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Eliminating Interface Reflections in Hybrid Low-Dispersion
FDTD Algorithms

Mohammed F. Hadi1 and Rabie K. Dib2

1Electrical Engineering Dept., Kuwait University, P. O. Box 5969, Safat 13060, Kuwait
2College of Technological Studies, PAAET, P. O. Box 4196, Hawalli 32072, Kuwait

Abstract— The numerical phase mismatch across
FDTD lattice layers with different sets of update equa-
tions has been investigated. A predictive equation of
numerical reflections across high-order/low-order layers
has been derived. Based on this equation the standard
Yee (S22) update equations have been modified to allow
their implementation around PEC boundaries and other
special situations in an otherwise global high-order
implementation, while keeping spurious reflections at
the hybrid interface to a practical minimum and in-
dependent of the traversing wave direction. S22 Phase
matching has been developed and verified in both S24

and M24 high-order hybrid algorithms.

Keywords— FDTD, Numerical Dispersion, High-Order
Schemes, Phase-Matching, Electrically Large Struc-
tures.

I. INTRODUCTION

SEVERAL FDTD algorithms have been developed
over the past decade to minimize the loss of phase

coherency in wave solutions due to numerical disper-
sion. Shlager and Schneider [1] compared some of the
more prominent low-dispersion algorithms and com-
pared their phase coherency for both single-frequency
and wideband use. While some of the analyzed algo-
rithms that restricted their stencils to a single Yee cell
did extremely well for single-frequency use [2] and [3],
it was the two-dimensional extended-stencil M24 al-
gorithm [4] that excelled in both single-frequency and
wideband suitability. The M24 algorithm utilizes mul-
tiple weighted Ampere’s and Faraday’s loop integrals
over extended FDTD stencils as demonstrated in Fig. 1.
In comparison, the S24 algorithm (second-order in time
and fourth-order in space finite differences) which will
also be discussed in this present work is a special case
of the M24 algorithm when the outermost loop integral
in Fig. 1 is omitted and K1 is set to −1/8.

The main challenge to such extended-stencil algo-
rithms, however, is porting the wealth of FDTD tools
that were developed over the decades for the standard
single-cell Yee algorithm (S22 for second-order differ-
encing in both time and space). It was suggested in

[4] that this challenge could be simply resolved by
introducing minimal S22 buffer zones where needed in
an otherwise global M24 implementation. Haussmann
in [5], however, demonstrated experimentally that such
an approach would cause measurable reflections at the
interface between the high-order and low-order zones.
Another approach pursued by Georgakopoulos et al. in
[6] was using a fine-meshed S22 buffer zone that would
better match its dispersion characteristics to a coarsely-
meshed S24 zone. Both works, however, left open
the questions as to the extent of interface reflections
at oblique wave incidence angles as well as to the
optimum mesh size ratio between the high-order and
low-order zones.

Recently, Celuch-Marcysiak and Rudnicki [7] and [8]
developed a methodology for predicting numerical re-
flections at normal and oblique angles of incidence
across dissimilarly gridded homogeneous zones and
went on to validate them using FDTD simulations.
In this present work this same methodology will be
applied to derive appropriate equations to predict the
reflection coefficient across similarly gridded homo-
geneous zones but with varying differencing schemes
(in particular, S24/S22 and M24/S22 interfaces) and
quantify the limitations of using S22 buffer zones
within high-order FDTD implementations. As in [8],
the effect of nonorthogonality of wave polarization to
propagation direction (wavenumber vector) [9] will be
accounted for. Furthermore, new update equations for
the S22 buffer zone will be developed and validated
that will utilize single-cell depth normal to the interface
plane and extended-cell depth tangentially to eliminate
cross-interface reflections while still being usable near
PEC boundaries and other special situations. In effect,
realizing optimum phase matching (minimal interface
reflections) without the need for S22 subgridding.

II. FDTD RENDITION OF PLANE WAVES

When an FDTD algorithm attempts to propagate
a plane wave it introduces two types of numerical
dispersion-related errors that are of interest to us
here. The first is the error in the rendered numerical
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Ez

Hx

Hy

×K3

×K1

×K2

Fig. 1. Multiple weighted Ampere’s loops for updating
a centered Ez node in the M24 algorithm. A uniform
Δx = Δy = h is assumed and K3 = 1 − K1 − K2.

wavenumber that causes the accumulation of phase
error as the wave traverses the numerical domain. This
error is a function of the propagation angle and resolu-
tion factor (number of FDTD cells per wavelength, R)
and is well documented in the literature. The other type
of error is the one that affects the polarization of the
propagating wave. It was demonstrated in [9] and [10]
that as the wave bounces around in the FDTD lattice the
orthogonal Ē and H̄ vectors form a numerical Poynting
vector that is not parallel to the propagation direction

β̄ = āxβx + āyβy + āzβz (1)

but rather to

P̄ = āxDx + āyDy + āzDz, (2)

where Dx, Dy and Dz are discrete operators dictated by
the FDTD algorithm of interest, and βx, βy and βz are
the numerically rendered wavenumber components that
can be derived from the algorithm’s dispersion relation.

A. Discrete Operators

The standard S22 algorithm in 2–D implementations
has the discrete operators

Dx =
sin βxh

2

h/2
and Dy =

sin βyh
2

h/2
. (3)

The M24 algorithm, on the other hand, has the update
equations [4] (see Fig. 1)

ε
∂Ez

∂t
=

K1

3h

(
Hx|j− 3

2
− Hx|j+ 3

2

+Hy|i+ 3
2
− Hy|i− 3

2

)

+
K2

6h

⎛
⎜⎜⎜⎝

Hx|i−1,j− 3
2

+ Hx|i+1,j− 3
2−Hx|i−1,j+ 3

2
− Hx|i+1,j+ 3

2

+Hy|i+ 3
2 ,j−1 + Hy|i+ 3

2 ,j+1

−Hy|i− 3
2 ,j−1 − Hy|i− 3

2 ,j+1

⎞
⎟⎟⎟⎠

+
K3

h

(
Hx|j− 1

2
− Hx|j+ 1

2

+Hy|i+ 1
2
− Hy|i− 1

2

)
, (4)

μ
∂Hx

∂t
=

K1

3h

(
Ez |j− 3

2
− Ez |j+ 3

2

)
+

1 − K1

h

(
Ez|j− 1

2
− Ez|j+ 1

2

)
, (5)

μ
∂Hy

∂t
=

K1

3h

(
Ez |i+ 3

2
− Ez |i− 3

2

)
+

1 − K1

h

(
Ez|i+ 1

2
− Ez|i− 1

2

)
(6)

where non-staggered indices are omitted for cleaner
notation and K3 = 1 − K1 − K2. These K parameters
are chosen through an optimization routine that will
ensure minimal dispersion error across all angles of
propagation in the numerical lattice. The corresponding
discrete operators are given by

Dy
x = K3

sin βxh
2

h/2

+ (K1 + K2 cosβyh)
sin 3βxh

2

3h/2
, (7)

Dz
x = (1 − K1)

sin βxh
2

h/2
+ K1

sin 3βxh
2

3h/2
, (8)

Dx
y = K3

sin βyh
2

h/2

+ (K1 + K2 cosβxh)
sin 3βyh

2

3h/2
, (9)

Dz
y = (1 − K1)

sin βyh
2

h/2
+ K1

sin 3βyh
2

3h/2
. (10)

The operator notation for the M24 algorithm is slightly
different than that of the S22’s as an x, y or z superscript
on the discrete operator denotes its restricted applica-
bility to that particular field component. On the other
hand, the S22 operators are linear; Dy

x = Dz
x = Dx and

Dx
y = Dz

y = Dy .
When K1 and K2 are substituted with −1/8 and

zero, respectively, equations (4) to (10) produce the
corresponding update equations and discrete operators
for the S24 algorithm. In particular, the latter will be
linear;

Dx =
9
8

sin βxh
2

h/2
− 1

8
sin 3βxh

2

3h/2
, (11)

Dy =
9
8

sin βyh
2

h/2
− 1

8
sin 3βyh

2

3h/2
. (12)

B. Dispersion Relations

The generalized dispersion relation for FDTD algo-
rithms can be conveniently written in the form [5]

μεD2
t = Dy

xDz
x + Dx

yDz
y + Dx

z Dy
z (13)
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with

Dt = − sin ωΔt
2

Δt/2
, (14)

provided that

Dz
yDx

z Dy
x = Dy

zDz
xDx

y . (15)

This latter condition is not a problem for 2-D algorithms
with nonlinear operators as is the case with the M24
algorithm since Dx

z = Dy
z = 0. For linear-operator

algorithms (S22 and S24), equation (13) can be reduced
to

μεD2
t = D2

x + D2
y + D2

z . (16)

Direct substitutions of equations (3) and (11) to (12)
into (16), and equations (7) to (10) into (13) will
produce the dispersion relations for the S22, S24 and
M24 algorithms.

C. Stability Criteria

The maximum allowable time step before the onset of
numerical instability for FDTD algorithms with linear
discrete operators and second-order differencing in time
is given by,

Δt ≤ 2
√

με√
(D2

x + D2
y + D2

z)max

(17)

while for 2-D such algorithms with nonlinear operators
it is given by,

Δt ≤ 2
√

με√(
Dy

xDz
x + Dx

yDz
y

)
max

(18)

where the “max” condition exists at βxh = βyh = π or
its odd multiples. These two inequalities will provide
the well known S22 and S24 stability criteria,

ΔtS22 ≤ h

c
√

2
and ΔtS24 ≤ (6/7)h

c
√

2
(19)

as well as

ΔtM24 ≤ h

c
√

2
3√

(3 − 4K1)(3 − 4K1 − 2K2)
. (20)

In hybrid S24/S22 or M24/S22 implementations the
corresponding S24 or M24 time steps need to be used
to avoid instability since they would be slightly smaller
than the S22’s maximum time step. Finally, it should
be mentioned here that

√−1 factors have been omitted
from all the discrete operators since they would even-
tually cancel out for our purposes here.

x

y

θP
i

Ēi × H̄i

Ēi

H̄i

θi

θr
θt

β̄i
1

β̄r
1

β̄t
2

Zone 1 (S24 or M24) Zone 2 (S22)

Fig. 2. Interpretation of a plane wave interaction with
a planar interface separating two similarly gridded ho-
mogeneous zones with different FDTD schemes. Field
nodes on the y-axis are assumed part of zone 2.

III. NUMERICAL REFLECTION COEFFICIENT

Let us assume a planar interface in a standard FDTD
lattice is being traversed at an oblique angle of in-
cidence from left to right with the medium at both
sides of the interface being free space (see Fig. 2).
Let us also assume that S22 update equations are used
in the right zone including field nodes coinciding with
the planar interface itself. In the left zone we will be
using the update equations of the algorithm under study
(S24 or M24). In either zone of this FDTD lattice the
relationship between the direction of propagation and
wavenumber is governed by,

β̄ = āxβx + āyβy = āxβ cos θ + āyβ sin θ (21)

where θ could be θi, θr or θt (incidence, reflection
or transmission angles) and β could be β1 or β2,
the numerical wavenumbers which are the solutions of
the dispersion relations corresponding to either zonal
algorithm. From equation (2) we can write

P̄ = āxP cos θP + āyP sin θP (22)

where, again, θP could be θP
i , θP

r or θP
t and is

calculated from

θP = tan−1 Dy

Dx
. (23)

A θ = θP = 0 means both propagation and Poynting
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vectors are normal to the interface. Since we are using
uniform space meshing in both zones we can assume
that θr = θi and θP

r = θP
i , with the latter being due to

numerical dispersion symmetry around θ = 0. Also, at
the planar interface (x = 0), boundary conditions will
force

β1y = β2y (24)

since both zonal algorithms share the same field nodes
at the interface and the incident, transmitted and possi-
bly reflected field amplitudes are related by Ei

1o+Er
1o =

Et
2o. We will also be using Er

1o = ΓEi
1o where Γ is the

desired numerical reflection coefficient.
The S22 update equation for the Ez field node at the

interface (say, at the x = 0 and y = 0 location) is

Ez|n+ 1
2

0,0 − Ez |n−
1
2

0,0 =
Δt

εh

(
Hy|n1

2 ,0
− Hy|n− 1

2 ,0

−Hx|n0, 1
2

+ Hx|n0,− 1
2

)
.

(25)
Assuming that each of the above field nodes has the
form ej(ωt−βxx−βyy) we can replace them, each (after
eliminating common terms) with

Ez|n±
1
2

0,0 → (1 + Γ)Ei
1oe

±jωΔt/2, (26)

Hy|n1
2 ,0 → − (1 + Γ)Ei

1o

η
cos θP

t e−jβ2xh/2,(27)

Hy|n− 1
2 ,0 → −Ei

1o

η
cos θP

i ejβ1xh/2

+
ΓEi

1o

η
cos θP

i e−jβ1xh/2, (28)

Hx|n0, 1
2

→ Ei
1o

η
sin θP

i e−jβ1yh/2

+
ΓEi

1o

η
sin θP

i e−jβ1yh/2, (29)

Hx|n0,− 1
2

→ Ei
1o

η
sin θP

i ejβ1yh/2

+
ΓEi

1o

η
sin θP

i ejβ1yh/2 (30)

where η is the dispersion-immune intrinsic wave
impedance [9]. Assembling these substitutions into
equation (25) and simplifying we get

j2h(1 + Γ)
cΔt

sin(ωΔt/2) =

− (1 + Γ) cos θP
t e−jβ2xh/2

+ cos θP
i

(
ejβ1xh/2 − Γe−jβ1xh/2

)
+ j2(1 + Γ) sin θP

i sin(β1yh/2). (31)

Splitting the reflection coefficient into its real and
imaginary parts (Γ = Γr + jΓi) and decoupling the

complex equation we can write,[ −(1 + Γr) cos θP
t cos β2xh

2

+(1 − Γr) cos θP
i cos β1xh

2

]
=

Γi

[ − 2h
cΔt sin ωΔt

2 + cos θP
t sin β2xh

2

+ cos θP
i

(
cos β1xh

2 + sin β1xh
2

) ] (32)

and

Γi

[
cos θP

t sin
β2xh

2
+ cos θP

i cos
β1xh

2

]
= (33)

(1 + Γr)
[ − 2h

cΔt sin ωΔt
2 + 2 sin θP

i sin β1yh
2

+ cos θP
t sin β2xh

2 + cos θP
i sin β1xh

2

]
.

Equations (32) and (33) are satisfied by a real-valued
Γ which reduces (32) (when Γi = 0) to

(1−Γr) cos θP
i cos

β1xh

2
−(1+Γr) cos θP

t cos
β2xh

2
= 0
(34)

from which the closed-form expression of the numerical
reflection coefficient can be written as,

Γ =
1 − κ

1 + κ
with κ =

cos θP
t cos β2xh

2

cos θP
i cos β1xh

2

. (35)

For any incidence angle θi, β1x and β1y are obtained
from the left zonal dispersion relation. β2x is then
calculated from the right zonal dispersion relation after
setting β2y = β1y , which would also yield θt. This is
followed by finding θP

i and θP
t using equation (23),

then finally Γ is calculated from equation (35).

IV. S24/S22 HYBRID ALGORITHM IN 2-D

Starting with the hybrid S24/S22 algorithm let us first
observe the deviations of the polarization angle from
the propagation angle, θP − θ, as a function of the
incidence angle θi in both zones (Fig. 3). As shown,
grid symmetry aligns both angles when the incidence
angle is either zero or π/4. At other angles, however,
the deviation in the S22 zone reaches as high as 25 times
that in the S24 zone at the uniform resolution of R = 10
cells per wavelength. Furthermore, as θi → π/2 the
boundary condition (24) forces an exaggerated error in
both transmission angles, θt and θP

t as shown in Figs. 3
and 4. Figure 5 compares the numerical reflection
coefficient at different resolution factors versus angle
of incidence (solid lines). It is clear from the figure
that spurious reflections can become problematic as the
incidence angle goes beyond 80◦ unless fine meshing
is used which negates the computational efficiency
advantage of the high-order S24 algorithm.

To solve this problem of increasing reflections near
grazing angles, the S22 algorithm in the right zone is
modified so that second order differencing is maintained
for ∂/∂x and a fourth order differencing is applied
to ∂/∂y as demonstrated in Fig. 6. This approach
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Fig. 5. Numerical reflection coefficient vs. θi

across an S24/S22 hybrid algorithm interface before
(solid) and after (dashed) tangential phase matching
at the resolution factors (from top to bottom), R =
5, 10, 20, 30, 40, 50, 100.
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Fig. 6. FDTD stencil extents at the S24/S22 interface
before (a) and after (b) tangential stretching in the S22

zone for phase matching purposes.

has the advantage of single-cell interface-normal depth
for modeling physical discontinuities and an extended
interface-tangential cell that matches the numerical
wavenumbers along that direction. The correspond-
ing update equations for the y−stretched algorithm in
zone 2 are given by,

ε
∂Ez

∂t
=

Hy|i+ 1
2
− Hy|i− 1

2

h

−
27(Hx|j+ 1

2
− Hx|j− 1

2
)

24h

+
Hx|j+ 3

2
− Hx|j− 3

2

24h

μ
∂Hy

∂t
=

Ez|i+ 1
2
− Ez|i− 1

2

h

μ
∂Hx

∂t
= −

27(Ez|j+ 1
2
− Ez|j− 1

2
)

24h

+
Ez|j+ 3

2
− Ez |j− 3

2

24h
(36)

and the discrete operators which would replace those of
equation (3) are

Dx =
sin βxh

2

h/2
, (37)

Dy =
9
8

sin βyh
2

h/2
− 1

8
sin 3βyh

2

3h/2
. (38)

The corresponding dispersion relation is obtainable
from equation (16) and the stability limit is governed
by,

Δt ≤ h

c
√

2

√
72
85

(39)

a slightly more relaxed condition than that of the left
zone’s S24 algorithm ensuring stability when the latter
is enforced. Figure 5 (dashed lines) demonstrates the
advantage gained in the form of vanishing reflections
at near-grazing incidence angles.

It must be remembered that the numerical reflection
coefficient (35) was derived using the S22 update equa-
tion (25) at the interface. The corresponding expression
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for the above phase-matched S24/S22 interface must be
derived from,

Ez |n+ 1
2

0,0 = Ez|n−
1
2

0,0 +
Δt

εh

(
Hy|n1

2 ,0 − Hy|n− 1
2 ,0

)

− Δt

24εh

(
27Hx|n0, 1

2
− 27Hx|n0,− 1

2−Hx|n0, 3
2

+ Hx|n0,− 3
2

)
(40)

which necessitates an additional substitution to equa-
tions (26) to (30);

Hx|n0,± 3
2
→ (1 + Γ)Ei

1o

η
sin θP

i e∓j3β1yh/2. (41)

Completing the substitutions into equation (40) will
only affect the term containing β1y in (31), leaving
(32) and the Γi term in (33) intact and in a manner
that maintains equation’s (35) validity for predicting the
numerical reflection coefficient across the interface in
the present case.

V. M24/S22 HYBRID ALGORITHM

As in the case of the S24/S22 interface, variations in
the M24 algorithm’s dispersion behavior versus propa-
gation angle compared to those of the S22 algorithm
cause serious spurious numerical reflections at near
grazing angles at the interface as demonstrated in Fig. 7
(solid lines). To remedy these high reflections the S22

algorithm in the right zone needs to be replaced by one
that maintains single cell normal depth but has matching
tangential dispersion characteristics to the left zone M24
algorithm. A logical choice would be to apply the M24
development methodology using concentric flat (one
cell depth along the x-axis) Ampere’s and Faraday’s
loops. However, such an approach would be an overkill

and is unnecessary, considering that in real applications
the right zone would be only one cell deep negating the
need for low dispersion for all propagation angles save
for the tangential direction to the interface. A simpler
and more practical scheme is to use again an elongated
S22 algorithm as in the previous case, except that a
tuning parameter is introduced to be used for phase
matching with the left M24 zone,

ε
∂Ez

∂t
=

Hy|i+ 1
2
− Hy|i− 1

2

h

+
Kb

3h
(Hx|j− 3

2
− Hx|j+ 3

2
)

+
1 − Kb

h
(Hx|j− 1

2
− Hx|j+ 1

2
)

μ
∂Hy

∂t
=

Ez|i+ 1
2
− Ez |i− 1

2

h

μ
∂Hx

∂t
=

Kb

3h
(Ez |j− 3

2
− Ez|j+ 3

2
)

+
1 − Kb

h
(Ez |j− 1

2
− Ez |j+ 1

2
). (42)

The corresponding discrete operators are

Dx =
sin βxh

2

h/2
, (43)

Dy = (1 − Kb)
sin βyh

2

h/2
+ Kb sin 3βyh

2

3h/2
, (44)

with the dispersion relation obtainable from equation
(16) and the stability limit governed by

Δt ≤ h

c

1√
1 + (1 − 4Kb/3)2

. (45)

The choice for the tuning parameter Kb will be based
on an optimization routine that will minimize the nu-
merical reflection coefficient (equation (35) is valid for
this case too) for the particular resolution factor R
used in the simulation. Table 1 lists the K1 and K2

parameters for the left zone at several R values along
with matching Kb values for the right zone that will
eliminate spurious reflections at the interface as shown
in Fig. 7 (dashed lines).

VI. NUMERICAL VALIDATION

To verify the effectiveness of the modified update
equations (36) and (42) at eliminating reflections off
the S24/S22 and M24/S22 interfaces, FDTD simulations
were performed where a point sinusoidal source was
initiated very near the interfaces (4 cells away) to
highlight near-grazing wave incidence. The simulations
were run once with high-order update equations for
the left zone and S22 update equations for the right
zone, and again with the former applied to both zones.
Figure 8 highlights the absolute difference between the
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Table 1. K1 and K2 values for the left zone M24
algorithm with corresponding Kb values for a phase-
matched right zone S22 algorithm.

R K1 K2 Kb

5 −0.144932 0.1020689 −0.0933211

10 −0.116193 0.0734445 −0.0793836

20 −0.110322 0.0678920 −0.0763555

30 −0.109283 0.0669205 −0.0758122

40 −0.108922 0.0665844 −0.0756233

50 −0.108756 0.0664296 −0.0755362

100 −0.108535 0.0662238 −0.0754201
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Fig. 8. Isolated numerical reflections at the interface of
a typical hybrid S24/S22 algorithm. R = 10 at 1 GHz.

two simulation runs for the S24/S22 case isolating net
numerical reflections off the interface.1 Note in this fig-
ure the increasing reflection noise levels as the surface
wave propagates further away from the source location
along the interface. In comparison, Fig. 9 demonstrates
the total absence of this interface hugging reflection
noise due to the implementation of equations (36) in
the right zone. Figures 10 and 11 demonstrate a similar
accomplishment for the M24/S22 case. Table 2 sum-
marizes a comparison between these measured after-
modification reflections and those predicted in Figs. 5
and 7 showing reasonable agreements, especially in the
M24/S22 case.

