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Abstract—In this work, two procedures for the optimiza-
tion of transient temperature fields in electromagnetical-
ly induced therapeutic hyperthermia are proposed. Both
procedures employ numerical models of electromagnetic
and heat transfer processes. The computational demands
of the optimization procedures are mitigated by employing
reduced-order numerical models obtained via the spectral
Lanczos decomposition method (SLDM) in lieu of the orig-
inal, high-order models. An open-loop optimization pro-
cedure based on quadratic programming (QP) is proposed
that determines the time dependent RF power level nec-
essary to reach therapeutic temperatures quickly without
exposing healthy tissue to excessive temperatures. Addi-
tionally, a closed-loop optimization procedure is proposed
based on linear-quadratic Gaussian (LQG) optimal control
that employs feedback from temperature measurements
such as those available from magnetic resonance thermog-
raphy. The performance of both techniques is simulated
on a realistic tissue model of the human trunk heated by
an annular phased array (APA). It is shown that by opti-
mizing the transient temperature fields in oncological hy-
perthermia, effective thermal dose can be increased for a
fixed treatment time and level of risk to healthy tissue.
Additionally, it is shown that in some cases the non-linear
nature of the human thermoregulatory response (manifest
as temperature dependent perfusion) can be compensated
for by the proposed linear feedback controller.

Index Terms: Keywords— reduced-order models, hyper-
thermia, linear-quadratic control, bio-heat transfer.

I. INTRODUCTION

Recent clinical successes [1] have continued to drive the
development of electromagnetic hyperthermia technology
for oncological applications. Primarily used in addition
to radiation therapy, hyperthermia, or the elevation of
cancerous tissue temperatures, has been shown to have
clinical value in a number of studies despite serious tech-
nical difficulties [2]. It has long been recognized that
computational simulations can aid both in development
of better applicator designs [3] and in patient-specific op-
timization of treatments [4].

One of the greatest technical challenges for non-
invasive hyperthermia is the heating of “deep-seated”
tumors (those residing more than 7 cm below the sur-
face of the skin). The annular phased-array (APA) [5]
has proven to be a promising applicator for this type
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of heating. A typical APA applicator consists of a set
of independent radiators placed in a circumferential ar-
ray around the patient, with a bolus filled with chilled
water placed between the radiators and patient to pro-
vide impedance matching and superficial cooling. The
individual phases and amplitudes of each array element
may then be adjusted, allowing interference effects to be
exploited to selectively heat the tumor. A significant
amount of research has been conducted in the optimiza-
tion of the specific absorption rate (SAR) [4], [6]-[8] as
well as steady-state temperatures [6], [9], (10] for electro-
magnetic phased-array applicators. The potentially over-
whelming computational demands of these optimization
procedures has lead to research into ways to increase their
efficiency for both ultrasound [11] and electromagnetic
[12] heating systems.

Many previous studies of hyperthermia optimization
[4],[6]-[12] employed time-invariant criteria (SAR or
steady-state temperature) to define the notion of an opti-
mal treatment. However, it is well known that the entire
time-history of the tumor is required to establish a strong
correlation between measurable quantities and treatment
outcome [13]. It is therefore desirable for the clinician
to be able to prescribe the time-histories of the tem-
perature in the cancerous tissue [2], or at least be able
to investigate the feasibility of doing this for a specif-
ic patient-applicator configuration. Indeed, early efforts
in model-based optimization procedures for hyperthermi-
a recognized the desirability of a transient temperature
optimization capability [14]-[16]. These works, howev-
er, employed simplified one- and two-dimensional models
of the hyperthermia process which are known to have
severe limitations [17]. The absence of a report of the
use of detailed, three-dimensional models of hyperther-
mia in transient optimization procedures reflects the po-
tential computational difficulties associated with the use
of numerical models of high-dimensionality in optimiza-
tion procedures.

One way of avoiding the difficulties associated with
high-order numerical models is to seek a low-order model
which preserves important behaviors of the high-order
model, a process known widely as model-order reduc-
tion (MOR). The use of MOR for hyperthermia has been
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proposed before in the context of feedback controller de-
sign [18], temperature and perfusion estimation [19], and
applicator optimization [11]. A comparative study of
reduced-order modeling approaches has been performed
recently [20] which has resulted in a proposed exten-
sion to the balanced realization technique [21]. However,
these works [11],[18]-[21] also employed one- and two-
dimensional models of the hyperthermia process, which
cannot, in general, capture all of the relevant physics [17].
The balanced realization technique used in these works is
not suitable for use with the high-dimensional numerical
models resulting from a full three-dimensional discretiza-
tion. This is a consequence of the need for information
from the entire observability and controllability gramians
in order to compute a full-order coordinate transforma-
tion into balanced coordinates [22]. In fact, the highest-
order thermal model of hyperthermia reported to have
been reduced has an order of 450 [11],[20]. The construc-
tion of three-dimensional numerical models of oncologi-
cal hyperthermia at spatial resolutions as coarse as 1 cm?®
quickly requires model orders several orders-of-magnitude
greater than this.

In this work, a method is presented for model-order re-
duction that is suitable for reduction of high-order mod-
els resulting from full three-dimensional models of hy-
perthermia. The method is based on the spectral Lanc-
zos decomposition method (SLDM) [23],[24], a variant of
which has been applied successfully in the past to heat
transfer modeling [25]. The SLDM, when used in con-
junction with finite-difference or finite-element models of
heat transfer, requires only inexpensive sparse matrix-
vector products to construct a low-order partial tridiag-
onalization of the system which serves as the reduced-
order model (ROM). The intention of this paper is to
explore the suitability of the SLDM in the type of ap-
plications MOR has found in the past for hyperthermia.
To achieve this, the SLDM is applied to open-loop opti-
mization, closed-loop control, and closed-loop estimation
of temperatures induced by electromagnetic applicators.

