
condition number is given by (21). For t = 0, HY(I') =
L2(T'), and condg(Ly) is the L? condition number.

Now we consider a very simple example where the con-
dition number may be found explicitly. Let k¥ = 0, and
[ be a sphere of radius one in IR®. Further choose 4y,
and v, to be spherical harmonics. It has been shown [7]
that the eigenvalues A\, and singular values of A, of the
operators {9) {10) and (11) (with n == 1) are given in the
table:
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Ly max A, | min A, | condg{Lw)
S 1 R 2N +1
. s+ D 21&@-1 (1] o
—

This table illustrates a number of points. First, the L?
condition number of § is unbounded as N — oo, hence
first kind equations were traditionally avoided. Second,
zero is an eigenvalue of £I + D', so Ly is singular and
condo(Lx) = oo. This phenomenon is well known even
for nonzero values of & where the second kind equa-
tion must be augmented at interior resonances to restore
uniqueness. One way to accomplish this is to employ the
combined operator %I + D’ + {8 which is seen to have
a bounded condition number. All of these resuits are
based on the L? condition number. If however we con-
sider the operators as maps from H*(T) to H*(I') then
the discretized operator is given by (22) . For the above
example it was shown [7] that singular values of L now
depend explicitly on t as follows:

Ly An An conds(Ly)
s Gt | S |own
bep | Ggede | G %
LI4+D +iS (1+r;?:_(1n+¢> (1+n2):+\{n2+1 O(N12)

L An An
l[ f_ 7 Zn:-:—l 21%]!—1
2 2n-41 2n4-1
%I + D’ + =) 21:1.-:1 %ﬁ%

It is then easy to find the L? condition numbers accord-
ing to the definition (19):

From this table it is clear that if Ly is the discretized
form of S, then the condition number will be bounded
as N — oo only if £ = 1/2. This means that by form-
ing the elements of the stiffness matrix, using the inner
product in H*/2(T") will result in a well conditioned ma-
trix. Similarly the discretized form of I + D’ + 45 will
have a bounded condition number only if ¢ = 0, that
is, the matrix elements formed using the L? inner prod-
uct. Thus we see that the discretized form of both first
and second kind operators may have bounded condition
numbers if the elements are computed in the appropri-
ate space. However, it is not at all clear that condition
number is a good indicator of numerical error in solv-
ing the discrete system of equations. There is a growing
body of evidence to the contrary. The question of how to
use information about the condition number of the stiff-
ness matrix in error and stability analysis of a numerical
solutions is still open. In our opinion, a large condi-
tion number is insufficient evidence on which to base a
decision as to whether to accept or reject a particular
numerical procedure.
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