Finally, reflection noise levels could be further re-
duced by using a soft-start sinusoidal source. For ex-
ample, using Furse et al.’s raised cosine ramp function
[11],

r(t) =

⎧⎨
⎩

0, t < 0
1
2

(
1 − cos ωt

2α

)
, 0 ≤ t ≤ αT

1, t > αT
(46)

1Only the upper-left quadrant data of Fig. 2 are shown as the
reflections were symmetric across the x-axis.
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Fig. 9. Elimination of tangential reflections due to
S22 phase-matching with the S24 scheme in a hybrid
S24/S22 algorithm. R = 10 at 1 GHz.
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Fig. 10. Isolated numerical reflections at the interface
of a typical hybrid M24/S22 algorithm. R = 10 at
1 GHz.
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Fig. 11. Elimination of tangential reflections due to
S22 phase-matching with the M24 scheme in a hybrid
M24/S22 algorithm. R = 10 at 1 GHz.
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Table 2. Comparison of predicted and measured
numerical reflections after phase-matching the high-
order and low-order schemes in the hybrid algorithms
discussed in this work. R = 10 at 1 GHz.

Algorithm Predicted Γmax Measured Γmax

S24/S22 −62 dB −55 dB

M24/S22 −54 dB −57 dB

Abrupt Start

Soft Start
0 20 40 60 80 100

0 20 40 60 80 100

0
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100
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50
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1
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0

1

2
×10−3

Fig. 12. Filtering out high-frequency content of the
reflection noise in the phase-matched hybrid M24/S22

algorithm by replacing the abruptly-starting sine source
with a smooth-starting ramped-cosine source.

with T = 2π/ω and α chosen as 1.5, we can re-
place the sin(ωt) source in the FDTD simulations with
r(t) cos(ωt). Such a substitution would effectively filter
out the high frequency content of the reflection noise
as demonstrated in Fig 12.

VII. CONCLUSION

The phase velocity mismatches across hybrid high-
order/low-order FDTD implementations cause unac-
ceptably growing reflections across the hybrid interface
when the traversing wave is at near grazing incidence
angles. A predictive equation of the ensuing numerical
reflections has been derived, investigated and used along
with the dispersion relations of both the high-order and
low-order schemes to modify the latter and match its
tangential (to the interface) phase velocity to that of
the former. Numerical experiments have demonstrated
that this modification has completely eliminated the ex-
cessive interface-hugging reflection noises and reduced
them to the same level as the axial reflection noises.
These experiments have been performed for the S24/S22

and M24/S22 hybrid algorithms with good agreement
between predicted and measured reflections after the
phase-matching algorithm modifications. In practical

applications this innovation allows efficient use of thin
(one cell deep) S22 buffer zones where needed in an oth-
erwise global high-order implementation for modeling
electrically large structures with high phase accuracy.
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Abstract − For the analysis of grounding resistance with 
the finite-difference time-domain (FDTD) method for 
solving Maxwell's equations, an equivalent radius of a 
naked thin wire in a lossy medium is derived by means 
of the static field approximation, proposed for derivation 
of that of an aerial thin wire. It is 0.23 times the size of 
each cell employed, which is the same as that of an aerial 
thin wire. The validity is tested by comparing the 
grounding-resistance values obtained through FDTD 
simulation on simple buried structures with the 
theoretical values. 
 
Key words − FDTD method, grounding electrode, 
grounding resistance, thin wire, and conductor. 

 
I.    INTRODUCTION 

 
The role of grounding electrodes is to dissipate fault 

currents effectively into the soil, and thereby to prevent 
damage of insulations in power systems. Thus, the 
performance of power systems is influenced by proper 
functioning of grounding systems. 

No formulas of impedance and admittance have 
been derived even for simple vertical or horizontal naked 
conductor buried in a homogeneous ground. Hence, 
transient characteristics of grounding electrodes have 
been investigated by experiments and recently numerical 
electromagnetic analyses [1 - 4] based on the method of 
moments (MoM), the finite element method (FEM), or 
the finite-difference time-domain (FDTD) method [5 - 
6]. Numerical electromagnetic analyses can be 
performed assuming well-profiled condition that the 
values of conductivity and permittivity of a ground are 
known or set arbitrarily. Such results are useful in 
understanding the phenomena as well as in confirming 
measured results. 

Numerical electromagnetic analyses based on the 
FDTD method are effective to analyze the transient 
response of a large solid conductor or electrode. The 
accuracy of this method, in the case of being applied to 
such analysis, has been fully investigated in comparison 
with an experiment and shown to be satisfactory [7]. As 
this method requires long computation time and large 
capacity of memory, the analysis is restricted to a rather 
small space. A transient analysis of a large system or a 
system composed of various elements still need to be 

performed by such tools like Electromagnetic Transients 
Program (EMTP) [8]. One reasonable process of study, 
therefore, is to investigate the physical characteristics of 
a grounding electrode by a numerical electromagnetic 
analysis, and then to represent the obtained 
characteristics by an equivalent circuit model or to 
determine the values of its parameters [3].  

So far in most of the FDTD analyses of transient 
and steady-state grounding resistance, large solid 
electrodes [6], [7], which can be decomposed into small 
cubic cells, have been chosen and thin-wire electrodes 
have not been dealt with. This is because an equivalent 
radius of a thin wire in a lossy medium has not been 
made clear. In [9], a rigorous method has been shown for 
determining the effective radius of a single axial field 
component, Ex or Hx, in a two-dimensional (2-D) TMx or 
TEx FDTD grid. The method is based upon matching 
FDTD results for a filamentary field source with the 
analytical Green's function in two dimensions. It is 
therefore, essential to clarify the equivalent radius of a 
buried thin wire for more general analyses of grounding 
systems. In the present paper, an equivalent radius of a 
thin wire in lossy medium is derived with the help of the 
concept proposed for derivation of that of an aerial thin 
wire [10]. Then its validity is tested by comparing the 
grounding-resistance values obtained through FDTD 
simulations on simple buried structures with the 
theoretical values.  

 
II. METHOD OF ANALYSIS 

 
The FDTD method employs a simple way to 

discretize a differential form of Maxwell's equations. In 
the Cartesian coordinate system, it generally requires the 
entire space of interest to be divided into small 
rectangular cells and calculates the electric and magnetic 
fields of the cells using the discretize Maxwell's 
equations. As the material constant of each cell can be 
specified arbitrarily, a complex inhomogeneous medium 
can be easily analyzed. To analyze fields in an open 
space, an absorbing boundary has to be set on each plane 
which limits the space to be analyzed, so as to avoid 
reflection there. In the present analysis, the second-order 
Mur's method [11] is employed to represent absorbing 
planes. 
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III.   DERIVATION OF EQUIVALENT RADIUS OF 
BURIED THIN WIRE 

 
In [8], it has been shown that an aerial thin wire has 

some equivalent radius in the case that the electric-field 
elements along the thin wire are set to zero in an 
orthogonal and uniform-spacing Cartesian grid. When 
the size of cubic cells employed is ∆s, the equivalent 
radius is 0.23∆s. In the present paper, an equivalent 
radius of a naked thin wire in a lossy medium is derived. 
Note that in [10] an equivalent radius of an aerial thin 
wire has been shown to be 0.135∆s. In a quasi-steady 
state, however, 0.23∆s is more appropriate than 0.135∆s 
as an equivalent radius [8] which is very close to the 
effective radius 0.2∆s [7]. 

Figure 1 illustrates the cross section of a long thin 
wire surrounded by a cylindrical sheath conductor. The 
radii of the thin wire and the sheath are a and b, 
respectively. The conductivity and the relative 
permittivity of a medium between the thin wire and 
sheath conductor are assumed to be σ and εs, 
respectively. In this condition, the conductance G and the 
susceptance B between the thin wire and the sheath are 
given as follows, 

)/ln(
2

ab
G πσ
=  ,  

)/ln(
2 0

ab
B sωεπε
= . (1) 

 

Note that ε0 is the permittivity of vacuum and ω is the 
angular frequency. Therefore, the conductance becomes 
equal to the susceptance when the frequency  f  is 
 

  )2/( 00 sf επεσ= .                   (2)  
 

For instance, f0 is 1.5 or 7.5 MHz for a medium of εs = 
12 and σ = 1 mS/m or 5 mS/m, respectively.  

 

 
Fig. 1. Cross section of a thin wire surrounded by a 
cylindrical sheath. 
 

Figure 2 shows the cross section of a thin wire 
surrounded by a rectangular sheath conductor for an 
FDTD simulation. Both the thin wire core and the sheath 
are perfectly conducting. The cross-sectional area of the 
sheath is 2.5 X 2.5 m2 and the length is 25 m. The 
conductor system is represented with cubic cells whose 
side ∆s is 0.25 m. A voltage, which has a rise-time of 20 
ns and a magnitude of 100 V, is applied between the thin 
wire and the sheath at its one end. The other end is open. 
The response is calculated up to 10 µs with a time 
increment of 0.4 ns.  

Figure 3 shows the time-variations of the ratios of 
E1, E2 and E3 to E2 which are radial electric fields 
calculated for 0.5∆s, 1.5∆s, and 2.5∆s, at 12.5 m from 
the ends of the conductor. It is found that the ratios settle 
down after 100 ns or so, and they are almost equal to 
those calculated for a thin wire in air [10]: 2.21, 1.00 and 
0.59. This is natural because both the conductance and 
the susceptance of a thin wire follow similar expressions 
as shown in equation (1).  Furthermore, the ratios change 
a little even if a different conductivity such as 0.2 or 10 
mS/m is employed and a different time increment 0.25 or 
0.48 ns is used. Thus electric field around the thin wire 
can also be approximated by the following function [10],  
 

  ).2/(3 xsE ∆=                          (3) 
 

Note that x is the distance from the centre of the thin 
wire. In this function, the electric field E is normalized 
so that E should be unity at  x =1.5 ∆s. Figure 4 shows 
the radial electric fields calculated by this function and 
those obtained by the FDTD simulation.   
 

 
Fig. 2. Electric field around a thin wire in a rectangular 
sheath to be used for an FDTD simulation. 
 

 
 

Fig. 3. Time-variation of the ratios of E1, E2 and E3 to E2 
calculated by the FDTD method in the case of σ = 5 
mS/m and εs = 12. 
 

 
 

Fig. 4. Radial electric fields around the thin wire. 
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If the equivalent radius of the thin wire now in 
question is assumed to be r0 and the electric field is 
assumed to follow the above function, the potential 
difference between x = r0 and x = ∆s is given as follows, 

 

∫
∆ ∆∆

=
s

00

ln
2

s3dxE
r r

s
.                          (4) 

If the above expression is equated to 2.2 ∆s, which is the 
potential difference obtained by the FDTD simulation, 
the equivalent radius r0 is given as,   
 

  sr ∆= 23.00 .                       (5) 
 

This is an equivalent radius of a naked thin wire in a 
lossy medium.  
 

IV.  COMPARISON WITH SUNDE'S FORMULA 
ON GROUNDING RESISTANCE 

 
A. Models for Analysis 
 

Figure 5 shows a side view of an analysis model, 
which is composed of two naked vertical thin wires and 
an overhead horizontal thin wire. The buried portion of 
vertical thin wires is 3 or 5 m. The horizontal thin wire is 
30 m long and 1 m high over the surface of a 
homogeneous ground. The conductor system is excited 
by a voltage source at a connection point between the 
horizontal wire and one of the buried vertical wires. The 
voltage source produces a steep-front wave having a 
rise-time of 10 ns, after which it maintains a magnitude 
of 100 V, [12 - 16].   
 

 
 
Fig. 5. Two buried vertical thin wires connected by an 
overhead horizontal wire to be analyzed by the FDTD 
method. 
 

The conductivity of the homogeneous ground σ is 
set to 0.2 mS/m, 1.0 mS/m, and 5 mS/m in order to 
visualize the moisture contained in the soil, where the 
conductors are buried. The thickness and relative 
permittivity (εs) of the ground are set to 20 m and 12, 
respectively. For the FDTD simulation, the conductor 
system shown in Fig. 5 is accommodated by a large 

rectangular analysis space of 80 ×120 × 60 m3 with 
space length ∆s = 0.5 m. The voltage in the gap which 
exists between the horizontal wire and one of the buried 
vertical wires represents conductor-top voltage. The gap 
length is maintained as the space length of the conductor 
system. The time-step was determined by equation (14) 
found in [10] with α = 0.01, and all the six boundaries of 
the cell were treated as the second-order Liao's absorbing 
boundary.  

It may be believed that the FDTD method is a time-
consuming method. However, the progress of computers 
in terms of speed and memory is considerable, and even 
a personal computer can be used for the FDTD 
calculation. In fact, the simulation presented in this paper 
were performed by a personal computer with Intel 
Pentium 4, 2.80 GHz CPU and 512 MB RAM. 
Responses are calculated up to 1.5 µs with a time 
increment of 0.9 ns.  Therefore, the computation time for 
one case is about 3 hours. 

 
B. Analyzed Results 
 

Figures 6 and 7 show both voltage and current 
waveforms at the vertical conductor-top, respectively, 
i.e., at the injection point calculated for the model of Fig. 
5 in case of the vertical thin wires are buried up to 3 m 
and 5 m with different conductivity of the earth soil. 
Tables I and II summarizes the values of transient 
grounding resistance RGV of the 3-m and 5-m vertical 
thin wires evaluated at 1.5 µs for Figs. 6 and 7. They are 
simply calculated from the following relation: Is=Vs / 
RGV. Note that Vs is the magnitude of the voltage and Is is 
the current of the circuit. 

Figure 8 shows the propagation of the current at 
different heights of the 6 m-vertical electrodes, which are 
buried up to 5 m and with different conductivity. These 
currents are simulated at 5.5 m, 2.5 m and at the bottom 
of the electrode in which the source is applied and thus 
treated as upper, middle and lower currents. It is noted 
that the middle and lower currents are characterized by 
the ground parameters. The magnitudes of current 
waveforms are increasing with the increase of the 
conductivity and thus the time required to settle down 
the currents is increasing. It is also noted that as the 
conductivity gets higher, the wavefronts of voltage and 
current become less steep. The waveform of a voltage of 
the buried naked conductor is not similar to that of a 
current, particularly around the injection point. If the 
buried conductor is insulated, the waveform of a voltage 
is almost identical to that of a current just, as if it is a 
coaxial cable [17]. 

 
C. Discussion 
 

The wavelength of an electromagnetic field, which 
corresponds to the evaluation time (1.5 µs), is several 
hundred meters. It is ten times longer than the length of 
the conductor system shown in Fig. 5. Hence, it is 
considered that the transient-resistance value at 1.5 µs is 
close to the resistance in the steady state. Sunde [18] has 
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derived a theoretical formula for the DC resistance of a 
vertical conductor buried in a homogeneous ground. It is 
expressed as 

),14(ln
2

1
−=

r
d

d
R

SUNDEGV πσ
               (6) 

 

where, d is the length and r is the radius of the electrode. 
The values of grounding resistance calculated by this 
theoretical formula are also included in Tables I and II. 
The values of the transient grounding resistance obtained 
by the FDTD simulation are only 8 % lower than those 
calculated by Sunde's formula regardless of the ground 
conductivity.  

 

 
              (a)  σ = 0.2 mS/m. 
 

 
(b) σ = 1 mS/m. 

 

 
  (c)  σ = 5 mS/m. 
 
Fig. 6. Voltages evaluated at the injection point of 
vertical thin electrodes of Fig. 5 buried up to 3 m and 5 
m with different ground conductivity. 
 

 

 
               (a)  σ = 0.2 mS/m. 
 

 
(b) σ = 1 mS/m. 

 

 
  (c)  σ = 5 mS/m. 
 

Fig. 7. Calculated current waveforms at the injection 
point of the model of Fig. 5 with different conductivity 
in the case that the vertical thin wires are buried up to 3 
and 5 m. 
 
Table I. Transient grounding resistance of a 3-m vertical 
electrode obtained by the FDTD analysis and the DC 
resistance calculated by Sunde’s formula. 
 

 σ=0.2mS/m σ=1mS/m σ=5 mS/m 
FDTD 
Theory 

900 
967 

178 
193 

36 
38.7 

Difference 6.9% 7.7% 7% 
 
Table II. Transient grounding resistance of a 5-m vertical 
electrode obtained by the FDTD analysis and the DC 
resistance calculated by Sunde’s formula. 
 

 σ=0.2mS/m σ=1mS/m σ=5 mS/m 
FDTD 
Theory 

615 
661 

121 
131 

21.5 
26.5 

Difference 7% 8% 7.5% 
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  (a)  σ = 0.2 mS/m. 
 

 
  (b)  σ = 1 mS/m. 
 

 
  (c)  σ = 5 mS/m. 
 
Fig. 8. Propagating current observed at a different height 
of the vertical thin wire with different conductivity (5 m 
buried vertical thin wires). 
 

When the length of the overhead horizontal thin 
wire is shortened or enlarged from 30 m to 20 m or 40 
m, the transient resistance decreases only by 0.5 Ω (1.7\ 
%) or increases by 0.4 Ω (1.3\ %) for a 5-m buried 
vertical thin wire in a ground having the conductivity of 
5 mS/m, as shown in Table III. Therefore, it is clear that 
the influence of the 30-m distance between the two 
electrodes is insignificant than the properties and the 
depth of the lossy ground.  

As a consequence, it has become clear that the 0.23 
∆s is valid as the equivalent radius of a thin wire buried 
in a lossy ground. Note that Sunde has proposed a 
theoretical formula of resistance also for a horizontal 

cylindrical electrode [18]. As it is a function of the 
natural logarithm of the square root of r, the resistance 
value of a horizontal thin electrode is not so sensitive to 
the radius of the electrode. This is the reason why a 
horizontal electrode is not employed for comparison.  
 
Table III. Dependency of the transient grounding 
resistance of a 5-m vertical electrode, calculated by the 
FDTD analysis on the distant two electrodes. 
 

Distance 20 m 30 m 40 m 
Resistance 25.8 26.5 27.7 

 

 
   V.   CONCLUSIONS 
 

In the present paper, for the analysis of grounding 
resistance with the FDTD method, an equivalent radius 
of a naked vertical thin wire in a lossy medium has been 
investigated with the help of the static-field concept 
proposed for an aerial thin wire. It is 0.23 times the side 
of cells employed, which is the same as that of the aerial 
thin wire. The validity has also been examined by 
comparing the grounding-resistance value obtained 
through FDTD simulations on simple buried structures 
with the theoretical values, and are shown to be 
satisfactory. 
 
 VI.   ACKNOWLEDGMENT 
 

The authors are indebted to T. Noda and Y. Baba for 
their technical support and providing useful information. 

 
  REFERENCES 
 
[1] L. Grcev and F. Dawalibi, “An electromagnetic 

model for transients in grounding systems,” IEEE 
Trans. Power Delivery, PWRD, vol. 5, no. 4, pp. 
1773-1781, 1990. 

[2] Y. Liu, M. Zitnik, and R. Thottappillil, “A time 
domain transmission line model of grounding 
systems,” Proc. Int. Symp. High Voltage 
Engineering, pp. 154 -157, 2001. 

[3] Y. Liu, M. Zitnik, and R. Thottappillil, “A time 
domain transmission line model of grounding 
systems,” Proc. Int. Symp. High Voltage 
Engineering, pp. 154 -157, 2001. 

[4] Y. Baba and M. Ishii, “Numerical electromagnetic 
field analysis on lightning surge response of tower 
with shield wire,” IEEE Trans. Power Delivery, 
PWRD, vol. 15, pp. 1010 - 1015, no. 3, Jul. 2000. 

[5] Y. Baba, M. Nayel, N. Nagaoka, A. Ametani, and S. 
Sekioka, “Numerical analysis of wave propagation 
characteristics on a buried horizontal conductor by 
FDTD method,”  Journal of IEE, vol. 123, no. 11, 
pp. 1319 - 1327, 2003. 

[6] A. Taflove and S. C. Hugness, Computational 
Electrodynamics: The Finite-Difference Time-

319 ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007



Domain Method, 3rd edition, Boston: Artech House, 
2005. 

[7] K. Tanabe, A. Asakawa, T. Noda, M. Sakae, M. 
Wada, and H. Sugimoto, “Varifying the novel 
method for analyzing transient grounding  resistance 
based on the FD-TD method through comparison 
with experimental results,” CRIEPI Report, no. 
99043, 2000. (in Japenese) 

[8] W. Scott-Meyer, EMTP Rule Book,  B.P.A, 1977. 
[9] G. Waldschmidt and A. Taflove, “The determination 

of the effective radius of a filamentary source in the 
FDTD mesh,” IEEE Microwave and Guided Wave 
Letters, vol. 10, pp. 217 - 219, June 2000. 

[10] T. Noda and S. Yokoyama, “Thin wire 
representation in finite difference time domain surge 
simulation,” IEEE Trans. Power Delivery, PWRD, 
vol. 17, no. 3, pp. 840 - 847, 2002. 

[11] G. Mur, “Absorbing boundary conditions for the 
finite-difference approximation of the time-domain 
electromagnetic-field equation,” IEEE Trans. 
Electromagnetic Compatibility, EMC, vol. 23, no. 4, 
pp. 377 - 382, 1981. 

[12] M. O. Goni, P. T. Cheng, and H. Takahashi, 
“Theoretical and experimental investigations of the 
surge response of a vertical conductor,” Proc. IEEE 
Power Engineering Society Int'n Conf., vol. 2, pp. 
699 -704, 2002. 

[13] M. O. Goni and H. Takahashi, “Theoretical and 
experimental investigations of the surge response of 
a vertical conductor,” ACES Journal, vol. 18, no. 1, 
Mar. 2003. 

[14] M. O. Goni and H. Takahashi, “Thin wire 
representation of the vertical conductor in surge 
simulation,” ACES Journal, vol. 19, no. 1a, Mar. 
2004. 

[15] M. O. Goni, M. F. Hossain, M. M. Rahman, M. S. 
U. Yusuf, E. Kaneko, and H. Takahashi, “ 
Simulation and experimental analyses of 
electromagnetic transient behaviours of lightning 
surge on vertical conductors,” IEEE Trans. on 
Power Delivery, PWRD, vol. 21, no. 4, Oct. 2006. 

[16] K. R. Umashankar, A. Taflov, and B. Beker, 
“Calculation and experimental validation of induced 
currents on coupled wires in an arbitrary shaped 
cavity,” IEEE Trans. Antennas and Propagation, 
vol. 17, no. 11, pp. 1248 - 1257, 1987. 

[17] Y. Baba, M. Nayel, N. Nagaoka, A. Ametani, and 
S. Sekioka, “Numerical analysis of wave 
propagation characteristics on a buried horizontal 
conductor by FDTD method,”  Journal of IEE, vol. 
123, no. 11, pp. 1319 - 1327, 2003. 

[18] E. D. Sunde, Earth Conduction Effects in 
Transmission Systems, Dover, New York 1968. 