In Section II the details of the full-order modeling,
model-order reduction, and transient optimizations are
presented. In Section III numerical results are pre-
sented which validate the model-order reduction tech-
nique through comparisons of full-order and reduced-
order open-loop transient responses. This section also
presents results demonstrating the potential to increase
measures of thermal dose [13] through use of the pro-
posed open-loop transient optimization technique. It is
also demonstrated in this section that the feedback con-
troller designed in conjunction with the ROM is capable
of tracking the command signal despite abrupt changes in
tumor perfusion rates. Section IV summarizes the salient
features of the proposed techniques and the results of the
numerical experiments.
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II. METHOD

A detailed account of the proposed numerical model-
ing and optimization procedures for electromagnetic hy-
perthermia is presented below. Section II-A describes
the numerical models that are used to predict the time-
dependent temperature rise in the body due to the hy-
perthermia applicator. Section II-B describes use of the
SLDM to produce reduced-order models suitable for ef-
ficient evaluation and optimization of transient temper-
ature fields. Lastly, Section II-C describes details of the
two proposed transient temperature optimization proce-
dures.

A. Numerical Modeling of the Hyperthermia Process

In typical electromagnetic hyperthermia treatments
the time-scale of transient electromagnetic phenomena is
orders-of-magnitude smaller than that of thermal phe-
nomena. It is therefore convenient to model the entire
hyperthermia process as consisting of two events: the
time-harmonic transfer of electromagnetic energy from
the antennae of the applicator to the tissue and the re-
sultant time-dependent temperature rise. To describe the
process by which the antennae of the hyperthermia appli-
cator deposit heat in the human body, it is assumed that
the human body can be accurately modeled as a non-
magnetic, isotropic, linear (but possibly dispersive) elec-
tromagnetic material at the frequencies of interest (40-
915 MHz). In this frequency range the electromagnetic
properties of human tissue are known with a relative-
ly high degree of confidence and have been tabulated in
the literature [26], [27]. The finite-difference time-domain
(FDTD) method [28] is used in this work to numerical-
ly solve for the electric field due to each element of the
array under unitary excitation. This procedure has been
well documented in the literature [29]-[31], including the
current authors’ implementation [9], therefore no further
detail is provided here.

From knowledge of the electric fields due to the indi-
vidual elements of the applicator array, the specific ab-
sorption rate (SAR) may be predicted. This information
can be used to determine optimal relative driving phas-
es and amplitudes of the array in a separate procedure,
based on criteria related to the SAR distribution [6], [7] or
resultant steady-state temperature (9], [12]. In this work,
only patient positioning is used to focus the SAR on the
tumor, with the APA elements all driven by equal phases
and amplitudes. A recent work [32] has suggested that
when it can be done accurately, patient positioning may
be the most effective means of focusing SAR patterns on
the tumor.

To predict the temperature rise once the SAR is known,
some type of thermal model must be assumed. One of
the simplest thermal models that can adequately describe
the evolution of temperature in biological media is the



128 ACES JOURNAL, VOL. 16, NO. 2, JULY 2001 SI: COMPUTATIONAL BIOELECTROMAGNETICS

bio-heat transfer equation (BHTE) {33] due to Pennes.
Although there are many known limitations to the BHTE
[2], it remains a popular model for describing temperature
rises in human tissue [34],[35]. The transient form of the
BHTE is

p(r)c(r)éT—gtlt—) =V -k(r)VT(r,t) + u(t)p(r)SAR(r)

+eyw(r,T) (T, — T(r,t)) + gm(r) (1)

where k is the local thermal conductivity (W/m/K), p is
the local density of tissue (kg/m?), c is the local specific
heat (J/kg/K), cs is the specific heat of blood (J/kg/K),
w is the local perfusion rate of blood (kg/s/m?), T, is
the arterial blood temperature (K), g, is the time rate
of metabolic heat generated per unit volume (W/m?),
and u(t) is a dimensionless quantity representing the
relative total power deposited. The perfusion rate will
be assumed constant with respect to local temperature
throughout most of this work so that w(r,T) = w(r).
This is a somewhat unrealistic approximation, and in the
simulations of the performance of the feedback controller
the effects of relaxing this assumption will be briefly ex-
plored.

The boundary conditions associated with the BHTE
are

kéf%:_t) =H(T, -T(r,t)), T €SN (2)
T(r,t)=T;, T€Sp (3)

where Sy is a surface on which convective heat transfer
occurs with coefficient H and external medium tempera-
ture Ty, and Sp is a surface of fixed temperature Ty.