 
 
 
 
 

Md. Osman Goni was born in 
Bangladesh on February, 1971. He 
received his B.S. degree in electrical 
and electronic engineering from 
Bangladesh Institute of Technology, 
Khulna in 1993. He joined the 

Institute in 1994. He received M.S. degree and D. Eng. 
degree from the University of the Ryukyus, Japan in 
2001 and 2004 respectively. He is currently an assistant 
professor and has been engaged in teaching and research 
in digital signal and image processing, electric power 
and energy system, electromagnetic energy engineering, 
electromagnetic theory, electromagnetic fields 
computation, transient phenomena, lightning and EMP 
effects on power and telecommunication networks, 
FDTD method, MoM, NEC-2, lightning surge analysis, 
vertical conductor problems, EMTP etc. He is the author 
or co-author of about 20 scientific papers presented at 
international conferences and published in reviewed 
journals. 
Dr. Goni is the Director of the Lightning Research Group 
of Khulna University of Engineering and Technology, 
Bangladesh. He is a member of IEEE, ACES, IEE of 
Japan, IEB and AGU.  
 
 

Eiji Kaneko was born in Japan, on 
September 16, 1952. He received 
M.S. degree from Nagoya University 
in 1977. He joined in Toshiba 
Corporation in April 1977 and 
engaged in research and development 

of vacuum interrupter and discharge. He received D. 
Eng. degree from Nagoya University in 1989. He is now 
professor of University of the Ryukyus. He has been 
engaged in teaching and research on electric power and 
energy system engineering, electromagnetic energy 
engineering etc. Dr. Kaneko is a member of IEEE and 
IEE of Japan. 
 
 

Akihiro Ametani received the B.S. 
and M.S. degrees from Doshisha 
University, Kyoto, Japan, in 1966 and 
1968, respectively, and the Ph.D. 
degree from the University of 
Manchester Institute of Technology 
(UMIST), Manchester, U.K., in 1973. 
He was with Doshisha University 

from 1968 to 1971, UMIST from 1971 to 1974, and the 
Bonneville Power Administration, Portland, OR, for the 
summers of 1976 to 1981. He has been a Professor at 
Doshisha University since 1985. He was the Director of 
the Institute of Science and Engineering of Doshisha 
University from 1997 to 1998 and the Dean of the 
Library and Computer/Information Center from 1998 to 
2001. Dr. Ametani is a Chartered Engineer in the U.K., a 
Distinguished Member of CIGRE, and a Fellow of the 
IEE. He has been a Vice President of the IEE of Japan 
since 2004. 

320GONI, KANEKO, AMETANI: FDTD ANALYSIS OF TRANSIENT GROUNDING RESISTANCE



Accelerated GRECO Based on a GPU 
 

1 Yang ZhengLong, 1 Jin Lin, and 2 Li WeiQing 
 

1 Nanjing Research Institute of Electronics Technology, China 
2 Computer Science and Tech. Institute, Nanjing University of Science. and Technology, China 

 
Abstract − For obtaining the electromagnetic scattering 
characteristic of a complex target efficiently, GRECO 
(Graphical Electromagnetic COmputing) is 
implemented by a programmable pipeline of a modern 
GPU (Graphics Processing Unit). The speed of the 
simulation can be improved up to 20 times compared 
with the raw GRECO. The ray tracing algorithm based 
on a GPU is implemented to obtain the multiple 
reflection contribution of a target with concave 
structure. This approach will redound to research works 
such as radar target identification and Inverse Synthetic 
Aperture Radar (ISAR) imaging. 
 
Key words − EM scattering, GRECO, and GPU. 

 
I.  INTRODUCTION 

 
GRECO (GRaphics Electromagnetic COmputing) 

is an effective method for computing the 
high-frequency radar cross section (RCS) of complex 
targets based on physical optics (PO), and physical 
theory of diffraction (PTD) [1]. In this paper, an 
accelerated version of the GRECO method is 
implemented by the programmable pipeline of a 
modern GPU (Graphics Processing Unit), the speed of 
the simulation can be improved up to 20 times 
compared with the base GRECO. Furthermore, the ray 
tracing algorithm based on the GPU is implemented to 
obtain the contribution of multiple reflection of a target.  

Compared with the raw GRECO, the GPU 
accelerated GRECO has higher efficiency and enhanced 
ability to simulate the multiple reflection of a complex 
target with concave structure. 

With the development of GPU and the creation of 
the new feature of programmability, researchers begin 
to transfer some of the processing stages in the graphics 
output pipeline or some graphics algorithms from the 
CPU (Central Processing Unit) to the GPU. Except for 
those graphics-only applications, GPU finds 
applications in general purpose computations in other 
fields, and it has become a hot topic for research in 
recent years. In the electromagnetics filed, the FDTD 
method has been implemented based on the GPU for 
higher efficiency [2]. 

In some applications such as computational 
electromagnetics and signal processing, the speed of the 
CPU can not meet the requirement of efficiency. One 

can use other high-speed processing unit like DSP 
(Digital Signal Processing) or HPC (High Performance 
Cluster) system, but DSP or HPC system is very 
expensive and limited in application. By contrast with a 
general CPU, a GPU consists of higher-bandwidth 
memory and more floating-point hardware units. For 
example, current GPU such as the Nvidia 6800 Ultra 
has a peak performance of 40 Gflops and a memory 
bandwidth of 35.2 Gbytes per second, compared to 6.8 
Gflops and 6 Gbytes per second for a 3-GHz Pentium 4 
CPU. Furthermore, GPU performance for graphics 
applications throughput has been increased from 2 to 
2.5 times a year. This growth rate is faster than Moores 
law as it applies to CPUs, which corresponds to about 
1.5 times a year. In a GPU, there are several vertex 
pipelines using MIMD (Multiple Instructions Multiple 
Data), and fragment pipelines using SIMD (Single 
Instruction Multiple Data) to provide the ability for 
high-speed parallel data processing. So the GPU can be 
treated as a parallel vector machine that is suitable for 
some kinds of numerical computations [3], [4]. 

The function of the fixed pipeline of graphics 
hardware used in raw GRECO is to obtain the shadow 
of different parts of a complex target in the rendering 
process. Based on the raw GRECO, the programmable 
pipeline of a GPU can be applied to implement GRECO 
method without a rendering process. The customized 
vertex and fragment shaders for RCS computing can be 
compiled and linked into the GPU pipeline to substitute 
some functions of the fixed-pipeline [5]. Since most of 
the time-consuming computation in raw GRECO is 
used to obtain the scattering contribution of the small 
facets represented by the pixels on the screen, thus it 
can be implemented by the parallel fragment shader to 
accelerate the simulation. In this paper, the vertex and 
fragment shaders are applied to the raw GRECO 
method based on prior work to obtain the mono and 
bistatic RCS of complex targets [6]. The GPU-based 
ray tracing algorithm is implemented to obtain the 
contribution of multiple reflection of a target with 
concave structure. The paper is focused on the 
combination of GRECO and GPU programming, the 
GRECO and related techniques will not be discussed 
here, its details can be found in [1] and [7].  

Compared with the raw GRECO, the main 
advantages of GPU-based GRECO are: 
1) Higher efficiency, where the speed can be improved 
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up to 20 times compared with the raw GRECO. 
2) Ability to simulate multiple reflection of the complex 
targets (see section II.C), this feature is not involved in 
raw GRECO. 

The development of GPU-based GRECO is part of 
the work for the target echo simulation for radar target 
identification and Inverse Synthetic Aperture Radar 
(ISAR) imaging. High speed simulation is required for 
obtaining the wide-band and wide-angle scattering 
response of many complex targets, it is the main 
motivation of the work. 

 
II.  METHODOLOGY 

 
In GRECO, the procedures of RCS prediction are: 

1) Read the 3D model files created by CAD software. 
2)  Render the 3D model in the frame-buffer of a 
graphics card. 
3) Obtain the depth information of each pixel. 
4) Obtain the surface normal of each pixel using two 
different lighting configurations. 
5) Map the depth information to the real depth of the 
target. 
6) Obtain the scattering contribution of each pixel 
using PO/PTD. 
7) Obtain the total scattering contribution by 
accumulating the contribution of each pixel coherently. 

 

In the procedures mentioned above, normal vector 
computation, depth mapping, scattering simulation of 
each pixel, and final accumulating are done in the CPU. 
There are three massive data exchanges between main 
memory and video memory: two for color information 
of two different lighting configurations and one for 
depth information. In the CPU, massive floating point 
operations are needed for computing the normal vector 
and scattering contribution of each pixel on the target 
surface based on serial processing mechanism, that is, 
many loop operations are needed in the raw GRECO. 
Using the programmable pipeline of the GPU, the 
normal vector and depth can be accessed directly by 
using built-in variables of shading languages such as Cg 
(C for Graphics, released by Nvidia) and GLSL 
(Graphics Library Shading Language) [8], so the two 
different lighting configurations and depth mapping are 
needless. Thus scattering contribution of each pixel can 
be obtained rapidly based on parallel processing 
mechanism of fragment shader, and the final total 
scattering contribution can be obtained by a parallel 
reduction process in the GPU [9]. The detailed 
procedures are explained as follows. 

 
A.  PO Simulation by Shader 

Figure 1 represents the procedures of the GPU’s 
fixed-pipeline (solid line) and the programmable 
pipeline (dashed line). Some functions of the 

fixed-pipeline can be replaced by the programmable 
pipeline using vertex shaders and fragment shaders. 
Vertex shaders can be used to specify a general 
sequence of operations to be applied to each vertex and 
its associated data, and the fragment shaders can be 
used to specify the operations on fragment values and 
its associated data. 

 
Fig.1. GPU pipeline. 

 
In GRECO, the main time for the RCS prediction 

is spent on the electromagnetic computation, while the 
geometric model manipulations are left to the graphics 
hardware. Raster element is applied to discrete the 
target surface natively, and automatic culling technique 
is used to remove the shadowed parts of the target. 
With the rapid development of graphics hardware 
especially the programmable pipeline of the GPU, 
GRECO can be implemented entirely in the GPU. The 
key procedures of GPU accelerated GRECO are: 
1) Write the user-defined vertex shaders and fragment 
shaders for RCS computation based on PO/PTD. 
2) Compile and link the shaders, and then embed the 
shaders to the GPU pipeline. 
3) Start up the general drawing process and store the 
scattering results of each pixel in the frame buffer. 
4) Obtain total scattering contribution by the reduction 
technique that will be described in section II.D. 

 

For GPU accelerated GRECO, the 3D geometrical 
transformation, including normal transformation can be 
implemented in a vertex shader. The scattering results 
of each pixel can be obtained directly in a fragment 
shader by equation (5) in [1], then it can be written into 
the R component and G component of RGB (Red, 
Green, Blue) by render-to-texture technique, where R 
and G components represent the real part and imagery 
part, respectively. Finally, the reduction technique can 
be applied to obtain the total scattering contribution. 
 
B.  Diffraction of Edge 

In [1], the Element Edge Wave (EEW) is applied 
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to obtain the edge diffraction contribution. The 
geometrical parameters such as the normal vectors of 
two facets that construct the edge, edge inner angle and 
the direction of the edge should be obtained correctly. 
The method used in [1] can obtain the edge information 
on the condition that two facets are all illuminable. It 
will fail when one of the facets that construct the edge 
is shadowed. 

In [10] and [11], the complete edge information is 
obtained from the model information stored in the 3D 
model file based on some principles of computer 
graphics. It is found that the edge diffraction can be 
obtained by the GPU programming. The primary issue 
is how to obtain the edge information with the shadow 
between model and edges must be considered, and the 
second issue is how to pass the edge information to the 
fragment shader for diffraction computation using PTD 
or ILDC (Incremental Length Diffraction Coefficient) 
[7]. 

The 3D facet model is constructed by a number of 
triangles with a certain topological relationship. For a 
regular 3D model, the common edge exists in the 
adjacent facets. If the angle between two normal 
vectors of two facets is larger than the predefined 
threshold, the common edge needs to be considered for 
diffraction; otherwise, the two facets are treated as 
locating on the smooth surface. This is similar to 
normal averaging in computer graphics [8]. 

Through the preprocessing of the model 
information, edge information such as normal vectors, 
edge direction, and inner angle of each edge can be 
obtained for edge diffraction computation later. These 
parameters are dependent, the edge direction and inner 
angle can be obtained by the cross product and dot 
product of two normal vectors respectively. The normal 
vector of one illuminable facet, edge direction and inner 
angle are sufficient for edge diffraction computation. In 
paper [11], three display lists [8] are used to store the 
normal vector, edge direction and inner angle 
respectively. In order to eliminate the shadowed edge, 
the “dark” model (r,g,b=0,0,0) can be rendered with 
lighting disabled before the edges are rendered. In this 
paper, only one display list is used to store the three 
parameters for edge diffraction by eliminating the 
shadowed edges and pass this edge information to the 
fragment shader. 

In OpenGL, the main color and secondary color 
can be assigned for each vertex of a 3D model and each 
color has four components named RGBA (Red, Green, 
Blue, and Alpha). In the rendering procedure of an edge, 
the RGBA of the main color can be used to store the 
normal vector n of illuminated facet and the inner angle 
α, that is, R = n.x, G = n.y, B = n.z, and A = α, while 
the RGB of the secondary color can store the edge 
direction. Eliminating the shadowed edges can be 
implemented by the “dark” model mentioned above. 

Figure 2 illustrates the rendering result of a missile 
model with shadowed edges that are eliminated. The 
smooth part of the model, such as the fuselage and 
wings, is full dark as the background, while the edges 
of the wings are rendered with the geometrical 
parameters passed to the fragment shader by main color 
and secondary color for diffraction computation. When 
all information for diffraction computation is available, 
the EEW method can be implemented in the fragment 
shader for edge diffraction. 

 

 
Fig. 2. Rendering result of edges. 

 
C.  Multiple Reflections 

Multiple reflections play an important role in the 
scattering of complex targets. The Shooting and 
Bouncing Ray (SBR) technique has been developed for 
RCS prediction for a target with concave structure [12]. 
The software Xpatch based on SBR has been released 
by ASIC Inc. Ray tracing is the core algorithm of SBR. 
In order to obtain multiple reflection contribution, the 
ray propagation paths of incident wave and reflected 
wave need to be recorded to obtain the amplitude and 
phase of each ray that bounced between different parts 
of the target surface. All contributions from scattering 
and iterative multiple reflection should be accumulated 
in the direction in which the receiver is located. 

Conventional ray tracing algorithm computes light 
intensity and color components of the scene. The 
coherence of light is not considered in conventional ray 
tracing because the phase of the light is not important 
for rendering scene in computer graphics. However, it 
is as important as the amplitude in the EM scattering of 
complex targets. Thus the modifications should be 
applied to conventional ray tracing algorithm for 
obtaining the multiple reflections’ contribution. The 
differences between conventional ray tracing and SBR 
in EM scattering are: 
1) Conventional ray tracing calculates the amplitude of 
light. As for the EM scattering, both the amplitude and 
phase are to be calculated. 
2) The light amplitude in a conventional ray tracing is 
obtained by the Phong lighting model, while the 
amplitude and phase of the EM scattering are obtained 
by physical optics, geometrical optics, and PTD. 
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3) Refraction must be considered in conventional ray 
tracing while there is no refraction contribution from 
metal target surface for EM scattering computation. 
 

To obtain the multiple reflections’ contribution, the 
propagation paths bounced between different parts of 
the complex target should be recorded including the 
sequences of the intersections between the radar beam 
and the facets of the target. It is very time-consuming 
because massive intersection tests are needed to be 
computed. 

In order to accelerate the ray tracing by GPU, 
Purcell mapped the vertices of the complex model to 
three textures and constructed a texture representing the 
linked list which stores the triangles of the model 
surface [13]. Thus, the ray tracing algorithm can be 
implemented by the GPU. The GPU accelerated ray 
tracing for EM scattering is implemented in the 
fragment shader based on Purcell’s work in this paper. 
The algorithm flow chart is shown in Fig. 3. 

 
Fig. 3. Ray tracing for multiple reflection. 

 
The algorithm can be divided into five parts and 

implemented by fragment shader, except the ray tube 
initialization is preprocessed in the CPU. The method 
provided by Didier Badouel is applied to obtain fast 
ray-polygon intersection [14] and the Proximity Clouds 
algorithm is applied to scene traversal [15]. The 
performance of the 3D traversal is important to the 
efficiency of the algorithm. BSP (Binary Space 
Partition) tree, Adaptive octree, KD tree, and SEADS 
(Spatially Enumerated Auxiliary Data Structure) [16] 
etc., can be adopted to store the 3D scene data for 
acceleration of traversal [17]. In this paper, the SEADS 
method is applied to fast traversal due to the following 
reasons: 
1) It is simple for parallel processing. 
2) The time for each data access is constant and with 
linear time complexity. 
3) Easy code for hardware implementation. 
 

The ray tracing algorithm is very complicated; it is 
a hot topic in computer graphics, the detailed 
procedures of the ray tracing accelerated by the GPU is 
not described here. It should be noted that if the depth 
of tracing is reduced to 1, the algorithm degenerates to 
GRECO. 

D.  Reduction 
When shaders for PO/PTD and multiple 

reflections are applied to scattering computing, the 
contribution of each pixel is stored in RG components 
of the current texture and has to be accumulated to 
obtain the total scattering contribution. Traditionally, 
the RGB components can be read back to the main 
memory and then accumulated by CPU. It is 
time-consuming because of long time loop operations 
for accumulation and massive data exchanges between 
video memory and main memory, for example, if the 
viewport is 1024 by 1024, this means that there is 
1024×1024 = 1048576 accumulation operations that are 
needed to obtain the final total contribution. 
Additionally, it is slow to read the RGB components 
from video memory to main memory. If the 
accumulation can be implemented in GPU without the 
massive data exchanges and loop operations, higher 
execution efficiency will be obtained. 

After investigating the parallel mechanism of the 
fragment shader, it is found that the parallel reduction 
technique is suitable for acceleration of accumulation [9] 
in GPU. After several reduction processes, only one 
complex number that represents the total contribution is 
needed to be read back to the main memory resulting in 
no massive data exchange. 

In computer graphics, reduction technique is 
mainly applied to obtain the maximum value or 
accumulation of the floating point numbers stored in 
texture. Here, texture can be treated as a 2D array that 
stores the scattering contribution of each pixel. The 
maximum value in a 2D array can be obtained by the 
procedure shown in Fig. 4. 

 

 
Fig. 4. Reduction for obtaining the maximum. 

 
For obtaining the maximum of the 4 by 4 array, 

the maximums of 4 subregions with the elements {84, 
64, 88, 97}, {83, 97, 93, 99}, {98, 80, 70, 82}, and {81, 
86, 85, 87} should be first obtained, and then a new 
array can be created with the elements {97, 99, 98, 87} 
that are the maximums of 4 subregions. 

The same procedure can be applied to the new 
array for obtaining the final maximum of the array, that 
is, 99. For obtaining the accumulation result of the 
array, similar procedure can be applied. 

In the implementation of reduction by the GPU, 
the accumulation can be applied to a 2 by 2 subregion 
of the texture, then a new texture can be constructed 
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with 1/4 the size of the current texture. Iteratively, the 
final accumulated result can be obtained. This operation 
limits the size of the texture to the integer number that 
is power of 2 but it is suitable for parallel processing in 
fragment shader. In this paper, the size of the texture is 
set to 210 = 1024, only 10 reduction operations are 
needed to obtain the total contribution without massive 
data exchanges from video memory to main memory 
and large amount of loop operations (up to 1048576). 

Jinwook Kim provided a reduction example on the 
web and helped us to implement the reduction easily 
[18]. The reduction procedure for computing the RCS 
of a missile model is illustrated as shown in Fig. 5. 

 
Fig. 5. Reduction for RCS accumulation. 

 
The R and G components of the images in Fig. 5 

represent the real and imaginary parts of the scattering 
contribution of each pixel, respectively. The size of the 
first image is 1024×1024. After one reduction operation, 
the size of the image is reduced to 512×512 and the 
accumulation results of each 2 by 2 subregion are 
obtained. The final accumulation result is obtained after 
10 iterative reduction operations and stored in a 1×1 
array. 

 
III.  EXAMPLES 

 
In order to compare the simulation speed, the RCS 

of a scaled missile model (1:8) is simulated by raw 
GRECO and the GPU accelerated GRECO. The view 
port for computing is 1024 by 1024, f = 10GHz, aspect 
angle is from 0◦ to 360◦ with an angle step of 0.25◦, that 
is, 1441 RCS results are calculated. The CPU in our 
platform is an Intel Pentium 4 with clock frequency 2.8 
GHz and the GPU is provided by Nvidia GeForce 6600 
GT graphics card. The time for raw GRECO is 390 s 
and that for GPU accelerated GRECO is only 19 s. The 
speed of the simulation is improved up to 20 times. The 
RCS of the model is also measured by CATR (Compact 
Antenna Test Range) system and the results that are 
smoothed by 10-point adjacent average are shown in 
Fig. 6. 

For illustration of multiple reflection contributions, 
the RCS of a dihedral constructed with two 1m × 1m 
metal planes is simulated with the depth of tracing set 
to 2. The result shown in Fig. 7 agrees well with that 

shown in [7]. The time for computing the RCS in the 
aspect angle range [-60◦, 60◦] with step 1◦ is about 
100s. 

Furthermore, the wide-band, wide-angle scattering 
data of complex targets are simulated by the GPU 
accelerated GRECO to obtain the high resolution range 
profile and ISAR image. Figure 8 is the turntable ISAR 
image of a Boeing 737 model obtained by the simulated 
data at X-band with bandwidth 300 MHz. 

 
Fig. 6. Measured and simulated RCS of the missile 
model. 

 
 

Fig. 7. Simulated RCS of dihedral. 
 

 
 

Fig. 8. Turntable ISAR image of a Boeing 737 model. 
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IV.  CONCLUSION 
 

The programmable pipeline of a modern GPU is 
applied successfully to the implementation of a GPU 
accelerated GRECO method with multiple reflection 
contribution included. The speed of simulation is 
improved up to 20 times compared with the raw 
GRECO. The GPU accelerated GRECO method has 
been used to simulate radar echo for different radar 
systems and the wide-band wide-angle scattering data 
of different targets for constructing the database for the 
radar target identification. Further improvement on 
simulation speed can be obtained by a more powerful 
GPU and better algorithms with the rapid development 
of computer graphics. 
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Abstract − The small dimensions of Radio Frequency 
Micro-ElectroMechanical Switches (RF MEMS) raise 
significant modeling challenges in terms of accuracy and 
solver efficiency. This paper introduces a practical RF 
MEMS switch analysis based on an extended finite 
element-boundary integral (EFE-BI) method with an 
iterative solver incorporating a new sparse-matrix 
preconditioner whose large eigenvalues are very close to 
those of the original matrix. This sparse preconditioner is 
key to successfully solving the ill-conditioned EFE-BI 
matrix. The smaller condition number and almost 
positive-definite eigenvalue spectrum after 
preconditioning leads to fast convergence. Specific RF 
MEMS simulations are presented to demonstrate the 
accuracy and effectiveness of the methodology and 
solution process.  