The basal temperature distribution Tpasai(7) is that as-
sociated with the equilibrial effects of metabolic heat pro-
duction. The transient temperature elevation, Ty (7, t), is
defined as the instantaneous difference of the total tem-
perature field and the basal temperature distribution, i.e.
Tu(r,t) = T(r,t) — Toasal(r). After application of the
finite-difference method [35] to discretize the spatial op-
erators in the BHTE, the transient temperature field is
approximately described by the following matrix ordinary
differential equation

-a—""g = Ax(t) + bu(t)

3 (4)
In the above expression, z(t) is an N-vector of degrees of
freedom associated with the discretized temperature field,
b is an N-vector associated with deposition of power by
the antennae, and A is an N-by-N matrix representing
the effects of perfusion, conduction and convection.
The zero-state solution of Eq. 4 can be analytically
expressed

x(t) = exp (At) h(t) * bu(t) (5)

where h(t) is the Heaviside unit step function and * is
the temporal convolution operator. Because of the large
size of the matrices involved, it is often not feasible to
evaluate Eq. 5 directly. For this reason, it is common
to discretize the temporal dependence as well. In this
work, when dealing with high-dimensional models (large
N), time integration will be achieved through a Crank-
Nicolson update rule of the following type

[f— %A] z(t+ At) = [f+ %ﬁg} _

+ %fb [u(t + At) +u(?)] (6)

After the application of the model-order reduction tech-
nique described below, it will often be feasible to evaluate
Eq. 5 directly.

B. The Spectral Lanczos Decomposition Method (SLDM)

The spectral Lanczos decomposition method [23], [24]
was originally proposed for efficient evaluation of func-
tionals of large, sparse matrices. Above, Eq. 5 at a fixed
time serves as an example of how the computation of a
large matrix functional is useful in time-dependent tem-
perature prediction. The most important feature of the
SLDM in this work, however, is that a reduced-order
model (ROM) results from its application. The lower di-
mensionality of the ROMs produced will lead to a reduc-
tion in computational burden in the optimization tech-
niques to be presented in Section II-C.

B.1 The Lanczos Algorithm

The SLDM is one of the simplest of a class of model-
order reduction schemes based on the Lanczos algorithm.
An exposition of the theoretical motivation and proper-
ties of the Lanczos algorithm appears in [36], so only a
brief summary is given here. The Lanczos algorithm, giv-
en a N-by-N symmetric matrix L and an initial N-vector
g, of unit norm, is defined by the following steps:

e Let Boro=0,5 =1
e Doforie{1,2,...,p}

1. a; = q] Lg;

2.7 = (Z - a,f) q; — Bi-19;-1
3. Bi=|Irill

4. q;1, = %f

After these p steps of the Lanczos algorithm, a par-
tial tridiagonalization of the matrix L has been achieved
which can be expressed

(7)

where eg' is the unit vector composed of all zeroes ex-
cept a unit entry in the p** position, Qp is the matrix of

EQP = QPTP + ﬂpqp+leg‘

kS

e e £ e i i Tl 2t
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Lanczos vectors Qp [ql, s PO qp} , and the tridiagonal

matrix T, is given by

3 ,31 tt 0 i
B e :
Tp = (8)
: T ,Bp—l
[0 - Bp—1  ap ]

A key property of the Lanczos algorithm is that the ma-
jority of the computational burden at each step is con-
sumed by one matrix-vector multiplication. For sparse
matrices such as those resulting from finite-difference ap-
proximations, this step can be made very efficient. The
eigenvalue spectrum of the tridiagonal matrix T, be-
comes a very good approximation to that of Lforpgn
[36], so the entire p-step Lanczos algorithm can be per-
formed very quickly, even when NV is large.

Given a matrix functional of the form f(L) b it is de-
sired to evaluate, the SLDM produces an approximation
through performing p steps of the Lanczos procedure with
the matrix L and starting vector b/||b}| and taking

F(L) b~ Q,f(T5) erlibll (9)

as the approximate value of the desired function, where
e; is the unit vector with nonzero first row only. The
numerical efficiency accomplished by the approximation
Eq. 9 is due to the fact that, in practice, p < n and the
fact that T'p is tridiagonal. In this work, the PWK variant
of the QR algorithm and the inverse-iteration algorithm
[36] are used to perform the complete eigendecomposition
of this tridiagonal matrix, facilitating the evaluation of
the right side of Eq. 9. It is straightforward to prove that
the SLDM approximation embodied by Eq. 9 after p steps
is exact for polynomial functions f(-) of degree p—1 or
less [37]. This implies the following useful fact which will
be needed later

" =Qq, (T,)" @5,
B.2 Model-Order Reduction

Use of the SLDM in two different moment-matching
model-order reduction techniques [38] is described below.
Consider first the general linear time-invariant single-
input multiple-output (SIMO) system described by the
state-space model

am(t)

for m<p-1 (10)

= Ax(t) + bu(t)
'y':-C:c

(11)
(12)

where C € RM*N is a matrix which represents the re-
lation between the state vector & and observable mea-
surements y € RM. Taking the Laplace transform of all

the quantities above and assuming the system is initial-
ly at rest yields the following expression of the full-order
transfer function

h(s) = -

y(s)/u(s) =C (sI — A)~

The Taylor expansion of h(s) about the point s = 0 is
given by

b (13)

h(s)=—-CA 'b—sCA *b+..— s 'CA b+ ..
[o ]
=— Z sSCA™" b (14)
1=0

The tendency of spatially diffusive processes to attenuate
input signals of high temporal frequency suggests that
the low-frequency behavior of state-space models contain
most of the useful information [20]. This information is
embedded in the vector moments of the expansion of the
transfer function about s = 0. With this in mind, the
following model-order reduction scheme, termed low-pass
SLDM (LPSLDM) is proposed:

1. Begin the Lanczos algonthm with the matrix A"
and initial vector A~ b/HA b||

2. Continue Lanczos iterations until the quantity
ICQ, T, (exp (-Tpto) — I) QZA--1b|| converges.

The quantity used in the above stopping criterion rep-
resents the output trajectory at time #g due to a step
input. It will be clear from numerical experiments pre-
sented later that to should be chosen as the earliest tune
of interest. The choice of A~ ~ and initial vector A~'b
can be justified by considering the resulting reduced-order
approximation of the transfer function

1
WF(s)=CQ,(sI-T;") Qb (19)
whose moments about s = 0 can be expressed, using the
fact that the matrix Q,, is orthonormal and the identity
in Eq. 10,

RP(5)= -3 5CQ, (7)) @fv
=
=-) s'CA “b+0(s*Y)  (16)
i=0

From the above expression, it is clear that the first p—1
moments of h*F (s) are identical to those of h(s), suggest-
ing that LPSLDM is a good approximation for low fre-
quency transients. The major drawback of the LPSLDM
is that performance of the Lanczos algorithm on At
quires a large linear system be solved at each step. Av01d-
ing this expense is the principal motivation for the next
model-order reduction procedure, referred to as the high-
pass SLDM (HPSLDM).
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To motivate the HPSLDM, consider the Laurent ex-
pansion of h(s) about the point s = oo [38]

h(s)=s'Cb+5s2CAb+..+sPCA 'b+..
=Zs‘i(—3£i—1b
i=1

The high-pass SLDM (HPSLDM) model-order reduction
used in this work is accomplished by the following steps:

(17)

1. Begin the Lanczos algorithm with the matrix A and
initial vector b/||bl].
2. Continue Lanczos iterations until the quantity

HC-’Q,,'I_’;l (exp (Tpty) - I) be” converges.

The quantity used in the above stopping tolerance rep-
resents the output trajectory at time ty due to a step
input which, as numerical experiment will show, should
be chosen as the latest time of interest, in contrast to
the use of the earliest time of interest for the LPSLDM.
The choice of A and initial vector b can again be justified
by noting that the first p moments of the transfer func-
tion about s = co are indentical for the HPSLDM and
full-order models (the proof is similar to that provided
for the LPSLDM). However, this suggests that this is a
good approximation for fast transients only, which is not
clearly desirable for approximating the low-pass nature
of heat transfer. The advantage of the HPSLDM is that
it requires only a series of matrix-vector products, in con-
trast to the LPSLDM which requires a series of solutions
to linear systems. However, it will be shown that giv-
en large enough p, the HPSLDM can produce accurate
reduced-order models.

C. Transient Temperature Optimization

Approaches for optimization of hyperthermia temper-
ature fields can be broadly classified into two main cate-
gories: open-loop and closed-loop. Open-loop techniques
[4], [6], [9], [12] use a physical model of the hyperthermia
process to determine optimal treatment parameters. The
most significant disadvantage to this approach is that the
optimization may be very sensitive to modeling errors.
Closed-loop techniques [18],[34] attempt to rectify this
through use of measurements of treatment temperatures
to adjust optimal parameters.

Below, the details of two techniques for transient tem-
perature optimization in hyperthermia are presented.
The first is an open-loop technique which attempts to
minimize the difference between the desired and realized
intratumoral temperature trajectories. The major advan-
tage of this technique is that it can guarantee the tem-
perature at a finite set of extratumoral points will not
exceed a given threshold if the underlying model is accu-
rate. Additionally, it can explicitly account for available
power limitations. The second technique is a closed-loop

technique based on linear-quadratic control [39]. The
feedback controller that results from this technique uses
measurements of temperatures in the tumor to attempt
to compensate for modeling errors.

C.1 Open-Loop Formulation: Quadratic Programming

Examples of open-loop techniques applied to hyper-
thermia temperature control in the literature include
quadratic and min-max techniques [14], [15], indirect use
of the maximum principle of Pontryagin [16], and direct
inversion of the BHTE [40]. Application of the maximum
principle of Pontryagin leads to a bang-bang controller,
which in general switches up to n — 1 times when con-
trolling a plant of dimension n with all real nondefective
eigenvalues. However, the technique proposed in [16] as-
sumes that the optimal switching profile contains only
one switch, which is not generally true. Direct inversion
of the BHTE as in [40] is only feasible when pointwise
prescription of the power deposition pattern in space is
possible. Neither of these limitations are associated with
the approach of [14], [15].

In this work, a formulation similar to that presented in
[14] is pursued to illustrate the application of reduced-
order modeling. It is desired to determine the time-
history of RF input power () that minimizes the time-
integrated sum of squared differences between desired
temperature elevations and realized temperature eleva-
tions at a finite number of points. At the same time, it
is required that the temperature elevation at a number
of points in the healthy tissue remain below a threshold
temperature at all times.

These goals can be expressed mathemastically as

minimize J (1) = /D "G <2 @) Pde (18)

subject to Crz(t) < yp(t) (19)
.‘?%%tl = Az(t) + bu(t) (20)
u(t) el (21)

where J (u) is the scalar cost of the input waveform, de-
termined in terms of the desired temperature elevation
history at N points in space yZ(t) € R™* and the realized
temperature, which is calculated by multiplying the real-
ized state z(¢) with the matrix C; € R >N, This cost
is minimized while keeping the temperature at NN}, points
in healthy tissue (calculated by multiplying the matrix
Ch € RNV»*N by the temperature elevation history) be-
low a set of threshold values y,(t) € RN, The restriction
u(t) € U means that the resultant power waveform is re-
alizable. For example, the input power must always be
non-negative and is frequently limited in practice by the
available power of the RF source.
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To recast the above problem into a form suitable for
computer implementation, the input waveform is first dis-
cretized

N,
u(t) =) aini(t)