I. INTRODUCTION 

RF MEMS switches have demonstrated low on-state 
insertion loss, high off-state isolation, and very linear 
behavior over a broad frequency range [1] and [2]. 
Despite their excellent characteristics, they generally 
suffer from low power-handling capability, with most 
switches operating well below 1W [2]. This limitation is 
due to the complex interactions among electromagnetic 
losses, heat transfer, and mechanical deformations of the 
switch. To better understand the associated failures, a 
multiphysics model was proposed in [3]. However, the 
work in [3] employed an approximate two-dimensional 
modeling of the RF current though the switch. As such it 
was not sufficiently rigorous in characterizing the edge 
current behavior which is critical for the heat dissipation 
process. Toward the goal of developing a more accurate 
and reliable analysis of RF MEMS, we proposed in [4] 
and [5] a more robust and efficient analysis method 
referred to as the extended finite element-boundary 
integral (EFE-BI) method.  

Of importance in our EFE-BI analysis was the 
treatment of very small features associated with the 
MEMS switches. For example, at 2 GHz, the beam length 
corresponds to an electrical size of λ/1500 to λ/250 and a 
gap of λ/150,000 to λ/50,000. Because of these small 
features, the resulting hybrid matrix system is highly ill-
conditioned and the matrix entries (viz. the integrals 

defining the matrix entries) are difficult to be accurately 
evaluated. Standard implementations of the finite element 
(FEM) and moment methods (MoM) employ integrations 
based on the Gaussian quadrature formulae for evaluating 
the matrix entries. However, for the small RF MEMS 
dimensions, these standard integral treatments were 
found to lead to ill-conditioned matrices with erratic 
changes in the output of the observable quantities. In [6] 
we proposed a set of semi-analytic evaluations of the 
matrix entries for the resulting EFE-BI hybrid system. 
However, a good preconditioner is still needed to ensure 
convergence, especially for frequencies below X band (10 
GHz).  

Many authors have explored preconditioning 
matrices for ill-conditioned matrix systems [7], [8], and 
[9]. Although the standard diagonal (DP) and block-
diagonal preconditioners (BDP) can partially overcome 
convergence issues, they are still not reliable for RF 
MEMS modeling. In this paper, we present a highly 
efficient and reliable analysis of RF MEMS systems 
based on a new preconditioner referred to as the Large-
Eigenvalue-Sparse Preconditioner (LESP). This 
preconditioner is implemented within the Generalized 
Minimal Residual iterative solver (GMRES) and is 
shown to significantly reduce the condition number and 
lead to almost positive-definite preconditioned matrix for 
RF MEMS switches. The reader is referred to [4], [6] and 
[10] for details related to the formulation of the EFE-BI 
and the element evaluations. Here, we focus only on the 
preconditioning approach and the relevant results. The 
reader is also referred to [9] and [11] for a review of 
iterative solvers and pre-conditioners. Other 
preconditioners for RF applications are mentioned in [7] 
and [12]. However, our particular application relates to 
the unique issue of RF MEMS switches where the entire 
geometry is λ/250 or less in size.  

II. PRECONDITIONING OF THE HYBRID 
MATRIX SYSTEM 

A simplified RF MEMS switch is illustrated in Fig.1. 
As it is well known, the RF MEMS switch beam 
experiences shape deformation during its dynamic 
operation. The conventional FE-BI [13] with rectangular 
gridding cannot track this deformation with sufficient 
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geometrical accuracy. For this purpose in [4], we 
introduced an extended FE-BI analysis method (EFE-BI) 
for RF MEMS switches. The EFE-BI employs the 
moment method to model the beam and the usual FE-BI 
for the substrate and conducting sections on the boundary 
of the same substrate. As a result, the beam mesh is 
separated from the FE-BI section of the model. It can 
therefore be readily re-meshed as the beam curves. This 
approach allows for full flexibility in modeling the 
deformed 3D surfaces while reducing the computational 
expense. The typical EFE-BI matrix takes the form [4] 
and [6]  

1 1
S S VS SFEM V1 2

n m
SS S S S 22 1 2 2
n

+⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ =⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ ⎩ ⎭⎩ ⎭⎣ ⎦

EA A A b
0JA A

  (1) 

where FEMA  and 1 1S SA represent the FE-BI system for the 
fixed volume V1 enclosed by S1  as shown in Fig. 1. As 
usual, FEMA  is a very sparse submatrix whereas 1 1S SA  is 
dense. Similarly, 1 2S SA  and 2 1S SA  are the dense matrices 
representing the interaction between the beam and the BI 
enclosing the substrate, whereas 2 2S SA  is a dense 
submatrix representing the discrete method of moments 
system. The small sizes discussed above lead to near-
zone integrals in the various submatrices of equation (1). 
These integrals can be efficiently evaluated using the 
semi-analytic integrations [6]. However, the resulting 
matrices are still ill-conditioned (Fig. 2).  

Given the small number of unknowns due to the 
electrically small size of RF MEMS switch, GMRES 
(without restart) [8] and [11] is a good choice for solving 
equation (1). A description of the GMRES algorithm is 
given in [11] and [14]. We also note that available 
commercial software typically converges rather slowly or 
never at frequencies below ~50 GHz due to the extremely 
small MEMS dimension. This highlights the need for a 
preconditioner, but also points to the need for improved 
methods to carry out a reliable analysis of RF MEMS 
switches. The next paragraphs describe the construction 
of the proposed LESP. We then proceed to demonstrate 
the solution effectiveness of the entire EFE-BI approach 
for RF MEMS analysis. 

It is well known that a good preconditioner is sparse 
and should have eigenvalues close to the larger ones of 
the original matrix. This approach generates a 
preconditioner that is a highly sparse matrix, but 
incorporates the critical elements of the original matrix. 
A preconditioner 

LESPA  can be applied to equation (1) as 

1 1
S S S S VFEM V1 1 1 2

n m
LESP LESPSS S S S 22 1 2 2

n

+− −
⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ =⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ ⎩ ⎭⎩ ⎭⎣ ⎦

EA A A b
A A

0JA A
    (2) 

with 

( ) ( )
( ) ( )

1 12

21 22

S S S SFEM 1 1 1 2

NZ NZ
LESP S S S S2 1 2 2

NZ NZ

+⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A A A
A

A A
.           (3) 

 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 1. RF-MEMS simplified model. 
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Fig. 2. Matrix condition number versus frequency 
(75*50*2 um). 

 
In this, 1{ }S S1 1

NZA contains an optimal number of the 

strongest coupling elements in each row of{ }S S1 1A . To 
actually generate 1{ }S S1 1

NZA , the matrix elements within 

each row of { }S S1 1A are sorted with respect to their 
modulus and the 1NZn  elements with the largest modulus 
are included to form the preconditioning matrix 

1{ }S S1 1
NZA . Typically, most elements of 1{ }S S1 1

NZA are 
located in a band around the main diagonal, but edge 
numbering can make some of the large elements 
distributed over the entire extent of the square matrix.  A 
similar procedure is applied to submatrices S S1 2A , S S2 1A , 
and S S2 2A . Unlike the conventional preconditioners, our 
approach includes the high modulus elements from the 
submatrices S S1 2A  and S S2 1A . For simplicity, in this 
paper, the same NZ from each row of the original matrix 
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is selected to construct the preconditioner matrix, and an 
optimal NZ is found to achieve the best compromise 
between convergence versus CPU cost.   

III. NUMERICAL APPLICATION 

In this section, we present examples that demonstrate 
the efficiency of the LESP preconditioner. As a solver we 
used the general minimal residual algorithm (GMRES) 
with Krylov subspace methods [13] because it converges 
monotonically and (generally) gives the smallest residual 
errors among other Krylov subspace methods. The 
dimensions of the considered example are given in Fig. 3, 
and we note that the glass substrate was meshed using 
brick elements to reduce the number of unknowns. 
However, triangular surface (S2) elements were used to 
model the MEMS beam to accurately represent of the 
deformed beam surface. Beam thickness and conductivity 
were modeled using the resistive sheet model [13]. 

Figure 4 shows the construction of LESP.  
Specifically the original EFE-BI matrix is shown at the 
top of the figure with the corresponding preconditioner 
given at the bottom. We also remark that the elements in 
the beam are all in the near zone with respect to each 
other and are therefore strongly coupled. Thus, we found 
it necessary to include the entire BI matrix (marked in 
black in Fig. 4 (b)) to construct the preconditioner. This 
process was later found to ensure convergence in all 
cases.  

A convergence rate comparison using different 
preconditioners with GMRES is shown in Fig. 5. We 
observe that the matrix condition number is very high 
( 103.694 10× ) and therefore LESP preconditioner is 
needed to obtain fast convergence.  

 
 

 
 

Fig. 3. RF-MEMS switch for our modeling. 

 

From Fig. 5, it is seen that LESP leads to faster 
convergence as compared to the diagonal/block 
preconditioner. In addition, LESP has an optimized 
number of high-coupling terms which generate the best 
convergence (here NZ = 10 for the 50 GHz case). As can 
be expected, the value of NZ is dependent on the 
geometry. The mesh size and expansion function also 
affect the number of the near zone elements to be 
included in the preconditioner. 

Figure 6 presents the convergence rate versus 
frequency. As seen, more iteration is needed to obtain the 
same convergence as the frequency is reduced. At the 
same time, the optimized NZ rises due to the much higher 
coupling among the matrix elements. It is also interesting 
to point out that the convergence rate is much better at 
the beginning of the iteration process. However, it 
reaches a relatively stable rate at lower frequencies. At 
higher frequencies, the convergence rate is slower at the 
start, but is more consistent and reaches the convergence 
criteria more quickly. 

 

 
                    
 
 

(a) Original EFE-BI matrix. 
 

 
 

 
(b) Preconditioner. 

 

Fig. 4. Profile of the EFE-BI and preconditioner matrices. 
 
 

To better understand the preconditioner's influence on 
convergence, Fig. 7 shows the eigenvalue spectrum 
before and after preconditioning. Specifically, we show 
the spectrum when NZ = 1 (same as the diagonal 
preconditioner) and 15 (optimal) at 30 GHz. It is seen in 
Fig. 7 (a) that for NZ=15, most of the eigenvalues are 
closer to those of the original matrix. Nevertheless, of 
importance is that after preconditioning (Fig. 7 (b)): (1) 
the eigenvalue spectrum cluster becomes tighter and the 
convergence is faster since the condition number is 
proportional to the ratio of the maximum to minimum 
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eigenvalues (as compared to the NZ = 1 case); (2) the 
preconditioned matrix with the optimized LESP leads to 
an almost all-real and positive eigenvalue spectrum 
(implying an almost positive-definite system).  

 

Fig. 5. Convergence versus iteration number for the     
preconditioned EFE-BI matrix. 
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Fig. 6. Convergence versus frequency using an optimal 
number of non-zero rows (NZ is given in the 
parenthesis). 

 
 

To compare the proposed LESP with the diagonal 
and block preconditioner, we repeated the example at 50 
GHz (1241 unknowns) on an Intel Pentium-IV® [2-9]. It 
was found that at each iteration, LESP (NZ = 10) took 
1.92 sec, whereas the diagonal preconditioner took about 
the same time of 1.914 sec. However, LESP (NZ = 10) 
was 4.2 times faster in reaching the normalized residual 
norm (set to 0.005) as compared to the diagonal 
preconditioner and 3 times faster as compared to the 
block preconditioner (NZ = 20) due to the fewer 
iterations. At the same time, the memory requirements 
were reduced dramatically since the needed storage per 
iteration rises linearly with the iteration count [15].  

Using the preconditioner discussed above, we 
simulated the model in Fig. 3 at 5 GHz. The current is 
shown in Fig. 8. As seen, it compares well to the static 
approximation. 
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(a) Eigenvalues of the original and the preconditioning 

matrices with NZ = 1 and NZ = 15. 
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(b) Eigenvalues after preconditioning. 
 

Fig.7. Eigenvalue spectrum distribution. 
 

10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

Along the beam width: um

C
ur

re
nt

 D
is

tri
bu

tio
n 

Static Approx. EFE-BI 

 
 

Fig. 8. Current density versus beam width (f = 5 GHz). 
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IV. CONCLUSION 

The extremely small dimensions of RF MEMS 
switches inevitably lead to highly ill-conditioned matrix 
systems for RF analysis. Consequently, poor convergence 
is experienced when the RF MEMS switches are modeled 
via the conventional FE-BI method. In this paper, we 
presented a new preconditioner (LESP) to solve the 
matrix system generated via the extended FE-BI method. 
This new preconditioner preserves the matrix elements 
consisting of the largest eigenvalues associated with the 
original matrix. After preconditioning, the resulting 
system is almost positive-definite, implying fast and 
reliable convergence. Using the proposed preconditioner 
we were able to reliably predict the behavior of RF 
MEMS switches over a broad range of frequencies (500 
MHz – 50 GHz). 
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Abstract − This paper presents the parallelization of a 
previously-developed two-dimensional floating random 
walk (FRW) algorithm for the solution of the nonlinear 
Poisson-Boltzmann (NPB) equation. Historically, the 
FRW method has not been applied efficiently to the 
solution of the NPB equation which can be attributed to 
the absence of analytical expressions for volumetric 
Green’s functions. Stochastic approaches to solving 
nonlinear equations (in particular the NPB equation) 
that have been suggested in literature involve an 
iterative solution of a series of linear problems. As a 
result, previous applications of the FRW method have 
examined only the linearized Poisson-Boltzmann 
equation. In our proposed approach, an approximate 
(yet accurate) expression for the Green’s function for 
the nonlinear problem is obtained through perturbation 
theory, which gives rise to an integral formulation that 
is valid for the entire nonlinear problem. As a result, 
our algorithm does not have any iteration steps, and 
thus has a lower computational cost. A unique 
advantage of the FRW method is that it requires no 
discretization of either the volume or the surface of the 
problem domains. Furthermore, each random walk is 
independent, so that the computational procedure is 
highly parallelizable. In previously published work, we 
have presented the fundamentals of our algorithm and 
in this paper we report the parallelization of this 
algorithm in two dimensions. The solution of the NPB 
equation has many interesting applications, including 
the modeling of plasma discharges, semiconductor 
device modeling and the modeling of biomolecules. 
 
Key words − Monte Carlo, random walk, stochastic 
algorithm, nonlinear Poisson-Boltzmann equation, 
modeling of plasma sheaths, semiconductor device 
modeling, and modeling of biomolecular structure and 
dynamics. 
 

I.   INTRODUCTION 
 
The solution of the nonlinear Poisson-Boltzmann 
(NPB) equation has widespread applications in science 

and engineering. These applications include the 
modeling of plasma sheaths [1], semiconductor device 
modeling [2] and the modeling of biomolecular 
structures and dynamics [3]. In this paper, we address 
the parallelization of a two-dimensional floating 
random-walk (FRW) [4-6] algorithm (a sub-class of 
Monte Carlo algorithms) for the NPB equation, subject 
to Dirichlet boundary conditions. 
 
The FRW method is based on probabilistic 
interpretations of deterministic equations. We consider 
a differential equation, with a differential operator L, 
 

[ ] ,)()( rr fUL =                      (1)  
                            

where the solution U(r) is a function  of the  three-
dimensional  position  vector r. The function f(r) is a 
source term. Using Green’s integral representation [7] 
U(r) can be written as 
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The symbol G(r|ro) is the volumetric Green’s function 
[7] for equation (1) at r given an impulse function at or  
and is given by the solution of the equation 
[ ] .)()( orrr −= δUL   r|r or )(G∇ , which on the other 

hand is called the surface Green’s function [7]. The first 
term on the right hand side of equation (2) is a volume 
integral involving the source term in the entire volume 
V of interest. The second and third terms are vector 
surface integrals over the surface S enclosing V, where 

sd  is a vector whose magnitude is equal to that of an 
infinitesimally small area unit on the surface S and 
directed normally outward from the center of the area 
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unit. The second integral on the right hand side of 
equation (2) corresponds to the Neumann [7] boundary 
condition, whereas the third integral corresponds to the 
Dirichlet [7] boundary condition.  
 
Equation (2) forms the mathematical basis of the FRW 
method. To evaluate the solution of equation (1) at a 
particular point in the domain of interest, we consider 
maximal spheres, cubes, or any geometrical object for 
which the volumetric Green’s function of equation (1) 
is known [4-6]. We then make random hops to the 
surface of that geometrical object based on any 
predefined probability density. The weights for such 
random hops are determined by sampling the various 
integrands in equation (2). For example, in the case of a 
Dirichlet problem with no source term [that 
is, 0)( =rf ], the problem reduces to a Monte Carlo 
integration of an infinite-dimensional integral, as given 
by [8], 
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where nn ,1−γ  is the angle between  r|r n1nrn

)( −∇ G and 
,nsd being a vector whose magnitude ( )nds  is equal to 

that of an infinitesimally small area unit on the surface 
nS  and directed normally outward from the center of 

the area unit. The successive surface integrals in 
equation (3) relate to successive random hops across the 
problem domain and the weight factors of the form 
( )n1-n rr |K  are derived from the third integral term on 

the right hand side of equation (2) that corresponds to 
the Dirichlet boundary condition. A particular random 
walk is terminated at the boundary, where the solution 
is known, and the samples of successive weight factors 
multiplied by the solution at the boundary yield a 
particular sample of the solution. A numerical solution 
of equation (1) is obtained by averaging over a 
statistically large number of such samples.  
 
At this point, we note that this method does not require 
any discretization, as the solution can be evaluated at 
the point of origination of the random walks 
irrespective of the solution at any other point. In 
contrast, deterministic numerical methods require the 
discretization of either the volume or the surface of the 
problem domain. Methods such as the finite-difference 
[9] or the finite-element [10] are based on volume 
discretization, while methods such as the method of 

moments [11] require surface discretization.  As a 
result, the FRW method has lower memory 
requirements compared to deterministic numerical 
methods.  
 
We also note that this method is inherently 
parallelizable, since different random-walks can be 
performed in different processors, and inter-processor 
communication is required only during the final 
averaging of the contributions from different walks. As 
a result, one can obtain very close to linear rate of 
parallelization for a large number of processors, which 
is a very unique advantage that the FRW method enjoys 
over deterministic methods. In this paper, the 
superiority of the FRW method over the finite-
difference method as regard to parallelization will be 
demonstrated.  
 
In spite of these unique advantages, the FRW method 
has not being applied to the NPB equation and other 
important nonlinear equations. This can be attributed to 
the absence of analytical expressions for volumetric 
Green’s functions of these equations. Early researchers 
in the area expressed the apprehension that the 
extension of the stochastic solution methodology to 
nonlinear problems might not be possible. In a 1954 
paper [12], J. R. Curtiss wrote: “So far as the author is 
aware, the extension of Monte Carlo methods to non-
linear processes has not yet been accomplished and 
may be impossible.” Stochastic approaches to solving 
nonlinear equations (in particular the NPB equation) 
that have been suggested in literature [13], involve an 
iterative solution of a series of linear problems and as a 
result random-walk algorithms that have been presented 
in literature [14-15], involve prior linearization of the 
NPB equation. In our proposed approach, an 
approximate (yet accurate) expression for the Green’s 
function for the nonlinear problem is obtained through 
perturbation theory, which gives rise to an integral 
formulation that is valid for the entire nonlinear 
problem. As a result, our algorithm does not have any 
iteration steps, and thus has a lower computational cost. 
The validity of such an integral expression is 
maintained by restricting the size of a random hop and 
increasing the order of perturbation in the Green’s 
function would allow one to increase the hop size, thus 
increasing computational speed. An approach utilizing 
a perturbation-based Green’s function was used to 
develop an FRW algorithm for the Helmholtz equation 
in heterogeneous problem domains (important for IC 
interconnect analysis at high frequencies) by Prof. K. 
Chatterjee in Ref. [16-17], where the idea of extending 
the approach to nonlinear problems was also proposed. 
Later that idea was extended to develop the 
fundamentals of a floating random-walk (FRW) 
algorithm for the NPB equation [18-20]. In this paper, 
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we present the results of parallelization of the FRW 
algorithm for the two-dimensional NPB equation. 
 

II.   FORMULATION OF THE ALGORITHM 
 
The formulation of the two-dimensional algorithm is 
presented in detail in [19, 20], along with its validation 
with the help of finite-difference based benchmarks. In 
this section, we give a brief description of that 
formulation before presenting the details of the 
parallelization. 
 
In our problem of interest, the dependent variable φ  is 
governed by the NPB equation, given as 

( ) ( )( ) Wee
c

kk ∈−=∇ − rrr ,1
2

2 φφφ ,            (4) 
       

where ),( θrr  is the two-dimensional position 
coordinate, c and k  are constants, while W is the two-
dimensional problem domain. Dirichlet boundary 
conditions have been imposed, 
 

Wg ∂∈= rr),(φ                        (5) 
 
where W∂ is the boundary of the domain W . Equation 
(4) can be normalized to 
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where θθλ == ˆ,/ˆ rr , .andˆ kck == λφφ  We 
further normalize the length scales to the radius R of a 
circular domain (the chosen geometry for random-
walks) and substitute Rr̂ˆ =ρ  and Rroo ˆˆ =ρ   in 
equation (6). The twice-normalized NPB equation is 
written as, 
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A volumetric Green’s function of equation (7), 
( )oρρ ˆ|ˆĜ  at ,ρ̂  assuming a dirac-delta function at 

oρ̂ inside the circular domain, is given as the solution of 
the equation  
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A zero-order approximation (assuming homogeneous 
Dirichlet boundary conditions) for the volumetric 

Green’s function, )ˆ|ˆ(ˆ )0(
oρρG  is the solution of 

equation 
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and is given as [7] 
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Equation (10) can be used to obtain a first-order 
approximation, )ˆ|ˆ(ˆ )1(

oρρG  to the volumetric Green’s 
function and is given as a solution of the following 
equation, 
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Based on equations (2), (10) and (11), )ˆ|ˆ(ˆ )1(
oρρG  is 

given by the following expression, 
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where yy eeyf −−=}{  with ).ˆ|ˆ(ˆ )0(
oρρGy =  It can 

again be noted that ( ){ } 0ˆ|ˆ
1ˆ

)1( ==ρG oρρ  along the 
circumference of the circular domain.  Based on this 
approximate expression for the volumetric Green’s 
function and equation (2), an expression for normalized 
potential at a point oρ̂  is given by a line integral over 
the circumference of the unit circle and is expressed as, 
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For the development of the FRW algorithm, we need to 

estimate 
1ˆ

)1(

ˆ
=

⎥
⎦

⎤
⎢
⎣

⎡

ρ
ρd

dG in equation (13). This estimate is 

obtained by differentiating equation (12), and in the 
zero-centered notation (i.e. 0ˆ =oρ ) is given by, 
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where A and B  are given by, 
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Equation (13) in conjunction with equations (14) and 
(15) is used to develop the FRW algorithm for the 
problem under consideration. In order to calculate the 
normalized potential at a point of interest, we start our 
random-walks at that point and hop to the 
circumference of a circle of radius R. The random-
walks have to be restricted to a small fraction of the 
characteristic length λ  in order to maintain the validity 
of the first-order approximation in the perturbation 
expression for the volumetric Green’s function.  For 
every hop there is a weight factor obtained by sampling 
the multi-dimensional integrand of equation (13) 
according to a pre-determined probability distribution 
for each of the variables. As explained in the previous 
section, a particular random-walk, consisting of several 
such random hops, is terminated on the boundary of the 
problem domain, where the value of the potential is 
known. The contribution from a particular random-walk 
is obtained by multiplying the overall weight factor 
(which is obtained by multiplying the weight factors of 
individual hops) with the boundary value. An estimate 

φ̂ of the potential, at the point of origination of the hops 
is then obtained by averaging over a statistically large 
number of random-walks. 
 
The error in the result has a deterministic component 
arising from the truncation of the perturbation-based 
Green’s function in equation (12), which can be 
controlled by controlling the radius of the hop. The 
error also has a stochastic component, a measure of 
which is given by the “1-σ error Tσ ” given by [21], 

,
N
E

T
σ

σ =                                      (16)                            

where Eσ  is the standard deviation of the contributions 
from different random-walks, N being the number of 
random-walks. As a result, the statistical error can be 
controlled by controlling the number of random-walks.  
The FRW algorithm described previously was 
parallelized. Two levels of parallelism are inherent in 
an FRW algorithm.  First, the solutions for different 
points in the domain (different origins for the random 

walks) are independent of each other.  Second, for a 
given point of origin, each random walk is independent, 
and inter-processor communication is required only to 
sum up the contributions of the walks.  For this initial 
parallel implementation, the test points in the domain 
were handled serially. The walks were distributed in 
groups across computer processors, with 
communication and a reduction operation at the 
completion of the walks. The FRW algorithm was 
implemented in C, and the serial version of the code 
was converted to parallel using the Message Passing 
Interface (MPI) library.  The elegance and inherent 
parallelism of the FRW algorithm is demonstrated in 
the fact that the serial and parallel versions of the code 
differ by only four function calls, three of which are 
merely initialization routines. The results of this 
parallelization are given in the next section. 
 

III.   RESULTS 
 
In our benchmark problem (Fig. 1) [20], a circle λ  in 
diameter, is surrounded by a rectangle of dimensions 
3 2λ λ× . The normalized potential is unity on the inner 
circle and zero on the outer rectangle. When run in a 
single processor, 20000 random-walks were performed 
per solution point, while the radii of the hops were 
restricted to two percent of the characteristic length λ  
to maintain the validity of the first-order approximation 
in the derivation of the volumetric Green’s function in 
equation (12). For finite-difference calculations, a grid 
of 5151×  points, distributed over the first quadrant was 
used. The finite-difference calculations were carried out 
using a standard transformation from a curvilinear mesh 
in physical space to a uniform mesh in computational 
space, while maintaining second order accuracy. The 
results are shown in Table 1 and Fig. 2. Excellent 
agreement is observed between FRW and finite-
difference based results. 
 
It can also be observed that the absolute errors are 
consistently larger than the statistical errors, which can 
be attributed to the truncation of the perturbation-based 
Green’s function in equation (12), and also to the 
truncation errors in the finite-difference based 
approach.  
 
The parallelized algorithm was implemented on an IBM 
P4+ machine, running 1.7 GHz Power 4+ chips, with 2 
Gigabytes RAM available per processor for as many as 
64 processors. The timing results are shown in Fig. 3 
for 100000 and 10000 random-walks per solution point. 
It can be observed that for 100000 random-walks per 
solution point the speed of computation increases 
perfectly linearly with the number of processors, 
particularly for a relatively smaller number of 
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processors. This can be attributed to the fact that the 
random-walks per processor needs to be high enough to 
ensure that the time spent in actual computation is large 
compared to the communication time between the 
various processors. For the same reason, the increase in 
the speed of computation is only sixteen fold for 32 
processors with only 10000 random-walks per solution 
point. It should be borne in mind that the benchmark 
problems used for validation are relatively simple 
problems, and for more complicated problems one can 
expect to see even better scalability, stemming from the 
increased number of samples per processor. In 
comparison, the parallelization of the finite-difference 
algorithm (Fig. 4) for the same problem showed 
markedly inferior performance (compared to the case 
where N =100000) with increase in the number of 
processors. With 32 processors, the speed of 
computation is only 16 times higher than the speed with 
a single processor. It can also be concluded that as the 
finite-difference method (like other deterministic 
methods based on discretization) reduces the numerical 
solution of a differential equation to the numerical 
solution of a matrix equation, our newly-developed 
algorithm will exhibit superior efficiency of 
parallelization compared to other discretization-based 
deterministic methods as well. 

 
Table 1. Statistical error and mean absolute error 
between FRW and finite-difference based results. 

 
Benchmark 

Problem (20000 
Random Walks per 

Solution Point) 

Mean Absolute 
Error 

Statistical 
Error 

Along the 
centerline positive 

x-axis 
0.0033 0.0028 

Along the 
centerline positive 

y-axis 
0.0067 0.0025 

 
 

φ = 0

φ = 1

y

x

 
 

Fig. 1.  The solution of the NPB equation in the region 
between a circle surrounded by a rectangular boundary. 
Problem dimension is .23 λλ ×  
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Fig. 2. Normalized potential plotted against position in 
normalized coordinates. 

 
Fig.3. Parallelization results for the FRW algorithm. 
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Fig. 4. Parallelization results for the finite-difference 
algorithm. 
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IV.    CONCLUSION 
 
In summary, we have parallelized a previously-
developed FRW algorithm for the solution of the NPB 
equation in two dimensions. This algorithm is based on 
an approximate volumetric Green’s function, derived 
using perturbation theory. Excellent agreement was 
found between the random walk and finite-difference 
results, while the FRW algorithm exhibited vastly 
superior (almost linear) efficiency of parallelization for 
a statistically significant number of random-walks per 
processor. The FRW algorithm also has the advantage 
of not requiring any discretization of the volume or the 
surface of problem domains. The approach is general, 
and can be applied to the numerical solution of other 
important nonlinear equations. Our work in the 
immediate future will involve the extension of this new 
FRW algorithm to Neumann and mixed boundary 
condition problems. The ultimate objective of this work 
is the extension of the perturbation-based approach to 
flow problems. 
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Abstract − This paper presents a hybrid integral 
equation formulation for computation of 
electromagnetic scattering by composite conducting 
and dielectric materials. In the hybrid formulation, 
multiple material regions in a scatterer are classified 
into two categories, one is the surface integral equation 
(SIE) region, and the other is the volume integral 
equation (VIE) region. For the SIE region, the 
boundary conditions for tangential E-field and 
tangential H-field are applied to formulate the surface 
integral equation for the equivalent surface currents. 
For the VIE region, the equivalent principle is applied 
to formulate the volume integral equation for the 
induced volume currents.  The hybrid formulation takes 
the advantageous of both the SIE and VIE.  The 
integral equations are cast into a set of linear equations 
using the method of moments. For regions that are 
electrically large, the multilevel fast multipole 
algorithm is applied to accelerate the matrix-vector 
multiplication needed by iterative solvers. Numerical 
results are provided to verify the accuracy and the 
application of the program developed from the hybrid 
formulation. 

Key words − Scattering/RCS, method of moments, 
hybrid methods, and boundary integral equations. 

I.    INTRODUCTION 
The integral equation approach has been used to 

model electromagnetic scattering by perfectly electrical 
conducting objects as well as dielectric materials. 
When this approach is used to solve an electromagnetic 
wave scattering problem involving piece-wise 
homogeneous electric and magnetic materials, there are 
two frequently used formulations: the surface integral 
equation (SIE) formulation [1-10] and the volume 
integral equation (VIE) formulation [11-16]. In SIE 
formulation, unknown equivalent electric current and 
magnetic current are assigned on the material surfaces, 
as well as the perfectly electrical conducting (PEC) 
surfaces. The boundary conditions of tangential E-field 
and tangential H-field across material surfaces are 
applied to formulate the SIE for the equivalent currents. 
In the VIE formulation, equivalent electric and 
magnetic volume currents are assigned to the volumes 
occupied by the materials. The field equivalence 
principle1 is applied to formulate the volume integral 

                                                 
1 A rigorous derivation of VIE can be found in a recent paper by M. 
Sencer et al in [17]. 

equations for the volume currents. Both the SIE and 
VIE formulations have their own advantageous 
depending on the problem to be solved and on the way 
the discretized linear equation is solved. In general, the 
SIE formulation leads to less number of unknowns for 
electrically large material volume regions compared to 
that of the VIE formulation. If a problem consists of 
materials of electrically thin cylinders and thin slabs, it 
is expected that both SIE and VIE formulation will 
have comparable numbers of unknowns. However, If 
iterative solvers are used to solve the discretized linear 
equations, the VIE formulation will have higher 
converge rate (or need less number of iterations) 
because it is of the second kind [18].  Based on the 
above comparisons, we propose a hybrid SIE and VIE 
formulation. In this way, the material volumes are 
classified into two groups. The electrically large and 
bulk material volumes belong to one group for which 
the SIE formulation is applied (the SIE also applied to 
the perfectly electric conducting surfaces). The other 
group consists of material volumes that are electrically 
thin or small (such as the thin slabs and cylinders) for 
which the VIE formulation is applied.  We call this 
approach the “SIE+VIE” approach. The purpose is to 
take the advantageous of the “SIE ONLY” and “VIE 
ONLY” approaches, and avoid the drawbacks of the 
two. It is difficult to draw a line on the use of VIE and 
SIE for a given material region. As a general guideline, 
large, thick, and homogeneous material regions are 
modeled by SIE, and small, thin and inhomogeneous 
material regions are modeled by VIE. In the following, 
we will present the hybrid formulation of the 
“SIE+VIE” approach, followed by numerical examples 
to verify the implementation. For a composite scatterer 
with piece-wise dielectric material, we can solve the 
problem using any one of the three approaches, i.e., the 
hybrid “SIE+VIE”, the “SIE ONLY”, and the “VIE 
ONLY”. It must be emphasized that in all three 
approaches, SIE is applied to PEC surfaces. The 
distinction lies in the treatment of material. In the “SIE 
ONLY” approach, SIE is applied to all material 
surfaces (hence it can only deal with piece-wise 
homogeneous scatterers); in the “VIE ONLY” 
approach, VIE is applied to all material volumes; and in 
the hybrid “SIE+VIE” approach, part of the material 
region is modeled by SIE and the rest are modeled by 
VIE. The formulation is in frequency domain, and the 
time factor of exp{ }i tω−  is implied and suppressed in 
all the equations.  
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II.    FORMULATION 
A general scatterer usually consists of PEC surfaces 

and electric/magnetic materials regions, as shown in 
Fig. 1. In the “SIE+VIE” formulation, the volume 
integral equation is constructed for the small or 
inhomogeneous material regions, and the surface 
integral equation is constructed for PEC surfaces and 
the surfaces of large homogeneous material regions. 
Although pure SIE formulation (the “SIE ONLY”) 
could be applied to all the piece-wise material regions, 
it can be inefficient if there are small and thin material 
volumes to which the VIE formulation is more efficient 
and will lead to a better conditioned system equation 
[18].  

A. Integral Equations 

To simplify the notation, we first define two 
operators, L  and K , such that, 

     1( ) ( , , ) ( )2L J I G r r k J r dj j
k j

′ ′⋅ = + ∇∇ ⋅ Ω∫Ω
K KK K K ,       (1) 

  ( , , ) ( )K M G r r k M r dj j′ ′⋅ =∇× Ω∫Ω
K KK K K ,                (2) 

where the integral domain Ω  could be either a surface 
or a volume, ( , , ) exp( )G r r k ik r rj j′ ′= −K K K K  /(4 )r rπ ′−K K  is 
the 3-D scalar Green’s function for unbounded 
homogeneous material space with constant 
wavenumber k j j jω ε µ= , and I  is the identity dyad. 

Before explaining the general scattering 
configurations, we first consider a few simple cases. 
The focus is on introducing the domains for a scattering 
configuration. The details of the equivalence problem 
and integral equation formulation will be discussed 
afterwards.  To illustrate the configuration in general, 
we first consider several simple cases. (1) If a PEC 
sphere is in a free-space, then the configuration consists 
of one domain (the whole space) with one PEC body 
embedded within it. The domain boundary is S∞  (a 
spherical surface of infinite radius). This surface S∞  is 
implied for all infinite regions, and is ignored in all 
cases since no integral equation is formulated on it. In 
this case, one SIE is constructed on the PEC surface for 
the induced electric current. (2) If a dielectric body is in 
free-space and it is to be modeled by VIE, then the 
configuration has one domain, and the dielectric body 
is said to be embedded within this domain. One VIE is 
formulated for the dielectric volume (assuming non-
magnetic case). (3) If a homogeneous material sphere 
resides in a free-space, and SIE is used to model the 
scattering of the material, then the configuration 
consists of two domains that are separated by a 
spherical surface (the interior domain 1R  and the 
exterior domain 2R ). The spherical surface is named 

1S  for 1R , and 2S  for 2R . Two SIEs are formulated on 

1S , and two SIEs are formulated for 2S  (equation 
redundancy will be considered later). (4) Now we 

consider a two-layer dielectric sphere in free-space. 
There are two concentric spherical surfaces with radii 

1a  and 2a  ( 1 2a a< ), respectively. If the hybrid 
“SIE+VIE” is applied to this problem, there are at least 
two possibilities. In one case, the spherical core is 
considered as embedded within a dielectric sphere of 
radius 2a , and it is modeled by VIE. In this case, the 
overall configuration has two domains, one ( 1R ) is 
interior to the larger sphere ( 2r a≤ , including the core 
region), and the other ( 2R ) is the exterior one ( 2r a≥ ). 
The two domains share the same spherical surface of 
radius 2a . This surface is named 1S  for 1R , and 2S for 

2R . Equivalent problem for 2R  leads to two SIEs on 

2S , and the equivalent problem for 1R  leads to two 
SIEs on 1S , and one VIE for the embedded core 
volume. In the other case, the scatterer is considered as 
a thin layer of coating on a homogeneous sphere of 
radius 1a . The coating is modeled by VIE. In this case, 
the overall configuration has two domains as well, 
domain 1R  is the spherical space of 1r a≤ , and domain 

2R  is the rest of the whole space ( 1r a≥ ). The two 
domains share the same spherical surface 1r a= . This 
surface is named 1S  for 1R , and 2S  for 2R . The 
equivalent problem for 1R  leads to two SIEs on 1S , 
and the equivalent problem for 2R leads to two SIEs on 

2S , and one VIE for the embedded dielectric shell 
coating. Of the two cases, one is more efficient 
sometimes than the other depending on the relative 
sizes of each part. For example, case one will be more 
efficient if the dielectric core has radius much less than 
a wavelength, and case two is more efficient if the shell 
thickness ( 2 1a a− ) is much smaller than a wavelength. 

With the above discussions, we consider the sketch 
of a general scatterer shown in Fig. 1. It consists of 
PEC bodies (denoted by σ =∞ ), and a number of piece-
wise homogeneous material domains , , ,1 2R R Rn⋅⋅⋅  (with 
complex material parameters of ,i iε µ , 1,2, ,i n= ⋅⋅⋅ ), and 
a number of un-named material regions (shown by the 
dot-shaded regions in the figure) embedded within the 
existing domains. These embedded regions are not 
numbered and will be modeled by VIE. For instance, 
the region marked by 2JV

G
 is embedded within 2R . Let 

Sij  be the surface shared by domain Ri  and R j , and 
S pj  be the conducting surface that is exposed to 
domain R j . In addition, we define Si  to be the 
boundary of domain Ri , it may be a union of several 
open surfaces. For example, 3S  is the boundary of 3R  
and it is the union of , ,31 32 34,S S S  and 3S n  
(highlighted by thick solid lines in Fig. 1), i.e., 

{ , , , }3 13 23 34 3S S S S S n=∪ . If there are PEC regions 
embedded within 3R , then the conducting surfaces 
shall also be part of 3S . 
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Fig. 1.  A sketch of a general scatterer that is made of PEC bodies as well as multiple piece-wise homogeneous 
dielectric materials within which inhomogeneous materials may be embedded.  

 

The equivalent problems for the domains are formed 
independently from each other. For example, the 
equivalent problem for 1R  is shown in Fig. 2. It is 
obtained by removing all materials exterior to boundary 

1S  (highlighted by thick dotted line), all PEC bodies 
within 1S , and then filling the left over space with the 

same material as that of region 1R . The total electric 
field and magnetic field are set to zeros for the region 
exterior to 1S , and equivalent electric current 1J

K
 and 

magnetic current 1M
K

 are introduced on surface 1S .  

 
Fig. 2. Equivalent problem for region R1. 
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Meanwhile, the material body embedded within 1R  
is removed and the equivalent volume current 1JV

G
 is 

introduced for that volume. This is repeated for all such 
embedded material bodies (for simplicity of derivation, 
we will not consider embedded magnetic material in 
this paper. If embedded magnetic material presents, 
then additional volume integral equation for equivalent 
magnetic volume current shall be formulated in the 
same way).  

Applying the boundary conditions of continuous 
tangential field components for the portion of 1S  that is 
originally the interface of materials, i.e., 

( )1,2,3,1S i ni = …  in 1R , electric field integral equation 
(EFIE) and magnetic field integral equation (MFIE) 
can be established as, 

            ( )sca inc
1̂ 11 1n E E Mi × + =−

G K K
,                      (3) 

            ( )sca inc
1̂ 11 1n H H Ji × + =

K K K
,                       (4) 

where 
 

              sca
1 1 1 1 1 1 1 1 1 11E ik L J K M ik L JVη η= ⋅ − ⋅ + ⋅

K K K K
, 

               sca 1
1 1 1 1 1 1 1 11H K J ik L M K JVη −= ⋅ + ⋅ + ⋅

K K K K
. 

 

The unit vector 1̂n i  in equations (3) and (4) is the 
normal direction on surface 1S i  that points in to 1R , 

and inc
1E
G

 is the primary field generated by sources in 

1R  ( inc
1E
G

is calculated assuming that the sources in 1R  
radiate into an unbounded homogeneous space of 1k ). 
The EFIE on the PEC surface 1S p , is established using 
the vanishing tangential field boundary condition as 

               ( )sca incˆ 01 1 1n E Ep × + =
K K

,                          (5) 

where ˆ 1np  is the normal direction of 1S p  directed 
outward of the conductor.  
 In the volume material portion, the total electric field 
is the superposition of the incident and the scattered 
field. Based on this fact, VIE in domain 1R  is 
constructed as 

                  sca tot inc
1 1 1E E E− =−
K K K

.                       (6) 

The volume electric current 1JV
K

 in equation (6) is 
related to the total electric field intensity 
by tot( )1 1 1J i EV ω ε ε= −

K K
, with ε  being the position 

dependent permittivity for the material body embedded 
in 1V , and tot sca inc

1 1 1E E E= +
G G G

 is the total electric field 
within 1V . Thus, we have established a set of four 
integral equations, (3) to (6), for domain 1R . Moreover, 
if the conducting surface 1S p  is a closed surface, the 
MFIE (magnetic field integral equation) or CFIE 

(combined field integral equation) can be used to 
replace equation (5). It should be pointed out that 
equation (5) will not appear for 1R  if 1S  does not 
contain any PEC surfaces, and equation (6) will not 
appear for 1R  if there are no embedded dielectric 
volumes in 1R .  

Similarly, the equivalent problem of 2R  can be 
established as shown in Fig. 3. 

  
Fig. 3. Equivalent problem of domain 2R  for which the 
whole space (both interior and exterior to 2S ) is filled 
with the same material of ,2 2ε µ . 

The surface integral equations on the material 
surface 2S  (or 2S i∪ ) are also based on the boundary 
conditions of tangential E and H fields, i.e., 

           ( )sca incˆ2 22 2n E E Mi × + =−
G G K

,                      (7) 

           ( )sca incˆ2 22 2n H H Ji × + =
G G K

,                        (8) 

where 

           sca
2 2 2 2 2 2 2 2 2 22E ik L J K M ik L JVη η= ⋅ − ⋅ + ⋅

G K K K
, 

            sca 1
2 2 2 2 2 2 2 22H K J ik L M K JVη −= ⋅ + ⋅ + ⋅

G K K K
. 

 

The volume integral equation for 2V  is constructed 
in the same way as in equation (5). It is given by 

 

             sca tot inc
2 2 2E E E− =−
K K K

.  (9) 

As stated previously, the vector tot
2E
G

is related to the 

volume current by tot( )2 2 2J i EV ω ε ε= −
K K

. 
 Now we have established a set of three integral 
equations for domain 2R  (if there are PEC bodies 
within 2R , there would be one more surface integral 
equation for the PEC surfaces). This process can be 
repeated for all the remaining domains, , , ,3 4R R Rn⋅⋅⋅ . It 
is expected that for each domain, a set of two to four 
integral equations are established depending on 
whether PEC surfaces and embedded dielectric material 
exist in that domain. We have an overall of n  sets of 
integral equations. It is observed that there are 
redundant unknown vectors assigned in the integral 

2vJ
K

 

2 2,ε µ  

2 2,ε µ  

2R  

2J
K

2M
K

 

2pS  

23S  

2nS  

0, 0E H= =
K K

21n̂  

2pS  
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equations. The redundancy is removed by using the fact 
that J

G
 and M

G
 on the two sides of any material 

interface are equal in magnitude and opposite in 
direction. For example, on interface 12S  shared by 
domains 1R  and 2R , we have, 
 

    1̂2n = ˆ , and21 1 2 1 2n J J M M− =− =−
K K K K

.             (10) 

In this way, we have only two unknown functions on 
each interface that is shared by two material domains. 
By utilizing the above relationships for 12r S∈

G , we can 
add equations (7) to (3), and equations (8) to (4), to 
reduce the number of equations from four to two (this 
approach was proposed in a paper by Wu and Tsai [4] 
based on the earlier work of Poggio,  Miller, Chang, 
Harrington, Wu, and Tsai, and hence the formulation is 
called PMCHWT). In this paper, the SIE applied to 
dielectric material surfaces refers to this PMCHWT 
formulation. It shall be noted that there are other ways 
to combine the integral equations leading to different 
SIE formulations. 

B.  Discretization of the Integral Equations 

When all the integral equations are established, we 
apply the method of moments (MoM) to descritize the 
integral equations into a set of N  linear algebra 
equations. Once again, the integral equations 
formulated for each domain are discretized before they 
are combined with those of the other domains to 
remove redundancy. To this end, the surfaces are 
modeled by a set of electrically small and nearly flat 
quadrangles, and the volumes are modeled by a set of 
electrically small hexahedron elements whose six faces 
are also nearly flat quadrangles. Basic requirements on 
the mesh are,  

(a) All quadrangles are well connected (two 
quadrangles can share no more than two nodes, 
and if they share two nodes, then they must share 
an edge).  