=1

(22)

so that given the set of basis functions n;(t), the input
is completely characterized by the set of parameters u =
[o1, 02, ... ,aNu]T. In this work, a piecewise constant
input profile is assumed, with the basis functions
ni(t) = h(t — t:) — h(t — ti-1) (23)
where t; are a set of switching times. The requiremen-
t that the input power be non-negative and not exceed
the maximum available power is then captured by the
requirements 0 < a; < Unax-
The temperature elevation can then be expressed

N
z(t)= Y a;exp (At) h(t) * ni(t)b

i=1
Na
=" aini(t) = N(t)u (24)
=1
where N(t) = [Ay(t), a(t),.-- ,7n, (8)]" - The only re-

maining difficulty is the enforcement of the protection of
healthy tissue at all times. However, if we choose to only
enforce this explicitly at a finite number of times, then a
finite set of inequalities result
Cra(t;) <ypt;) i=1,...,Ne (25)
The resulting finite quadratic program can be ex-
pressed (where the constant part of the cost has been
removed),

minimize uT Hu + g7u (26)
subject to (_Thl‘-l'(tj)u < y;(tj) j=1,...,N, (27)
Osa»lSUmax i=1,..-,Nu (28)

where the elements of the matrix H and vector f are
given by

H;;= /0 ’ (C‘mi(t))T (Crij(t)) dt (29)

ty _
fi== [ u0C 0 (30)
0
The integrations required in the above are carried out
numerically via Romberg integration. A reduced-order
model obtained from the SLDM is employed to evalu-
ate the quantities 7;(t) as needed. To use the full-order

model of the dynamics would require either repeated re-
evaluation of the temperature fields or storage of the
temperature history due to each of the basis function-
s. Although it is possible to minimize the computational
burden of the latter approach by storing only one step re-
sponse and exploiting the time-invariance of the system
to form the responses from each basis function on the fly,
this approach is not pursued here. To retain the focus of
this work on the suitability of Lanczos-type model-order
reduction, computation of a minimum that achieves some
clinical objective will be considered a successful use of the
ROM. Once the ROM is employed, the resulting quadrat-
ic program may be solved using a number of techniques
[41]. In this work, the MATLAB® (The Mathworks Inc.,
Natick, MA, version 5.3 release 11) command gp is used
to numerically solve the program.

C.2 Closed-Loop Formulation: Linear-Quadratic Control

Uncertainties in constitutive parameters, patient posi-
tioning, and perfusion profiles make the use of open-loop
treatment optimization potentially ineffective. This diffi-
culty can be overcome to some extent by using a closed-
loop controller which uses measurements in addition to a
model of the system to achieve its goal. Linear-quadratic
(LQ) control and estimation have been applied in the
past to hyperthermia controller design [18],[19]. In [18]
the use of reduced-order models for optimal servomech-
anism [39] controller design was proposed and validated
via comparison with full-order controllers. The require-
ment that temperatures at all locations in the state-space
model be measurable was removed in [19] through use of
a Kalman filter. The issue of removing “integrator wind-
up,” a problem related to the non-negativity of power,
has also been addressed for the case of multiple incoher-
ent radiators in [42].

A recent development which makes the use of non-
invasive temperature monitoring clinically possible dur-
ing hyperthermia treatments is the emergence of MRI-
based thermography [34]. The characteristics of MRI
thermography, which are significantly different from those
of traditional invasive temperature probes, demand spe-
cial attention when designing a control scheme. MRI
thermograms usually contain spatially dense (a complete
axial slice at near millimeter resolution) which is updat-
ed rather infrequently (2-3 times a minute) due to the
inherently low signal-to-noise ratio of MRL.

In this section, the approach of [19] is extended to the
case when MRI thermograms are the source of tempera-
ture feedback and phased-arrays are the source of heating.
The emphasis of the current investigation is the ability
of the resulting optimal servomechanism controller with
Kalman estimator to control and estimate temperatures
reliably in the presence of noise, sparse temporal infor-
mation, and changes in tumor perfusion rates.
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In coherent multi-applicator heating systems (as in
electromagnetic APA hyperthermia), the individual phas-
es and amplitudes of each channel have a non-linear in-
fluence on the temperature field. For simplicity therefore,
the only quantity to be controlled in this work is the RF
input power level, again denoted u(t), whose effect on the
temperature is linear (assuming the thermal dynamics are
linear as well). Additionally, it is attempted to drive on-
ly one scalar quantity to a desired value. This may be a
temperature at a single point or a linear function of tem-
peratures at different points, such as the average tumor
temperature.

Denoting the temperature to be controlled y(t) =
Ciz(t) and its desired value y*, a consistent goal
is to attempt to drive the state to the value z* =

=T (A AT\ 7! .
C; (Clcl) y*. The difference between the realized

state and desired state is then defined, dx(t) = z(t) —x*,
which can be shown to obey affine dynamics of the form

déz(t)

Frae Abz(t) + bu(t) + w

(31)

where the term w = Az* appears due to the tracking
nature of the problem.

Since the measurements will not be available in contin-
uous time, the entire system can be integrated under the
assumption that the control signal is held at a constant
level between measurement times. Additionally, once the
control difference is defined as v[k + 1] = u[k + 1] — u[k]
and the state error difference is defined as dzq4k + 1] =
dz[k + 1] — dz[k], the full system dynamics can be ex-
pressed

(ér5e) 1= (6l 1) (&)
* (cb 5) v

where the new system matrix A = exp (AAt) and forc-
ing vector b= A" [exp (AAt) — I] b can be computed,
in principle, from knowledge of the measurement interval
At and the continuous time models. The reason for for-
mulating the system as in Eq. 32 is to identify a linear (as
opposed to affine) system which possesses a state which
is composed of quantities which are desired to be driven
to zero. In this way, standard linear-quadratic regulator
techniques can be used to achieve tracking of the desired
temperature.
Applying standard LQR. theory [39] to the cost

(32)

J(w) =Y (62T (K)CT C:6a[k] + vlklpolk])
k=0

(33)

with p > O results in a set of gains K; and K, which
describe the optimal servomechanism control law

u[k] = —Klém[k] - R2 i C_’lém[z] (34)

i=0

This control can be shown to minimize the cost in Eq. 33.
If it happens in the course of a treatment that the recom-
mended control is negative, the summation in Eq. 34 can
be set to zero and no power applied until the recommend-
ed control is once again positive. In this way, “wind-up”
of the summation is prevented.