(b) All hexahedrons are well connected (two 
hexahedrons can share no more than four nodes, 
and if they share four nodes, then they must share a 
common face). 

(c) All quadrangles and hexahedrons are also well 
connected. If the number of shared nodes between 
a quadrangle and a hexahedron is n, then (a) n 
must be 0,1,2,4 only; (b) if n = 2, they must share a 
common edge; (c) if n = 4, the quadrangle must 
overlap with a face of the hexahedron.  

(d) All mesh nodes must be vertices of quadrangles 
and/or hexahedrons (no mesh nodes are allowed 
inside a mesh element or interior to the boundary 
of it. 

Then surface roof-top basis functions are used to 
expand the surface vectors ( J

G
 and M

G
), and the 

volume roof-top basis functions are used to expand the 
volume vector JV

G
. A volume roof-top basis function is 

defined on two neighboring hexahedrons that share a 
common face (if a face of a hexahedron is not shared, a 
volume basis function is also assigned to this face [12], 
and this basis function is called a half basis). A surface 
roof-top basis function is defined on two or more 
neighbor quadrangles that share a common edge. If an 
edge is shared by more than two quadrangles, it is a 
junction edge [5] (no half basis is defined for surface 
mesh). There are several types of junctions that must be 
treated differently. Here we consider two simple types 
of junctions: (1) all quadrangles that share a common 
edge are material interfaces. In this case, one basis 
function is assigned to the junction; (2) Multiple 
material quadrangles are connected to an edge shared 
by two PEC quadrangles that on a PEC body of non-
zero thickness. In this case, one basis function is 
assigned to the junction. Both the surface and volume 
basis functions can be written in the following form 
[18],   

  1( ) , , orrf r u r S Vi ii ug
± ∂Ω = ∈Ω Ω=

∂

KK K K ,          (11) 

where Si  (or Vi ) is a surface (or volume) mesh 
element, g  is the Jacobian of the transformation that 
maps a mesh element in (x,y,z) coordinate system into a 
unit element in the (u,v,w) coordinate system. In the 
(u,v,w) space, a unit quadrangle is a square defined by 
0 1,u≤ ≤ , 0 1,v≤ ≤  and 0w= , and a unit hexahedron is a 
cube defined by 0 1,u≤ ≤  0 1,v≤ ≤ and 0 1w≤ ≤ . More 
details on the discretization can be found in [12,18]. 
After discretization, we get a set of n  matrix equations, 
one set for each domain, as follows, 

      A x bi i i⋅ = ,    1,2, ,i n= ⋅⋅⋅ ,      (12) 

where, Ai  is the impedance matrix of size N Ni i× for 
the integral operators, xi  is a vector of length Ni  
whose components are the expansion coefficients for 
the unknown vectors, and bi  is the excitation vector of 
length Ni  that is determined by the sources, all 
associated with domain Ri  (if Ri  does not contain any 
source, then 0bi = ). If the matrix equations are to be 

solved by a direct solver, then the matrices Ai , 
1,2, ,i n= ⋅⋅⋅ , must be combined to form the system matrix 

A  of dimension N N×  using the relationships in 
equation (10), where N  is the total number of 
independent unknowns. It shall be noted that N  is not 
a simple summation of Ni , for 1,2, ,i n= ⋅⋅⋅ . In general, 
N Ni

i
≤∑ . If fast solvers are utilized to speed-up the 

solution, the linear equations are not combined until the 
matrix-vector product for each domain, A xi i⋅ , is 
completed. This is discussed in the next sub-section. 
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C. Solution using Multilevel Fast Multipole 
Algorithm 

For many realistic scattering problems, the electrical 
size of certain or all domains can be very large, and 
direct solvers may not be feasible. In this case, fast 
iterative solvers are needed to reduce the computational 
complexity as well as memory requirement. In general, 
different fast solvers can be applied to different 
domains depending on the size and the shape of the 
domains. In this paper, we apply the multilevel fast 
multipole algorithm (MLFMA) for all domains that is 
electrically large. MLFMA has been discussed in detail 
in many publications such as [19, 20], we focus on the 
implementation for multi-region problems here. To this 
end, we first identify the regions for which fast solvers 
will be applied. This is done by calculating the 
maximum electrical dimension /Di iλ  of each domain 
Ri . If / 1.0Di iλ ≥ , then fast solver is applied for this 
region (this criteria depends on the implementation). 
For the rest domains that do not need the fast solvers, 
as well as the near-neighbor interaction of any fast-
solver domain, the matrices are combined and stored 
into one sparse matrix 0A  and direct method is applied 

to perform 0A x⋅ . For a domain Ri  that MLFMA is 

applied, then A xi i⋅  will be performed in the same way 
as in a single domain problem, and logN Ni i  floating 
point operations are needed. The overall operation 
count per iteration is then made of two parts, one part is 

( )1 0T O N=  ( 0N  is the number of non-zero entries in 

0A ), and the other part is  

                  log2
 i

T C N Ni i i=∑               (13) 

where i  runs over all the domains to which MLFMA 
are applied, and Ci  is a constant determined by the 
MLFMA implementation. 

As a summary, the procedure to perform a matrix-
vector product y A x= ⋅  include the following steps: 

(a) For a given trial vector x  in any iteration, 
formulate xi  (using (10) for domain Ri  to which 
MLFMA is applied). 

(b) Perform y A xi i i= ⋅  using MLFMA in Ri .  

(c) Repeat steps (a) and (b) for all domains in which 
MLFMA are applied. 

(d) Formation of ' { }y yi
i

=∪ . The union operation uses 

the rule of equation (10). 

(e) '0y A x y= ⋅ + . 

Using the above processes, a test program is written for 
the case of 2n=  and numerical results are generated 
and shown in the next section to validate the method 
and to demonstrate the applications.   

III.   NUMERICAL RESULTS 
This section provides numerical examples using the 

program developed for the “SIE+VIE” method. The 
examples are designed to consider several typical 
application configurations that include, 

(1) Spherical structure that can use Mie series to verify 
the results (example 1). 

(2) A large homogeneous material with small and thin 
materials embedding (examples 1 and 3). 

(3) Small or thin materials are outside a large 
homogeneous material region (example 4). 

(4) Structures with flat faces and edges (example 3). 
(5) Structures with curved faces and edges (examples 

1, 2, and 4). 
(6) Structures with bulk material for which VIE is 

inefficient (example 2). 
For example 1, we use the exact solution as a 

comparison. For the rest of the examples, two 
approaches, “SIE+VIE”, and “VIE ONLY”, are applied 
to solve the problems and results are compared to each 
other. In both approaches, CFIE is used for the closed 
PEC surfaces. The difference of the two approaches 
lies in the treatment of the material regions. In the 
“SIE+VIE” approach that is introduced in this paper, 
part of the material regions (normally small or thin 
regions) are modeled by VIE, and the large and thick 
material regions are modeled by SIE. The results from 
this approach are labeled as “SIE+VIE” in the figures. 
It should be noted that the VIE modeled material can be 
inside (embedded in) or outside the SIE material 
surfaces. The second approach uses VIE to model all 
materials, and the results are labeled as “VIE ONLY” 
(The terms of “VIE ONLY”, “VIE+SIE”, and “SIE 
ONLY”, are introduced to mark the results and they 
refer to the ways materials are handled. In all cases, the 
surface integral equation is applied to PEC surfaces, 
including “VIE ONLY” approach). The “VIE ONLY” 
modeling is used as a way of validating the numerical 
results of “SIE+VIE” approach. Hence the examples 
are designed so that both approaches can be applied. 
Because of this, the run time parameters are provided 
for reference only. They shall not be used to determine 
which approach is more efficient for certain examples. 
All calculations are performed on a HP Superdome 
computer with 1.5 GHz processor and 2GB of memory.  

The first example is a layered spherical structure. It 
consists of a PEC core (radius 0.45 m) covered by two 
layers of dielectric materials. The inner layer has 
thickness 0.05 m with relative permittivity 4.02rε = ; 
The outer layer has thickness 0.3 m with 2.0 0.11 irε = + . 
In the “SIE+VIE” approach, the inner layer of the 
coating is considered as embedded within a shell of 
inner radius 0.45 m, and outer radius of 0.8 m. The 
PEC surface and the outermost spherical surface are 
modeled by a total of 5,592 quadrangles (1,536 for 
PEC surface, and 4,056 for the outermost spherical 
surface). The embedded material shell of thickness 0.05 
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m is modeled by 1,536 hexahedron element (VIE 
mesh). The total number of independent unknowns for 
the hybrid formulation of “SIE+VIE” is N = 25,440, 
and the memory used is M = 469 MB. Computed bi-
static RCSs for 0iθ = D  incidence at 300MHz are plotted 
in Fig. 4. The exact solutions from Mie series are also 
plotted for comparison. If we use the RMS error 
defined as  

RMS ERROR = 1 ref 2( )
0

n
i in i

σ σ−∑
=

 

to measure the difference of our solution iσ  and 

reference solution ref
iσ , for 1,2,..., 181i n= =  (angles), 

the errors are 0.5dB for V-V, and 0.23dB for H-H 
polarizations, respectively. 
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Fig. 4. Bi-static RCSs of a layered spherical scatterer 
for two polarizations: V-V (left) and H-H (right). The 
incident angle is 0iθ = D . 

 
The second example is taken from [8]. It is made of 
two sections of circular cylinders, one PEC and one 
dielectric. The side view of the structure as well as the 
dimension parameters are shown in Fig. 5.  The relative 
permittivity of the dielectric is 2.6, and the incident 
plane wave frequency is 3.0 GHz. 

For the “SIE+VIE” modeling, SIE is applied to the 
material surface (no part of material is modeled with 
VIE for this example). The number of unknowns is 
N=6,672, CPU time is T = 35.8 s per incident angle, 

and total memory used is M = 113 MB. For “VIE 
ONLY” modeling, the run time parameters are 
N=17,280, T=92.05s, and M = 1,171 MB. It is seen that 
the “SIE+VIE” approach uses almost three times less 
number of unknowns compared to the “VIE ONLY” 
approach. The latter also uses more CPU time per 
incident angle (this is an example for which “VIE 
ONLY” approach is not efficient to apply). The 
computed mono-static RCSs by both approaches are 
shown in Fig. 6, from which, we can see good 
agreement between the two results. 

 
 

Fig. 5. The side view of a composite PEC and dielectric 
cylindrical scatterer of circular cross section (a = 15.24 
cm, b = 10.16 cm, d = 7.62 cm). The incident 0iθ =  is 
on PEC side of the axis (shown by the arrow in the 
figure). 

 
The next example is a composite triangular plate that 

is made by two material regions and a PEC surface, as 
shown in Fig. 7. Material-2 (with permittivity 2ε ) is 
considered as embedded within material-1 (with 
permittivity 1ε ). For “SIE+VIE” modeling, N=17,959, 
CPU time is T = 76.7 per incident angle, total memory 
is 355 MB, and average iteration number per angle is 

itrN = 41.9 (it equals the total iteration number for all 
incident angles divided by number of incident angles). 
For “VIE ONLY” modeling, the runtime parameters 
are N = 24,219, T = 8.6s, M = 427 MB, and itrN =5.66. 
The numbers of iterations explain why the CPU time 
for the “SIE+VIE” approach is more than that of “VIE 
ONLY” approach. Because the overall thickness of the 
structure is thin ( 0.4 0λ ), the “VIE ONLY” approach is 
more efficient to apply for this example. The two 
results are given in Fig. 8 and they agree well to each 
other. 

 

In the last example, we consider a composite cylinder 
of finite length as shown in Fig. 9. The cross section of 
this cylinder is an ogive, and the two edges (parallel to 
z-axis) are coated by materials of 2.5 0.51 2 ir rε ε= = + . 
The width of the coating with 1ε  (in the +x side) is 
0.236m, and that with 2ε  (in –x side) is 0.115m. For 
“SIE+VIE” modeling, N = 16,052, T = 110 s, and M = 
196 MB. For “VIE ONLY” modeling, the runtime 
parameters are N = 19,446, T = 43.7 s, and M = 172.8 
MB. The calculated RCSs at 1.0 GHz incidence are 
shown in Fig. 10. 

 
 

a 
b 

d PEC Dielectric 
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Fig. 6. Mono-static RCSs of a composite cylindrical 
scatterer for V-V polarization (left) and H-H 
polarization (the description of the cylinder is in Fig. 5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. The top view of a composite triangular plate that 
is made by 3 parts, a conducting part (bottom), and two 
dielectric regions. The middle dielectric (with 2rε ) is 
considered as embedded within the material of 1rε . The 
thickness of the plate is 0.04 m. 
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Fig. 8. The mono-static RCSs of the composite plate of 
Fig. 7. The incident wave frequency is 3.0 GHz, and the 
results are for the 90iθ = D  plane.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9. A composite finite-length cylinder of ogive cross 
section is made of two dielectric materials and a PEC 
body. The sizes in x, y, and z-directions are 1.4 m, 0.36 
m, and 1.44 m, respectively.          
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Fig. 10. The calculated RCSs for the ogive cylinder of 
Fig. 9 for V-V polarization (left) and H-H polarizations 
(right). 

 

IV.   CONCLUSIONS 
In this work, we implemented a hybrid “SIE+VIE” 

formulation for computing the scattering by composite 
scattereres that made of larger conducting and 
dielectric materials. This formulation takes the 
advantage of SIE for large homogeneous material 
regions, and that of VIE for small and thin material 
regions. It is applicable to scattering problems with 
multiple material regions of different sizes and shapes. 
When a material region is electrically large, the 
MLFMA is applied to accelerate the matrix-vector 
multiplication in the iterative solution process. 
Numerical examples are presented that verified the 
solution accuracy of the hybrid formulation, and 
demonstrated its ability in solving large and complex 
scattering problems. This work applied one type of fast 
solver only (the MLFMA) which is not the best choice 
for all domains or for all problem configurations. In 
fact, based on domain shape and size, it is possible to 
use different types of fast solvers for different domains 
to achieve optimum performance. This remains to be a 
future implementation. 
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Surfaces 
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Abstract − In the present work, a Galerkin’s electric 
field integral equation (EFIE) solution is applied to get 
the current flowing on a conducting surface of 
arbitrary shape when excited by a gap generator as 
well as when illuminated by an incident plane wave. 
The main objective of this work is to get a fast, 
accurate and efficient computer algorithm that 
optimizes the use of computer resources and reduces 
the computational time and to accurately evaluate the 
input impedance of conducting surface antennas. The 
singular integrals arising in such a Galerkin’s 
formulation are accurately evaluated and obtained as 
analytic expressions. An efficient method is described 
for accurate evaluation of the input impedance for 
antennas of arbitrarily-shaped conducting surface. The 
efficiency of the applied Galerkin’s algorithm is 
examined by calculating the input impedance of well 
known antennas of conducting surfaces such as the 
strip-dipole, bow-tie and planar equiangular spiral 
antennas. To investigate the accuracy of the applied 
technique the results concerning these antennas are 
presented and compared with some published results. 
 

I.     INTRODUCTION 
 

Among the electromagnetic techniques used for 
treating the problems of scattering, antennas and 
discontinuities in waveguides, the integral equation is 
one of the most widely used techniques. In 
electromagnetic integral equation methods, the original 
boundary value problems for Maxwell equations are 
reformulated as integral equations over the boundary 
interfaces of homogeneous domains. If the object is 
inhomogeneous, integral equation over the entire 
volume of the object has to be considered. 

One of the most powerful techniques used in the 
electromagnetic modeling of conducting bodies is 
based on the EFIE formulation of the Maxwell 
equations [1 - 7]. The EFIE solution for scattering 
from conducting surfaces of arbitrary shape was 
developed by Rao, Wilton and Glisson (RWG) in [8]. 
In the same paper, triangular basis functions, 
commonly known as RWG basis functions, were 
introduced for current expansion on the conducting 

surface. Since that time, this formulation of EFIE 
together with the triangular-patch surface modeling 
have become one of the most widely used techniques 
for solving electromagnetic scattering and radiation 
problems.  

A point-matching method of moments (MoM) 
solution was applied in [8] to get the current on an 
arbitrary surface. This technique ensures the 
satisfaction of the boundary conditions (that yield the 
vanishing of the tangential electric field on the 
conducting surface) at the centroids of the triangular 
patches forming the conducting surface. However, 
residual errors remain at the other points of the 
surface. 

In [9] and [10], the problems that arise when a 
Galerkin technique is applied for the formulation and 
solution of the EFIE for conducting surfaces are 
treated. Their main purpose was to evaluate accurately 
the singular integrals arising in such a Galerkin 
formulation rather than the description of a 
computational algorithm for the application of 
Galerkin’s technique on an arbitrarily shaped 
conducting surface. 

In the present work, the Galerkin solution is 
applied to the EFIE to get the current flowing on the 
conducting body surface in a way to get a complete 
description of a fast, accurate and efficient algorithm 
that optimizes the use of computer resources and 
reduces the computational time. 

The singular integrals encountered when 
Galerkin's formulation is used are classified and 
evaluated analytically. The integrals involved are 
carried out on planar triangular patches and, hence, 
they can be evaluated by first transforming from the 
3D Cartesian coordinates to the so-called simplex 
coordinates. The analytic expressions for the singular 
integrals provided in [11] are used here to accurately 
evaluate the singular integrals.  

Three types of singular integrals appear in 
Galerkin’s formulation. The first type results when the 
source and observation triangular patches are the same. 
The second type results when the two patches share a 
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common edge. The third type of such singular 
integrals results when the source and observation 
patches share a common vertex. These singular 
integrals are reduced to a standard form, which is 
evaluated analytically by the expressions provided in 
[11]. 

An efficient method is described for accurate 
evaluation of the input impedance for antennas of 
arbitrarily-shaped conducting surface. The efficiency 
of the applied Galerkin’s algorithm is examined by 
calculating the input impedance of well known 
antennas of conducting surfaces such as the strip-
dipole, bow-tie and planar equiangular spiral antennas. 
To investigate the accuracy of the applied technique 
the results concerning these antennas are presented and 
compared with some published results. 

It may be worth noting that the characteristics of 
a conical equiangular spiral antenna were investigated 
in [12] using the EFIE. However, the work of [12] 
employs a point matching technique and not a 
Galerkin’s one, which arrives at different singular 
integrals. The method presented here (section 5) for 
evaluating the input impedance was not included in 
[12]. Furthermore, the present work uses a method of 
calculating the singular integrals, which is more 
accurate than that used in [12]. 

 
II.    FORMULATION OF GALERKIN’S EFIE 

 
It is required to deduce the current flowing on a 

conducting surface due to an exciting source, which 
may be an incident wave or a generator attached to the 
conducting surface. The formulation of the EFIE that 
is to be solved for the current distribution on the 
conducting surface requires, first, modeling the 
scatterer or antenna surface by triangular patches. 
Then, the linear density of the current on the surface is 
expanded using the appropriate basis functions with 
unknown amplitudes. A Galerkin’s testing procedure 
is then applied to get the unknown amplitudes. 
 
A.  Modeling the Surface of the Scatterer 
 

As shown in Fig. 1-a, the surface is divided into a 
number of triangular patches. Each patch has three 
edges; an edge which belongs to only one triangular 
patch is called a boundary edge. Such an edge exists 
only on the rim of an open surface and hence, it has no 
electric current component flowing normal to it. As 
shown in Fig. 1-b, an edge which belongs to two 
adjacent triangular patches is called a non-boundary 
edge. Only non-boundary edges can have electric 
current components flowing normal to them.  

 

 
(a) Triangular-patch Model.      

  

  

 

nf
+r

−nP  

+nP

−nr  

+nr  

Non-boundary 
edge number n

nl  

O 

+
nρ

−
nρ  

nf
−r  

              
(b) Two triangular patches sharing an edge. 

 
Fig. 1. Triangular-patch model for surfaces of 
arbitrarily-shaped scatterers and antennas. 

 
Let the number of the triangular patches 

constituting the surface model be Q and the number of 
the non-boundary edges be N. Let Pq denote the 
triangular patch whose index (number) is q; q = 
0,1,2,……Q-1. Two adjacent triangular patches 

+n
P  

and 
−n

P  sharing the edge number n are shown in Fig. 1-
b, where n+ and n- are, respectively, the patch indices. 
It should be noted that both the values of n+ and n- 
have no relation to the value of n. This notation is used 
only to indicate that the triangular patches whose 
indices are q=n+ and q=n-  are adjacent patches and 
share the edge number n, with a plus or minus 
designation determined by the choice of a positive 
current reference direction for the shared edge number 
n. This direction is assumed to be from 

+n
P  to 

−n
P . That 

is, n+ is the number of the patch of which the current 
component associating the edge number n is assumed 
to be flowing out, whereas n- is the number of the 
patch into which this current is flowing. This means 
that n+=1,2,3,…..,Q and n-=1,2,3,…,Q whereas 
n=1,2,3,…..,N. A point in 

+n
P  can be specified by the 

position vector +n
r  defined with respect to the origin 

O, or by the position vector +
nρ  defined with respect to 

the free vertex, 
nf

+r , of the triangular facet 
+n

P  (i.e. the 

vertex of 
+n

P  which does not  belong to 
−n

P ). Similarly, 
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a point in 
−n

P  can be specified by −n
r  or −

nρ . It should 

be noticed that the position vector +
nρ  is directed from 

the free vertex, 
nf

+r , of 
+n

P  toward the point in the 

patch whereas the position vector −
nρ  is directed from 

the point to the free vertex, 
nf

−r , of 
−n

P . Thus one can 
write, 

            )(
nfnn

±± −±= ± rrρ .                         (1) 
 
B.   Representation of the Current on the Scatterer 
 

The current flowing on the conducting surface is 
expressed as a summation of vector basis functions 
with unknown amplitudes. The most suitable basis 
function for describing the current flowing on the 
triangular patches used for modeling the conducting 
surface is the Rao-Wilton-Glisson basis function given 
in [8]. For each non-boundary edge, a vector basis 
function is defined as follows, 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∈

∈

= −
−

+
+

−

+

otherwise,0

,
2

,
2

)(
nn

n

n

nn
n

n

n P
S
l

P
S
l

rρ

rρ

rf                        (2) 

where ln is the length of the non-boundary edge 
number n, 

+nS  and 
−n

S  are the areas of the triangular 
patches +n

P  and −n
P , respectively. It can be shown that 

the normal component of fn(r) at the nth edge is unity 
[8]. Using the basis function   fn(r), the linear current 
density on the conducting surface can be expressed as,  

∑
=

=
N

n
nnI

1

)(rfJ                              (3) 

where In; n = 1,2,3…N are unknown amplitudes of the 
basis functions and to be determined by the following 
procedure. 
 