As illustrated by Eq. 34, knowledge of the entire state
is required to compute the optimal control. To estimate
the state from the limited available measurements, an ob-
server must be implemented. A fortunate characteristic
of linear-quadratic control is that the design of the esti-
mator can be done in isolation from that of the controller,
a fact known widely as the “certainty equivalence” prin-
ciple [39]. In accordance with this principle, Eq. 34 is
used as the control law, substituting the estimate d&[k]
of the current state, which is obtained as the output of
the observer

&[k + 1] = Az[k] + bulk]

+ M (ymeas[k] - émeas:ﬁ[k]) (35)

where y,..5[k] is the set of N, measurements available
at each time step, Cmeas is @ matrix used to calculate
the estimate of the what the measurement should be if
the state estimate is correct. The matrix M is the so-
called Kalman gain, obtained from solution of the rele-
vant Ricatti equation involving the correlations of the s-
tate and measurement noise. More detail on the Kalman
filter (optimal observer) can be found in [19},{39]. In our
implementation, we assume that the correlation of the
measurement noise vector is diagonal with value omeasl
which is computed based on the expected noise level of
the system. The state noise correlation is also assumed
diagonal o;ated which is chosen based on the uncertainty
in perfusion values.

Fig. 1. Structure of the optimal controller and estimator. The
integrated error e; is reset to zero when the limiter is active.

The numerical determination of the Kalman and con-
trol gains involves the solution of Ricatti equations, which
is difficult to perform in an efficient and stable fashion
when the state-space system has large dimension [18].
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For this reason, a reduced-order model obtained from the
LPSLDM is used instead of the original model

~7dT ,=-1=T

=G, = =T, Qe+ Q; bul(t)

=T, 2"M + Q, bu(t)  (36)
and the change of basis ROM = ng used to express
all of the equations in this section in terms of the ROM
state. The LPSLDM ROM is selected because it is gen-
erally of lower dimension than the HPSLDM ROM. The
MATLAB® (The Mathworks Inc., Natick, MA, version
5.3 release 11) routines dlgr and dige are then used to
numerically determine the optimal control law and es-
timator, respectively. The resulting controller-estimator
structure is depicted in Figure 1.

III. RESULTS

The techniques elucidated in the above section have
been implemented and applied to several simulated ex-
amples. Section III-A describes a simple example which
serves to validate the SLDM technique by comparing
full-order and reduced-order model predictions. Simu-
lated hyperthermia treatment of a phantom is consid-
ered in Section III-B and of an anatomically detailed hu-
man trunk in Section ITI-C. The relative merits of the
LPSLDM and HPSLDM are explored in terms of their
efficiencies as temperature prediction techniques. Addi-
tionally, examples of the use of reduced-order models in
both open-loop and closed-loop optimization schemes are
given.

A. Validation of the SLDM

Fig. 2. Geometry assumed for validation of the nurnerical algo-
rithms. An infinitely long muscle-like cylinder is irradiated by
an electromagnetic plane-wave at 85 MHz.

In order to validate the SLDM-based model-order re-
duction techniques, the exposure of a cylinder of muscle-
like material (e, = 78.5, ¢ = 0.486 @~ 'm~1, p = 1070
kg/m?, ¢ = 3140 Ws/kg/K, k = 0.502 W/m/K, gm =
1005 W/m3, T, = 37°C, cpw = 1674 W/K/m?) to an
electromagnetic plane wave of frequency 85 MHz with
an electric field polarized along the axis of the cylinder
has been considered (see Figure 2). An incident electro-
magnetic power density of 0.75 W /cm? was applied as a
Heaviside step function in time. The cylinder considered
had a radius of 25 cm and length of 52 cm, and exchanged

heat with an external medium at 24°C with convection
coefficient H = 45 W/m? /K. The upper and lower sur-
faces of the cylinder were assumed to have a uniform,
fixed temperature of 37°C.

44 : .
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Fig. 3. Predicted temperature fields along central chord of cylinder
parallel to the direction of propagation of the incident plane
wave.

Figure 3 shows the transient temperature field obtained
through three different methods. The first method em-
ployed an exact solution to Maxwell’s equations for TE-
incidence on an infinitely-long cylinder and the eigen-
function method described in [43] to compute the resul-
tant temperature field (again for an infinitely long cylin-
der). The HPSLDM was also used in conjunction with
the FDTD electromagnetic model and FD model of the
BHTE to predict the temperature field. The latest time
of interest was 180 minutes, at which time 38 HPSLDM
modes were required to produce a prediction which con-
verged to within 10~* in norm. Similarly, at the earliest
time of interest (5 minutes), 16 LPSLDM modes were re-
quired for the prediction to converge. The FDTD and
FDM models that the SLDM was applied to were three-
dimensional models, with a resolution of 0.5 cm in the
transverse plane and 4 cm in the axial direction resulting
in 101985 thermal unknowns. Notice that the agreement
is good at both early and late times for both the LPSLDM
and HPSLDM.