C.   Application of the Galerkin’s Testing Procedure 
 

The electric field radiated by a surface charge 
density σ and linear current density J flowing on a 
conducting surface, S, can be obtained by the 
following expression, 

)()()( rrArE Φ∇−−= ωjs                     (4) 

where A(r) is the vector magnetic potential defined as, 

∫
′

′−−

′
′

=
S

jk

Sde
r-r

JrA
rr

π
μ

4
)(  ,                   (5) 

and Φ(r) is the scalar electric potential defined as, 

∫
′

′−−
′

′
=Φ

S

jk

Sde
r-r

r
rr

σ
πε4
1)(                     (6) 

where r' is a point on S and r is a point in the near or 
far zone of free space. The surface charge density σ is 
related to the surface divergence of the current J 
flowing on S through the equation of continuity, 

ωσjs −=⋅∇ J .                              (7) 

On the conducting surface, the tangential electric field 
must vanish yielding the following equation, 

)()()( rrArE Φ∇−−=− stan
i
tan jω .               (8) 

Define the product 

∫ ⋅=
S

dSbaba, .                       (9) 

This product can be applied to (8) to get 

r)frrfrArfrE (),()(),()(),( mmm
i j Φ∇+= ω (10) 

where the surface S in equation (9) is the combined 
area of the two patches sharing the non-boundary edge 
m. The product in the first term on the right-hand side 
of equation (10) can be expressed as, 

∫∫
−+

⋅+⋅=

mm
P

m
P

mm dSdS )()()()()(),( rfrArfrArfrA .   

(11) 
The vector magnetic potential A can be expressed 

as the summation of its components which are 
attributed to the currents associating the non-boundary 
edges as follows, 

[ ]∑
=

−+ +=
N

n

n
n

n
n

1

)()()( rArArA                       (12) 

where n
n±

A is the vector magnetic potential due to the 

current flowing through the patch ±nP  and associated 
with the non-boundary edge n. Substituting equation 
(12) in equation (11), one gets 

( )∑
=

−−+−−+++ +++=
N

n

mn
nm

mn
nm

mn
nm

mn
nmm AAAA

1

)(),( rfrA  

(13) 
where       

           ∫
±

±±± ⋅=

m
P

m
n
n

mn
nm dSA )(rfA .                      (14) 
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According to equation (5), n
n±

A  can be expressed as 

∫
±

± ′′=
n

P
Rn

nn
n

SdF
I

)(
4

)( rfrA
π

μ
                 (15) 

where            

                 
R

eF
jkR

R

−
= .                                 (16) 

Substituting equation (15) into equation (14), one gets 

∫ ∫
± ±

±± ⋅′′=
m n

P
m

P
Rn

nmn
nm dSSdF

I
A )()(

4
rfrf

π
μ

.      (17) 

Substituting  )(rf ′n  and )(rfm  into equation (17), one 
gets  

∫ ∫
+ +

++
++ ′⋅= ++

m n
P

m
P

nR
nm

nmnmn
nm dSSdF

SS
llI

A ρρ
π
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16
,     (18-a) 
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m n
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R
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nmnmn
nm dSSdF

SS
llI

A ρρ
π
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,    (18-b) 
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− +
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+− ′⋅= −+

m n
P

m
P

nR
nm

nmnmn
nm dSSdF

SS
llI

A ρρ
π
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 ∫ ∫
− −

−−
−− ′⋅= −−

m n
P

m
P

nR
nm

nmnmn
nm dSSdF

SS
llI

A ρρ
π
μ

16
.   (18-d) 

The product in the second term on the right-hand 
side of equation (10) can be expressed as follows [8],  

=Φ∇ )(),( rfr m                                    

∫ Φ∇
S

m dS)()( rf.r ∫ ∇Φ−=
S

ms dS)()( rf.r .      (19) 

Taking S in equation (19) as the combined area of the 
triangular patches +mP  and −mP , equation (19) can be 
written as  

=Φ∇ )(),( rfr m  

∫
+

∇Φ−

m
P

ms dS)()( rf.r ∫
−

∇Φ−
m

P
ms dS)()( rf.r .          

(20) 
The scalar potential Φ can be expressed as the 

summation of its components which are attributed to 
the currents associating the non-boundary edges as 
follows, 

[ ]∑
=

−+ Φ+Φ=Φ
N

n
nn

1
)()()( rrr                      (21) 

where n
n±

Φ  is the scalar potential due to the current 

flowing through the patch ±nP  and associated with the 

non-boundary edge number n. Substituting equation 
(21) into equation (20), one gets, 
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where               
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Substituting )(rf ′n  in equation (25), one gets the 
expressions,  

∫ ∫
+ +
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SSj
llI
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Equation (13) can be rewritten as,                                                             
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Equation (20) can be written as,  
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where,       
mn
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The product in the left-hand side of equation (10) can 
be expressed as, 
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Equation (33) can be written as,    

    mm
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Making use of equations (27), (30) and (34), equation 
(10) yield, 

mn
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n
mn VIZ =∑
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where         

⎟⎟
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⎞
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⎝

⎛
+= mnmn
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jllZ β

ωεπ
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π
ωμ 1
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Equation (37) can be written in a matrix form as, 

[ ] [ ] [ ]VIZ =  .                        (39) 

The last matrix equation constitutes a linear 
system of N equations in N unknowns which are the 
amplitudes of the basis functions in the current 
expansion series of equation (3). It should be noticed 
that due to the Galerkin’s formulation, the matrix [Z] is 
symmetric. The evaluation of the elements of [Z] 
requires the calculation of the integrals in equations 
(29) and (32), which are singular when the observation 
point coincides with the source point. The evaluation 
of such integrals requires, first, their transformation 

from the Cartesian coordinates to the so-called simplex 
coordinates. 

 
III.   TRANSFORMATION OF INTEGRALS TO 

SIMPLEX COORDINATES 
 

The integrals in equations (29) and (32) are 
carried out on planar triangular patches, and hence, 
they can be evaluated by, first, transforming from 
ordinary 3-D Cartesian coordinates to the so-called 
simplex coordinate system, which is a 2-D coordinate 
system. Referring to Fig. 2, a point rq that lies in the 
triangle whose vertices are described in the Cartesian 
coordinates as r1q, r2q, r3q can be mapped to the 
simplex coordinate system to lie inside a standard 
triangle, shown in Fig. 3, defined by 

)10,10:),( ηξηξη −(<<<<                (40) 

where the new coordinates are determined by, 

qq S
S

S
S 21 , == ξη .                            (41) 

Define a third coordinate ζ  as, 

qS
S3=ζ .                                (42) 

Since 1321 =++
qqq S

S
S
S

S
S , one gets,  

 
 1=++ ζξη .                                   (43) 

 

q3r  

q1r  

q2r S1

S2 
S3

l2 

l1

l3

qr  

      
(a) Triangle in Cartesian coordinate system.     

 

  

 

(1, 0, 0) 

ξ

η  

ζ

(0, 1, 0) 

(0, 0, 1)

(0, 0, 0)

 
 (b) The same triangle in simplex coordinate system. 

 
Fig. 2. Transformation from Cartesian to simplex or 
normalized-area coordinates. 
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For this reason, the triplet (η, ξ ,ζ) describes the so-
called normalized-area coordinate system shown in 
Fig. 2-b, which is equivalent to the simplex coordinate 
system (η, ξ)  described by equations (40) and (41). 
Thus, a point rq that lies in the triangular patch Pq and 
described in the simplex coordinate or normalized-area 
coordinate system as (η, ξ) or (η, ξ ,ζ) respectively, can 
be mapped to the 3D Cartesian coordinate system with 
the vertices r1q, r2q, r3q of Pq using the transformation. 
 

qqqq 321 )1( rrrr ξηηξ −−++=              (44) 
or         

               qqqq 321 rrrr ζξη ++= .                   (45) 

ξ  

η  
ζ  

(0, 1, 0)

(1, 0, 0) 
(0, 0, 0) 

ξη −  plane 

ηd

ξd  

ηξ −=1  

ξη dd  

 
Fig. 3. Triangle transformed to simplex η-ξ plane. 

 
 

It is required to express an infinitesimal element 
of area dS in terms of dη and dξ. Using η, ξ as 2D 
Cartesian-like coordinate as shown in Fig. 3, the 
triangular patch (of area S) is mapped to the right-
angle triangle shown in the figure. If we express the 
area element in the η-ξ plane as dηdξ, then integrating 
this element over the entire range of η, ξ results in the 
area of this triangle. To get the surface integrals in the   
η-ξ plane equivalent to the surface integrals in the 
ordinary 3D-Cartesian coordinates, the element dηdξ 
should be scaled; thus, we must have, 

SddS f =∫ ∫
−

ηξ
η1

0

1

0

                      (46) 

where Sƒ is unknown scale factor that can be 
determined by carrying out the integration in 
equation(46). This leads, 

SS f 2= .                              (47) 

Thus, the surface integrals over Pq can be evaluated in 
the simplex coordinates by replacing dS by 2Sdηdξ, as 
follows, 
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Making use of equation (48), equations (29) and (32) 
can be written as, 
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where P = m+, m- ; q = n+, n-. The remaining integrals 
can be calculated from the above integrals as follows. 

pqpqpqpq IIII ξηηηηζη ′′′ −−= ,                        (60) 
pqpqpqpq IIII ξξηξξζξ ′′′ −−= ,                        (61) 
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pqpqpqpq IIII ηξηηηηζ ′′′′ −−= ,                        (62) 
pqpqpqpq IIII ξξξηξξζ ′′′′ −−= ,                         (63) 
pqpqpqpq IIII ζξζηζζζ ′′′′ −−= ,                        (64) 

pqpqpqpq IIII ξηζ ′′′ −−= ,                         (65) 
pqpqpqpq IIII ξηζ −−= .                         (66) 

Thus, only nine independent integrals from 
equation (51) to equation (59) must be numerically 
evaluated for each combination of pairs; p and q. The 
nine integrals, in turn, contribute to up to nine 
elements of [Z] in equation (39). For a closed surface 
with N edges, the number of independent integrals 
computed is 24N . By contrast, the edge-by-edge 
approach would require the evaluation of 36N2 
integrals or nine times as many. 

Due to the Galerkin’s EFIE procedure applied as 
described above, and since the basis and testing 
functions chosen are identical, the Z matrix would then 
satisfy the symmetry property Zmn=Znm. Also, the 
integrals in equation (51) to equation (66) are 
symmetric; i.e. Ipq=Iqp and the same is true for the 
other integrals. Thus the number of the independent 
integrals that must be computed are reduced to 
N(2N+3) instead of 24N . Using the same coordinate 
transformation, equation (36) can be expressed as 

∫ ∫
−

±=±
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0

1

0

(
η

r)E im
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       [ ] ηξξηη ddξ
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±−−−++⋅ ±±± rrrr 321 )1( . 
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Equation (67) can be written as, 
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(68) 
where, 
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(70) 

∫ ∫
−

−−++=
1

0

1

0
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η

ηξηξηξ ddppp
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(71) 
pppp
ξηζ IIII −−= .                      (72) 

IV.  EVALUATION OF SINGULAR INTEGRALS 
 

Integrals of equation (51) to equation (59) are 
singular for p=q i.e., when the source and observation 
patches are the same. In this case, each of these 
integrals can be divided into two parts one of which is 
non-singular and can be evaluated numerically 
whereas the other is weakly singular and can be 
evaluated analytically. The integral in equation (51) 
can be rewritten as, 

qq
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qq ddddGI ηη

η η
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where                

          
R
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 ,                             (74) 
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It should be noted that the first term on the right 
hand side of equation (73) is a non-singular integral 
and can be evaluated numerically whereas qq

ηη ′Γ  is 
weakly singular and should be evaluated analytically. 
The same can be repeated for equations (52) to (59), 
where these singular integrals appear, 
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Closed form expressions for the singular integrals 
in equations (76) to (84) are given in Appendix A. 
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V.   ANTENNA EXCITATION AND INPUT 
IMPEDANCE 

 
In this section, a method is described for accurate 

computation of the input impedance of antennas 
composed of conducting surfaces using the EFIE 
technique. 

For antennas composed of complex or curved 
conducting surfaces, the EFIE technique is preferable 
to the FDTD method [2]. The accuracy of the latter is 
often limited by the computer memory requirement 
and the “staircase” approximation of the antenna 
geometry. In antenna problems, the staircase 
approximation could become a major drawback for 
accurate impedance calculation since in this case very 
fine discretization of the antenna region near the feed 
point is required, which may be difficult for curved or 
complex surfaces. The EFIE technique employing 
triangular-patch model does not suffer from the 
staircase approximation and, moreover, the density of 
the triangular patches can be simply increased near the 
feeding point, as shown in Fig. 4, to get accurate 
evaluation of the impedance [13]. 

 

 
 

Fig. 4. Increasing the density of triangular patches near 
the feeding point of the antenna. 

 
In scattering problems treated by the EFIE 

technique applied on a triangular-patch model of the 
scatterer, all the facets (triangular patches) are 
illuminated by the incident field. To excite an antenna 
by a delta-gap voltage generator, the delta gap is made 
as a cut along one or more of the non-boundary edges 
of the surface model. A voltage generator is then 
applied across the excitation edge(s). In this case, only 
the facets on the sides of each of the excitation edges 
have voltage difference applied on them. However, the 
method of evaluating the input impedance in the case 
of a conducting surface antenna excited by 
infinitesimal-gap voltage generator can be obtained 
from the model of scattering problem as detailed in the 
following analysis. Let mx be the edge at which a 
delta-gap voltage source is applied and let +

xm  and −
xm  

be the numbers of triangular patches sharing this edge 
(the current is assumed to flow from +

xm  to −
xm ). 

Consider the element number mx in the excitation 
vector [V], which is expressed as,  

∫∫
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For the purpose of physical interpretation of 
equation (85), this expression can be approximated as, 

22
/

−+

⋅+⋅≈ −+
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i
c

mc
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i
cmm lV

ρ
E

ρ
E            (86) 

where, +
xm

i
cE  and −

xm
i
cE  are the values of the incident 

electric field at the centroids of the patches +
xm

P  and 

−
xm

P , respectively, and +
xmcρ  and −

xmcρ  are the position 

vectors of the centroids of the triangles +
xm

P  and −
xm

P  

relative to the vertices +

xmfr  and −

xmfr , respectively. 

Thus, by the aid of Fig. 5, the quantity between square 
brackets in equation (86) can be interpreted as, 
approximately, the voltage difference between the 
centroids of the patches +

xm
P  and −

xm
P  or, in other 

words, the voltage drop across the excitation edge (i.e., 
the voltage applied at the input port of the antenna). It 
should be noted that the value of 

xmV used in the 
present analysis is the exact one that is given by 
equation (85) and not equation (86). The purpose of 
obtaining the approximate expression is, only, to get a 
clear physical meaning of equation (85). According to 
equation (86), the voltage applied at the antenna input 
(i.e., the voltage across the excitation edge) is 
expressed as, 

xx mmin lVV /= .                            (87) 

As discussed before, the coefficient 
xmI  in the 

current expansion series is the normal component of 
the linear current density flowing past the edge mx. 
Since this current density component is constant along 
the edge number mx, the input current can be expressed 
as, 

 
xx mmin IlI = .                           (88) 
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1

 
+
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Fig. 5. The voltage drop across a non-boundary edge. 
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Using a triangular-patch model for the antenna, 
the input impedance can be defined as the voltage drop 
across the excitation edge, divided by the current 
flowing past this edge. Employing equations (87) and 
(88), one gets the following expression for the input 
impedance of the antenna,  

x

x

x m

m

min

in
in I

V

lI
V

Z 2
1== .                       (89) 

It has been found that for an accurate calculation 
of input impedance, it is essential to use very fine 
discretization in the antenna region near the feed point. 
To reduce the number of unknowns, the region that is 
further away from the feed point can be descritized by 
less fine patches without essentially affecting 
accuracy. The mesh of a bow-tie antenna descritized 
with higher resolution in the region near the feeding 
point to get accurate value of the input impedance is 
shown in Fig. 4 [13]. 

 
VI.   RESULTS AND DISCUSSION 

 
The input impedance is one of the antenna 

parameters whose accuracy is strongly dependent on 
the efficiency of the computational technique through 
which it is evaluated. Hence, the evaluation of the 
antenna input impedance is one of the most stringent 
tests of the efficiency of a computational technique. 
Therefore the Galerkin’s EFIE algorithm described in 
the present work is examined by its application to 
compute the input impedance of well-known 
conducting surface antennas such as the planar 
strip-dipole, bow-tie dipole and planar equiangular 
spiral antennas and comparing the obtained results 
with other published results concerning the same 
antennas. 

A.   Strip Dipole Antenna 

The triangular-patch model for a straight strip-
dipole antenna of length L and width W is shown in 
Fig. 6. A delta-gap generator of unity voltage is 
applied at the cut A-A’. The applied voltage is 
maintained constant along the feeding edge, which is 
the non-boundary edge at the center of the dipole. In 
this case, the input impedance can be obtained by 
calculating the current crossing the non-boundary edge 
A-A’, and then employing equation (89). 

 
 
 

      

A 

A’ 

Excitation edge 

L

W

 
 
Fig. 6. Triangular patch model of a strip dipole 
antenna. 

Figure 7 presents plots of the resistive and 
reactive components of the input impedance of a strip-
dipole antenna against the operating frequency. The 
dipole length is 27 cm and its width is 0.001 of its 
length. The triangular-patch model of this antenna has 
36 patches and 35 non-boundary edges. The results 
show agreement with those of [14]. Figure 8 shows a 
plot of the VSWR of the strip dipole with respect to 75 
Ω source impedance against the frequency.  It is clear 
in the Figure that the bandwidth of this antenna can be 
considered as 10%, a feature which is well-known for 
a half-wavelength straight dipole. 

 
 

Fig. 7. Input Impedance of a planar strip dipole, L=27 
cm and W= 2.7 mm. 

 
 

Fig. 8. VSWR of a planar strip dipole, L=27 cm, and 
W= 2.7 mm. 

B.   Bow-Tie Antenna 

The main advantages of the bow-tie antenna are 
simple design and broad-band impedance. For this 
reason, a planar bow-tie antenna is used in many 
challenging recent applications such as ground 
penetrating radar (GPR) and global position system 
(GPS) applications and cellular-based mobile 
communication services [13], [14 - 20]. Figure 9 
shows a triangular-patch model for a bow-tie antenna. 
The length of the antenna is 27 cm and the flare angle 
is 90º. The neck width of the antenna (length of the 
excitation edge) is 1.35 cm. The triangular-patch 
model of this antenna has 96 patches and 125 non-
boundary edges. A delta-gap generator of unity voltage 
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is applied across the cut A-A’, i.e. across the non-
boundary edge at the center of the antenna. The current 
crossing this edge is calculated to get the input 
impedance via equation (89). 

                                  
 

                                    

A 

A’ 

Excitation edge 

L

Neck width 
Flare angle 

(θf) 

 
 

Fig. 9. Triangular patch model of a bow-tie antenna. 
 

 

The dependence of the input impedance of a 
bow-tie antenna with the frequency is shown in Fig. 
10. The results show good agreement with those of 
[16]. It should be noted that the antenna of the given 
dimensions is resonant at about 800 MHz where the 
input impedance is pure resistive. The VSWR of this 
antenna is plotted against the frequency as shown in 
Fig. 11, where the source impedance is assumed 300 
Ω. It is clear in the figure that the bandwidth of the 
bow-tie antenna can be considered as about 400 MHz 
around its resonant frequency, i.e., about 50%. Thus, 
the bow-tie antenna exhibits a much wider bandwidth 
than the dipole antenna, a feature which is well-
established and is attributed to the fact that the width 
dimension of the bow-tie is described as an “angle” 
rather than a “length” but, however the bow-tie length 
is the dimensional parameter that limits the bandwidth 
of such an antenna. 

 
 

Fig. 10. Input Impedance of a bow-tie antenna, L=27 
cm, and W= 1.35 cm, θƒ = 90o. 
 
C.  Planar Equiangular Spiral Antenna 

One of the ultra wideband (UWB) antennas used 
in recent applications that require a well-suited 
transient antenna response is the planar equiangular 
spiral antenna. Due to its circular polarization, this 
antenna finds important applications such as short-

pulse GPR systems that detect the objects buried in 
anisotropic ground. It also finds application in stepped-
frequency GPR (SF-GPR) to detect buried non-
metallic anti-personnel mines in humanitarian mine 
detection system [22]. Due to their characteristics of 
quite broad bandwidth and circular polarization, the 
spiral antennas are widely used in mobile-
communication, early-warning and direction-finding 
systems [23]. The spiral antenna is also suitable as a 
wideband illuminator for a parabolic reflector working 
in ultra wideband of frequencies [24]. 

 
Fig. 11. VSWR for a bow-tie antenna, L=27 cm, and 
W=1.35cm, θƒ = 90o. 
 

The radiation of spiral elements at the selected 
operating frequency comes from the active region 
where spiral circumference is approximately one 
wavelength. This means that the active region moves 
from the outermost circle to the innermost one as the 
frequency increases. Low frequency cutoff fL is equal 
to c/πD (c is the speed of light and D is the outermost 
diameter), but the upper frequency is determined by 
the feed point separation [20], [23] and [25].A 
triangular patch model for the equiangular spiral 
antenna surface model and the EFIE technique 
constitute the most efficient electromagnetic modeling 
of such an antenna. The triangular-patch model for this 
antenna is shown in Fig. 12. 

Let us consider an equiangular spiral antenna of 
the following dimensions: the innermost diameter of 
the spiral (d) is 3 mm, the outermost diameter (D) is 29 
cm, the wrapping angle (α) is 70º and the angular 
width of the spiral arm (δ) is 90º. The spiral arms are 
wound to make 4 complete revolutions. Figure 12-b 
shows the detailed triangular patch arrangement at the 
location of the antenna excitation. The triangular-patch 
model of this antenna has 138 patches and 177 non-
boundary edges. A delta-gap generator of unity voltage 
slot generator is applied across the non-boundary edge 
at the cut A-A’, where the voltage is maintained 
constant along this edge. 
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Outermost
diameter (D)

  
(a) Complete antenna.    

 

 
 

 
 

Excitation 
Edge 

A’ 

A 

Innermost 
diameter (d) 

 
(b) Part of the antenna at the excitation. 

Fig. 12. Triangular-patch model of an equiangular 
spiral antenna. 
   

The input impedance is evaluated using equation 
(89). The variations of the resistive and reactive parts 
of the input impedance of the antenna described above 
with the frequency are presented in Fig. 13. It is clear 
that the input impedance is stable along a very wide 
range of the frequency; a fact that is well-known for 
such an antenna. The VSWR with respect to a source 
impedance of 150 Ω is plotted against the frequency as 
shown in Fig. 14. It is evident that this antenna is ultra-
wideband; a feature which is attributed to the fact that 
the dimensions of such a spiral are mainly described as 
“angles” rather than “lengths”. 

 
 

Fig. 13. Input Impedance of an equiangular spiral 
antenna, d = 3 mm, D = 29 cm, α = 70º and δ = 90º. 