B. Phantom Heating

To demonstrate the use of the proposed model-order
reduction techniques on inhomogeneous media the heat-
ing of an artificial phantom, similar to that proposed in
[12], has been considered. It is composed of three dis-
tinct tissue-equivalent materials: muscle, fat, and tu-
mor, whose assumed electromagnetic [27] and thermal
[44] properties are summarized in Table I, expressed in
standard SI units (cf. Section II-A). A region offset in
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TABLE I
THERMAL AND ELECTROMAGNETIC (135 MHz) PROPERTIES OF
PHANTOM MATERIALS.

Tissue k p c Wy €r led

Tumor | 0.210 { 900 | 3500 | 0.54 | 80.0 | 0.70
Muscle | 0.642 | 1000 | 3500 | 2.30 | 63.5 | 0.74
Fat 0.642 | 1000 | 3500 | 0.83 | 12.3 | 0.07

the axial plane is designated as tumor tissue, as shown in
Figure 4. The phantom is assumed to be irradiated by an
APA consisting of a set of 8 half-wave dipoles arranged
in a circumferential array of diameter 21 cm operating at
135 MHz. All eight elements of the APA are driven with
equal phases and amplitudes, so the central axis of the
phantom is shifted by 1 cm to help localize heating in the
tumor region [12].

-

6.75 cm

l4cm

e
Fat

T Tumor

Sjim Muscle

Fig. 4. Orthographic projections of the phantom.
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To illustrate the properties of the LPSLDM and
HPSLDM as techniques for temperature prediction, the
number of Lanczos iterations and CPU time required to
reach an error (relative to the Crank-Nicolson prediction)
of 10~8 in the norm has been considered. An FDM mod-
el of the BHTE with uniform resolution of 3.3 mm was
used, which resulted in 48285 thermal unknowns. Fig-
ure 5 shows that for the HPSLDM, the number of Lanczos
iterations required to reach an error level of 10~8 always
increases as the time of interest increases. However, for
the LPSLDM, the number of Lanczos iterations required
usually decreases as the time of interest increases. This
implies that the order of the ROM should be chosen based
on the earliest time of interest for HPSLDM and on the
latest time of interest for LPSLDM. Also shown in Fig-
ure 5 are the corresponding CPU times on a 500 MHz
21164 DEC Alpha required to perform the needed Lanc-
zos iterations. It is noted that although the LPSLDM
generally produces an accurate model with fewer itera-
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tions, the CPU time required is similar due to the matrix
inversion required at each step, which is performed in this
work via the bi-conjugate gradient (BiCG) method.
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Fig. 5. Number of Lanczos iterations (a) and CPU time (b) re-
quired to produce an estimate of the entire temperature field
at a fixed time of interest for the HPSLDM and LPSLDM.

To further explore the merits of SLDM as a temper-
ature prediction technique, the computational burden of
predicting the temperature at a fixed time has been ex-
amined. The standard for comparison was integration of
the full-order model via a Crank-Nicolson update proce-
dure as in Eq. 6 at 5 times the Courant time step for the
equivalent Euler integration scheme. This required 150.9
CPU seconds on a 21164 500 MHz Alpha to compute the
step response of the temperature at a final time of inter-
est of 2 hours. For the HPSLDM estimate of the step
response to converge to within 107 from step-to-step at
a final time of interest of 2 hours, 29 Lanczos steps were
required. The Lanczos process required 4.9 CPU sec, and
subsequent evaluation of the temperature field at other
times required less than 0.1 CPU sec on average. For
the LPSLDM estimate of the step response to converge
to within 10~¢ from step-to-step at an earliest time of
interest of 5 minutes, only 6 Lanczos steps were required.
However, the time required to perform the Lanczos pro-
cess rose to 37.9 CPU sec, with the average time required
to evaluate the temperature at additional times less than
0.05 CPU sec. It can be seen that the lower-order mod-
el produced by the LPSLDM comes at the expense of
more setup time, suggesting that it is more suitable than
HPSLDM only when minimal model-order is the highest
priority. In this particular case, the HPSLDM achieved a
computational speed up of over 100 relative to the Crank-
Nicolson technique.

C. Human Trunk Model

In addition to the inhomogeneous phantom, the sim-
ulated heating of a human trunk by an electromagnetic
APA has also been considered. The model used for the
human trunk is depicted in Figure 6, where the assumed
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TABLE 11
THERMAL AND ELECTROMAGNETIC (85 MH2z) PROPERTIES OF
HUMAN TISSUE.

[Tissue | &k [ p | ¢ [w | & | o |
Bladder | 0.600 | 1000 | 3500 | 0.80 | 23.3 | 0.29
Bone 0.436 | 1600 | 1000 | 0.54 6.7 | 0.02
Fat 0.210 | 900 | 3500 | 0.54 12.9 | 0.07
Intestine | 0.550 | 1000 | 3500 | 3.33 | 85.9 | 0.66
Kidney 0.577 | 1000 | 3500 | 66.7 | 104.7 | 0.78
Liver 0.640 | 1000 | 3500 | 16.7 | 72.7 | 0.47
Muscle 0.642 | 1000 | 3500 | 2.30 | 68.0 | 0.72
Skin 0.293 | 940 | 3500 | 0.35 79.0 | 0.47
Tumor 0.642 | 1000 | 3500 | 1.80 79.0 | 0.65

region of the tumor is in the bladder region and is indi-
cated by the honeycomb pattern. The model is based on
anatomical phantoms described in [45], and has uniform
resolution of 3.4 mm, which resulted in 523233 thermal
unknowns after application of the FDM to the BHTE. In
this work, nine distinct tissue types were considered, the
properties of which [27],[29], [44], [46] are summarized in
Table II, expressed in standard SI units (cf. Section II-A).
The APA that heats the trunk is modeled as consisting of
a set of 8 half-wave dipoles arranged in a circumferential
array of diameter 29 cm operating at 85 MHz [5].

Fig. 6. Coronal and sagittal views of the model of the human
trunk. The large, central tumor region is indicated by the hon-
eycombed shading.

As in the case of the phantom, the computational bur-
den of predicting the temperature at a fixed time has been
examined. The standard for comparison is again integra-
tion of the full-order model via a Crank-Nicolson update
at 5 times the Courant step for the equivalent Euler in-
tegration scheme. This required 1531.5 CPU seconds on
a 21264 500 MHz Alpha to compute the step response
of the temperature at a final time of interest of 2 hours.
For the HPSLDM estimate of the step response to con-
verge to within 10=¢ in the norm from step-to-step at a
final time of interest of 2 hours, 41 Lanczos steps were re-
quired. The Lanczos process required 46.8 CPU sec, and
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subsequent evaluation of the temperature field at other
times required less than 0.8 CPU sec on average. For the
LPSLDM estimate of the step response to converge to
within 107 from step-to-step at an earliest time of in-
terest of 5 minutes, only 10 Lanczos steps were required.
However, the time required to perform the Lanczos pro-
cess rose to 432.6 CPU sec, with the subsequent time
required to evaluate the temperature at additional times
less than 0.25 CPU sec on average. One interesting fea-
ture of these results is that even though the number of un-
knowns is an order-of-magnitude greater than in the case
of the phantom, the number of Lanczos steps required for
HPSLDM and LPSLDM does not increase much. Addi-
tionally, it can be seen that a 30-fold speed-up relative
to Crank-Nicolson in computation time is possible via
HPSLDM for this particular case.

Figure 7 depicts the results of the open-loop optimiza-
tion technique applied to the heating of the human trunk
model. Twenty-seven points in the tissue positioned in-
side the tumor and near the outside of the tumor bound-
ary were used in the optimization. A target trajecto-
ry of a 12.5 minute ramp-up to 43°C at all points in
the tumor was used. Temperatures in the healthy tissue
were constrained to remain strictly less than 41°C at the
points selected. The LPSLDM ROM described above was
used to formulate the quadratic program. In “Case 1,”
the available RF power was considered as unlimited. In
“Case 2,” it was assumed that 450 W maximum power
was available. Figure 7 (b) depicts the temperature his-
tories, simulated using the full-order model, at the points
selected in healthy tissue. It is clear that the constrain-
t is respected. Figure 7 (c) shows the increased speed
with which Tgg and T5o (temperatures which are exceed-
ed by 90% and 50% of the tumor, respectively [13]) can
be brought to their steady values in both cases relative
to the“baseline” (constant power) case.

The full-order model has also been used to simulate
the performance of the proposed closed-loop controller.
It was desired that the center of mass of the tumor stay
at a constant temperature of 44°C. Temperature feed-
back was assumed to be available from everywhere in the
axial midplane of the tumor with a time resolution of 30
sec corrupted by additivie white noise of standard de-
viation of 0.3°C. The LPSLDM ROM described above
was used to design the Kalman filter and linear quadratic
regulator. Figure 8 depicts the resulting true and noise-
corrupted temperatures at the center of the tumor. Two
cases have again been considered, one in which the tumor
perfusion is constant at its nominal value of 1.8 (kg/s/m?)
and the other in which the tumor experiences a sudden
drop in perfusion to.1.08 (kg/s/m?®) 90 minutes into the
treatment. This represents a very simplified model of the
temperature-dependent perfusion thought to occur dur-
ing hyperthermia treatments [44]. It can be seen that
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Fig. 7. Simulated full-order results of open-loop optimization ap-
plied to heating of the human trunk model. (a) Returned con-
trol trajectories for the baseline and two optimized cases. (b)
Temperature trajectories at various points in protected tissues.
(¢) Tso and Tgg for the baseline and two optimized cases. See
text for discussion.

although this results in temporary overshoot of the tem-
perature in the tumor, the controller adjusts the power to
regain tracking of 44°C. A detailed discussion of choices
for the reference signal and other tuning and noise sensi-
tivity issues appears in [34]. This example serves to sim-
ply demonstrate the feasibility of controller design with
Lanczos-based ROMs.

IV. CONCLUSIONS

This work examined a model-order reduction technique
suitable for large-scale numerical models of biological
heating. Two variants of the proposed technique have
been presented: one suitable for minimal expense when
integrating the system dynamics once (HPSLDM), and
the other designed to yield a ROM of minimal dimension
(LPSLDM). The use of the resulting ROMs for dynamic
optimization of electromagnetic hyperthermia has been
demonstrated. Results of the simulated treatments sug-
gest that the effective thermal dose delivered during a
fixed treatment time can be maximized while protect-
ing healthy tissue. Additionally, results of the simulat-
ed treatments suggest that linear feedback controller de-
signed via the ROMs is capable of compensating for sud-
den changes in tumor perfusion rates.
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Fig. 8. Simulated temperature in the center of mass of the human
trunk tumor while heated by closed-loop control under (a) con-
stant perfusion and (b) a sudden reduction of 40 % in perfusion
in the tumor at 90 minutes. (c) History of the applied input
power for both cases.
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