 
Fig. 14. VSWR of an equiangular spiral antenna, d = 3 
mm, D = 29 cm, α = 70º and δ = 90º. 
 

VII.   CONCLUSION 
 

A robust and efficient Galerkin's EFIE algorithm 
is developed to get the current distribution on 
arbitrarily-shaped conducting surface that act as 
scatterers or antennas. A new method is applied for 
accurate evaluation of the input impedance of antennas 
composed of conducting surfaces which are modeled 
by triangular patches when the antenna is excited by 
delta-gap voltage generator. The singular integrals 
arising when the source and observation points 
coincide are accurately evaluated. The efficiency of 
the algorithm is examined by calculating the input 
impedance and the VSWR of well-known types of 
antennas, where the results show good agreement with 
the already well-known characteristics of these 
antennas and are also in good agreement with some 
published results concerning the same antennas. The 
antennas examined in the present work are the strip-
dipole, bow-tie and planar equiangular spiral antennas. 
Appendix A: Analytic Evaluation of Singular 
Integrals 

The following expressions for the singular 
integrals are given in [11] after making the corrections 
in [26], 
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where       
          ( ) ( )igbf +−+= lnln1γ ,                       (A-5) 

( ) ( )bfhe −−+= lnln2γ ,                      (A-6) 
( ) ( )ighe +−+= lnln3γ  ,                      (A-7) 
( ) ( )heig −−−= lnln4γ ,                      (A-8) 
( ) ( )bfig −−−= lnln5γ ,                      (A-9) 
( ) ( )hebf −−+= lnln6γ ,                    (A-10) 

)()( 1313 rrrr −⋅−=a ,                     (A-11) 
)()( 2313 rrrr −⋅−=b ,                     (A-12) 
)()( 2323 rrrr −⋅−=c ,                     (A-13) 

cbad +−= 2 ,                          (A-14) 
dae = ,                              (A-15) 

caf = ,                              (A-16) 

dcg = ,                              (A-17) 
bah −= ,                              (A-18) 
cbi −= .                               (A-19) 

It can be shown that 
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ηηξξ ′′ Γ=Γ ,                            (A-20) 
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Abstract − A new Moment Method (MM) scheme to 
solve the Electric Field Integral Equation (EFIE) for 
some ill-conditioned problems is presented. The 
approach is an alternative to the Combined-Field 
Integral Equation (CFIE). The proposed formulation 
employs the Impedance Boundary Condition (IBC) to 
compute the scattering from conducting bodies 
uncoated or coated by dielectric materials. The 
scheme uses dual meshes to represent the currents: 
one mesh for the electric current and another mesh for 
the magnetic current. Each mesh is defined by a grid 
of quadrangles that can be conformed to arbitrarily 
curved surfaces. The quadrangle grids are interlocked; 
the corners of the quadrangles of one mesh are the 
centers of the quadrangles of the other mesh and vice 
versa. Several examples showing the potential of the 
approach to solve ill-conditioned problems are 
included. 
 

I. INTRODUCTION 
 

It is well known that many electromagnetic 
radiation or scattering problems can be too ill-
conditioned to be solved using MM. This happens, 
particularly, when we analyze electrically large bodies 
using formulations based on either the EFIE or the 
Magnetic-Field Integral Equation (MFIE). In these 
cases, the MM equation systems are ill-conditioned at 
the resonance frequencies of the internal cavity 
defined by the volume of the body under analysis [1]. 
In these situations it is difficult to find reliable 
solutions, and thus these problems suffer from poor 
convergence and present spurious solutions. 
 

To reduce the difficulty of these ill-conditioned 
problems, several formulations have been proposed to 
improve the condition number of the corresponding 
MM matrix that may help solve these problems. One 
of the most powerful formulations to avoid in these 
ill-conditioned problems is the CFIE, which is based 
on a linear combination of the EFIE and the MFIE, 
[1], [2]. Like the MFIE, the CFIE is only applicable to 
closed bodies. The practice has shown that the CFIE 
is able to treat most problems, however there are still 
cases where difficulties remain because the accuracy 
of CFIE results depend on a correct choice in the 
weights of the EFIE and MFIE linear combination, 
and on the sampling density (number of MM 

subdomains per wavelength) [3]. In these cases, 
convergence studies on the relative weights of the 
CFIE and on the sampling density are performed in 
order to obtain “stable” solutions. These difficulties 
can be due to the MFIE component of the CFIE which 
gives poor results for sharp wedges and tips, [4]. 
 
  More recently formulations based on Dual-
Surface Field Integral Equations (DSFIE), [5], [6] 
have been investigated because they appear to be free 
of spurious problems and offer better solutions for 
bodies with sharp wedges or tips. The DSFIE forces 
boundary conditions on the body surface and also in a 
dual surface located inside the body. The separation 
between the surfaces is usually less than half a 
wavelength, and on the dual surface the boundary 
conditions are multiplied by a constant with an 
imaginary part. The DSFIE reduces spurious 
resonances and can treat geometries with sharp parts 
like cone-spheres with narrow vertices where the 
CFIE does not yield reliable results. However, a 
suitable definition of the dual surface in the DSFIE 
application for a particular problem needs to be 
adjusted in order to obtain accurate results [6]. For 
electrically small objects, the approach in [7], [8], 
which uses an accurate computation of the MM  
matrix terms of the MFIE and monopolar basis 
functions, gives reliable computations for problems 
with sharp wedges and tips. 
 

Here, a numerical scheme based on a 
combination of the EFIE and the IBC approach, [9-
11] is presented as an alternative formulation to solve 
these difficult problems.  
 

The scheme, outlined in [12], uses dual 
quadrangular meshes. One mesh is used to represent 
the discretized electric current and the other to 
represent the discretized magnetic current. The 
corners of the quadrangles of one mesh are in the 
centers of the quadrangles of the other mesh and vice 
versa. The scheme combines the operator which 
generates the electric field due to an electric current 
with the operator which generates an electric field due 
to a magnetic current. Both currents are expanded in 
terms of rooftop basis functions [13]. The testing 
functions are blade functions, [13], defined in the 
mesh used to represent the electric current. With this 
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choice of testing and basis functions we have found a 
simple and accurate way to descritize the electric field 
due to electric and magnetic currents. The meshes are 
defined over the iso-parametric lines of a NURBS´s 
(Non Uniform Rational Bi-Spline Surface) [14]. 
Using the discretization procedure shown in [15-17] 
we can work with curved quadrangles and we do not 
need any re-meshing in terms of flat patches.  

 
One objective of our approach is to analyze real 

conducting bodies. It can be noticed that at microwave 
frequencies the surface impedance of a good 
conductor is a hundredth or a thousandth of the free 
space wave impedance and the solution for a good 
conductor at such frequencies is very similar to the 
case of a perfect electric conducting (PEC) body.  
Therefore, the proposed approach can give good 
results for PEC if we model PEC with a surface 
impedance of about a thousandth of the free space 
wave impedance. One of the advantages of the present 
approach is that it permits the analysis of open or 
closed surfaces or a combination of them. The 
proposed approach can be considered as a 
regularization method, [18-19], because it diminishes 
the Q factor of the internal cavities of closed bodies 
and in this way the formulation reduces the problems 
of spurious responses at resonances frequencies. In 
addition, the approach is able to treat accurately 
problems with sharp wedges and tips using a reduced 
number of samples per wavelength. It is also useful in 
analyzing the scattering from lossy dielectric or 
conducting bodies that can be totally or partially 
coated by thin materials using the IBC approach. 
 

Dual meshes of quadrangles over curved surfaces 
are also considered in [20] to solve a CFIE in 
problems with dielectric bodies. In this reference, 
divergence-conforming basis functions are defined 
over one mesh and curl-conforming basis functions 
over the other mesh. Either current (electric or  
magnetic) is represented by both types of basis 
functions: divergence-conforming functions when the 
electric(magnetic) field of an electric(magnetic) 
current is computed, and curl-conforming basis 
functions when the magnetic(electric) field of an 
electric(magnetic) current is evaluated. Our approach 
is different from that of [20] because we solve the 
EFIE for metallic or body governed by the IBC and 
therefore, we can consider open and closed surfaces.  
Furthermore, we only use divergence-conforming 
functions in such a way that each mesh is reserved to 
only one kind of current, one mesh for the electric 
current and the other one for the magnetic current. 
  

The paper is organized as follows; section 2 
presents the theoretical formulation of the EFIE 
considered. The dual meshes and the numerical details 
of the method are shown in section 3. Some results 
that probe the capability of the approach to solve 
coated bodies, and ill-conditioned problems are 

presented in section 4, finally, the conclusion section.  
 

II.    FORMULATION 
 

We formulated the integral equation to be solved 
based on the equivalence principle, [21]. Figure 1 
shows the application of the equivalence principe to 
obtain the fields in the region external to volume V. 
On the surface S that encloses volume V the 
equivalent currents are given by 
 

)()(ˆ)( rHrnrJ TS ×= ,  (1.a) 
)()(ˆ)( rErnrM TS ×−=    (1.b) 

 
where zryrxrr zyx ˆˆˆ ++=  is the observation 

point on S and ( TE , TH ) are the total fields that are 
in the region external to V and can be expressed as, 

  
)()()( rErErE Simp

T += ,      (2.a) 

)()()( rHrHrH Simp
T +=              (2.b) 

 
where ( impE , impH )    are the fields due to the 
impressed currents ( impJ , impM  ) located outside V 
and ( SE , SH ) are the scattered fields due to the 
equivalent currents ( SJ , SM  ) 
 

 
Fig. 1.  The equivalence principle states that the field 
external to volume V in the problem shown in the left 
part of the figure can be computed considering the 
equivalent problem shown to the right. 
 
 

Writing the scattered fields as a function of the 
electric and magnetic equivalent density currents for 
the external region, we get, 
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 (3.b) 
 
These expressions can be written in a more compact 
form using the following linear operator notation, 
 

[ ] [ ]SEMSEJ
S MLJLrE +=)( ,               (4.a) 

   
[ ] [ ]SHMSHJ

S MLJLrH +=)( .          (4.b) 
 

We can combine equations (2) and (4) to obtain 
the EFIE and MFIE formulations, 
 

( ) ( ) ( )

( ) ,

imp S
T

imp
EJ S EM S

E r E r E r

E r L J L M

= +

= + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
     (5.a) 

 
( ) ( ) ( )

( ) .

imp S
T

imp
HJ S HM S

H r H r H r

H r L J L M

= +

= + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
    (5.b) 

 
For the case of a non-PEC body, like a real 
conducting body, a lossy dielectric body or a 
conducting body coated by a dielectric, the EFIE can 
be written as, 
 

ˆ ˆ( ) ( ) ( ) ( )

ˆ( ) .

imp
S EJ S

EM S

M r n r E r n r L J

n r L M

= − × − ×

− ×
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    (6) 

 
By reordering the EFIE we have 
 

ˆ( ) ( ) .imp
S EJ S EM SE r n M r L J L M= − × − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

         (7) 
 
Taking advantage of the duality between operators, 
we can write 
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where dual
HJL  is obtained from HJL  substituting the 

permeability µ by the permittivity ε. 

Using the IBC relation between the electric and 
magnetic currents,  
 

sup

)(
ˆ)(

Z
rM

nrJ S
S ×= ,       (9.a) 

( ) sup)(ˆ)( ZrJnrM SS ×−= ,          (9.b) 
 
we obtain the following expression of the EFIE, 
where we only have the current  SJ as the unknown 
function  
 

( )
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sup

sup
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Simp
EJ S

c
EM S

n n J r Z
E r L J

L n J r Z

× ×
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    (10) 

 
where Zsup stands for the surface impedance of the 
body and c

EML is the resulting operator after 

extracting the singular value of EML . 
 
 

III. COMPUTATIONAL METHOD 
 

The continuous operators in equation (10) can be 
discretized using the Moment Method. The scheme 
described in [15-17] has been followed to descritize 
the operator [ ]SEJ JL . Using this scheme the body 
surface is modelled by means of NURBS´s [14]. 
Considering u- and v-isoparameter lines, [17], each 
NURBS can be split into a mesh of small curved 
quadrangles. The solid lines of Fig. 2 are an example 
of a rectangular mesh over a NURBS, which has been 
represented to be flat to simplify the drawing. The 
same figure shows a second mesh that is dual of the 
first one. The electric current is expanded in terms of 
rooftops defined over pairs of contiguous rectangles in 
the mesh defined by the solid lines. This expansion 
can be written as, 
 

)()()()()(
11

rfjIrfjIrJ
Njv

j

v
EjJv

Nju

j

u
EjJuS ∑∑

==

+=      (11.a) 

 

where )(rf u
Ej  and )(rf v

Ej  are rooftop functions for the 
u and v-components, respectively, of the electric 
current (see Fig. 3). In a similar way, the magnetic 
current can be expressed in terms of the rooftop 
functions )(rf u

Mj  and )(rf v
Mj , defined over the 

magnetic  mesh (see Fig. 3). For the magnetic current 
we have, 
 

)()()()()(
11
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Nmv

j

v
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j

u
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==
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(11.b) 
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We can notice that for each u-rooftop/v-rooftop 
of the electric current a v-rooftop/u-rooftop of the 
magnetic current can be found such that the two 
rooftops have the same centre, they are perpendicular 
and they have a “dual”  shape (the length of  one is the 
width of the other and vice versa). Using this duality 
between couples of rooftops and the IBC of equations 
(9) the following relations between the weights of the 
current expansion of equation (11) can be found, 
 

)()ˆˆ()( sup jIZvujI Jvj
Jv

j
Mu

Mu ×
∆

∆
= ,         (12.a) 

 

)()ˆˆ()( sup jIvuZjI Juj
Ju

j
Mv

Mv ×
∆

∆
−= ,        (12.b) 

 
where it is assumed that the parameter coordinates 
have been chosen so that 0ˆ)ˆˆ( ≥•× nvu , 

j
Mu∆ , j

Jv∆ , j
Mv∆ and j

Ju∆  are the widths of rooftops  

)(rf u
Mj , )(rf v

Ej , )(rf v
Mj  and )(rf u

Ej , respectively, 

and  )ˆˆ( vu ×  is the amplitude of the vector product 

)ˆˆ( vu ×  . It is noticed that eventually û  and v̂  can 
not be orthogonal in real 3D space. However, 
following the IBC in equation (9)  )( jI Mu  will never 
depend on )( jI Ju  because both currents are parallel 
(neither )( jI Mv  will depend on )( jI Jv ). Moreover, 
the following relations between the total numbers of 
rooftops are satisfied, 
 

NjuNmv = ,                      (13.a) 
 

NjvNmu = .        (13.b) 
 
The descritized operators can be expressed as, 
 

1 1
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 (14.b) 

 

where the total number of rooftops used to represent 
the electric or the magnetic currents is given by  
 

NjvNjuN +=       (15) 
 

J
ijZ  and M

ijZ represent the coupling between 
subdomains i and j of the electric and magnetic 
meshes, respectively. The terms )(iVEJ and 

)(iVEM stand for the impressed voltage due to the 
electric and magnetic current, respectively, computed 
in the electrical subdomain i, using as testing function 
a razor-blade function [15-17]. Other testing 
procedures can be used such as a Galerkin testing 
function. However, we have chosen a test by the 
razor-blade function because it is very simple and it 
needs fewer computations than other approaches, 
[13]. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  A mesh of solid lines covers completely a 
NURBS. A second mesh is drawn using dashed lines. 
Both meshes are dual in the sense that the nodes of 
one mesh are the centres of the rectangles of the other 
mesh and vice versa.  
 
The descritized operator D

EJL of equation (14.a) can 

be obtained from the continuous operator EJL of 
equation (7) following the numerical scheme shown 
in [13], [15-17]. The term D

EML of equation (14.b) is 
obtained by descritizing the operator, 

Subdomain 
center 
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Considering the testing-function corresponding to an 
electric rooftop completely cuts its dual rooftop of 
magnetic current by a transversal line (see Fig. 4). 
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and  i∆  is the length of the razor-blade function of 
subdomain i of the electrical mesh.  The term c

ijZ  
accounts for the coupling between the magnetic 
rooftop j and the electrical subdomain i considering 
the operator c

EML that gives the electric field of a 
magnetic current but excluding the singular value of 
the integral operator. The computation of the term c

ijZ  
does not have serious numerical difficulties and it can 
be calculated following a numerical approach similar 
to that indicated in [15-17] for the computation of 

J
ijZ  .  

Defining the total induced voltage )(iV as, 

)()()( iViViV EMEJ +=   (19) 
 

the following systems of linear equations can be 
obtained considering equations (12), (14) and (17)  
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∆

=

∑
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 (20) 
 
Solving this system of linear equations the electric 
current is obtained. The magnetic current is obtained 
from the electric current using equation (12). 
 

The approach is valid for problems defined by 
closed or open surfaces. When dealing with open 
surfaces the meshes near the aperture edges of the 
surfaces need to be defined in such a way so as to 
preserve the duality. Figures 5 and 6 show a way to 
define the meshes for a squared flat plate saving the 
duality between the electric and magnetic meshes. In 
both cases the rooftops of the two meshes cover 
completely the plate surface (the same domain), or in 
other words, the boundary of the meshes is the actual 
plate boundary.  It can be noticed that the rooftops for 

representing the electric and magnetic currents are 
spatially shifted but additionally they are defined near 
the edges of the plate in different ways: we have 
parallel and perpendicular rooftops for representing 
the electric current and these rooftops are defined over 
couple of patches of the same size, however we have 
not rooftops for representing the magnetic current 
parallel to the edges and the rooftops for representing 
the magnetic current perpendicular to the edges are 
defined over pairs of patches of different sizes (the 
patches bounded by the edges have a size that is the 
half of the size of the other patches). 

 
 
 

Fig. 3. (a) shows an example of rooftops for the u-
component, )(rf u

Ei ,  and for the v-component of the 

electric current, )(rf v
Ej . (b) shows an example of the 

dual rooftops )(´ rf u
Mj  and )(´ rf v

Mi  used to represent 

the u and v-components, respectively, of the magnetic 
current. It can be noticed that the rooftops for the 
electric and magnetic components are defined in dual 
meshes and that the rooftop for the u-component/v-
component of  the electric current and the rooftop for 
the v-component/u-component of the magnetic current 
have the same centre. 
 

IV. RESULTS 
 

Figure 7 shows the condition number, [18], 
versus frequency for a sphere with a radius of 1.m for 
the single and the dual mesh schemes. Ten 
subdomains per wavelength were considered in both 
approaches. The meshes for the electric current were 
the same in both approaches. The results for the single 
and the dual mesh schemes were obtained considering 
PEC and a surface impedance of 1 Ohm, respectively. 

(a)

(b)
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A step of 10 MHz was used in the frequency sweep.  
In the frequency range considered we have two 
interior resonances at frequencies very close to the 
two large peaks. It can be appreciated that the dual 
mesh approach has a better behavior because the 
condition number for this approach is quite less than 
for the simple EFIE. As shown in [18] a reduction in 
the condition number means better convergence and 
more accurate results. Figure 8 presents the Bi-static 
RCS results for the co-polar plane cut obtained using 
the dual approach for the sphere at a frequency of 200 
MHz, which is very close to the first internal 
resonance. A number of 20 divisions per wavelength 
and a surface impedance of 1 Ohms were considered.  
The results were obtained with a residual error of 10-3, 
which was reached after 965 iterations of the 
BICGSTAB (L) method, [22], with L=5, which has 
been used to solve all the MM system of equations in 
this work. The total number of unknowns was 4836. 
The numerical results obtained using the dual mesh 
approach are compared with analytical results derived 
from the Mie series. A very good accuracy of the 
numerical results for a frequency very close to an 
internal resonance was obtained. 

 
Fig. 4. a) The areas covered by the electric rooftops i 
and j are indicated by solid lines.  The MM impedance 
term Zij

J that gives the coupling between rooftop j 
(active) and i (passive) is computed considering a  
blade-function as a testing function that extends along 
the segment indicated in the center of rooftop i. B) 
The dual magnetic rooftops are represented by dashed 
lines. The testing function of the electric rooftop i is a 
segment that cuts transversally the dual magnetic 
rooftop.  

 
 

Fig. 5. Mesh used to represent the electric current in a 
plate.  Each arrow corresponds to an electric rooftop.  
 

 
 
 

Fig. 6. Mesh used to represent the magnetic current in 
a plate. Each arrow corresponds to a magnetic 
rooftop. 

 
In order to show the capacity of the proposed 

approach to treat coated conducting bodies the case 
indicated in Fig. 9 was chosen. Numerical and 
analytical values of the Bi-static RCS are compared in 
Fig. 9 for the E-plane cut. The surface impedance of 
the coat is Zs=j72.75 and the current is represented by 
20 subdomains per wavelength. The numerical results 
for the coated sphere are obtained after 780 iterations 
with an error of 10-3. 

 
The second structure considered is a very sharp 

metallic wedge. This geometry gives a very ill-
conditioned problem when a plane wave is incident in 
a direction perpendicular to the edge of the wedge, 
with the E-field normal to that edge, as indicated in 
the sketch of Figure 10. The geometry of the problem 
is defined by two plates of size 1 m × 1 m. In the back 
part of the wedge the plates are separated by 1.0 cm. 
The working frequency is 300 MHz. The Bi-static 
RCS results obtained using the EFIE with a single 
mesh and with the proposed dual mesh are shown in 
Figs. 11and 12, respectively.  The plates were treated 
as PEC with the simple mesh approach and with a 1 Ω 

J 

(a) 

(b) 
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surface impedance with the dual mesh approach. A 
slow convergence of the results is apparent when the 
number of subdomains per wavelength is changed for 
the single mesh case in contrast with the fast 
convergence of the dual mesh case. The results of 
both formulations converge to nearly the same values 
for the higher values of divisions per wavelength as 
shown in Fig. 12. However, the efficiency of the 
formulations is quite different. As shown in Table 1, 
the single mesh formulation needs a number of 
iterations greater than the dual approach for obtaining 
a residual error of 10-3. 

0

2000

4000

6000

8000

10000

12000

30 60 90 120 150 180 210 240 270 300

Freq. (MHz)

C
on

di
tio

n 
N

um
be

r 
 

EFIE Dual Mesh
 

 

Fig. 7. Condition number versus frequency for a 
conducting sphere of radius 1 m.  
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Fig. 8. Bi-static RCS results for a conducting sphere 
of radius 1 m,  frequency 200 MHz. 
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Fig. 9. Bi-static RCS results at a frequency of 300 
MHz for a coated PEC sphere with an external  radius 
0.6 m. The coat is 0.03 m thick and has a relative 
permittivity of 2.0. 

 

 
 

Fig. 10. Wedge geometry considered to compute the 
Bi-static RCS for a phi-cut = 0º, theta varying from 0º 
to 180º for an incident plane wave in the direction 
shown and perpendicularly  polarized to the edge of 
the wedge. 
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Fig. 11. Bi-static RCS results of the wedge shown in 
Fig. 10 obtained using the EFIE with a simple mesh 
for different number of subdomains per wavelength.  
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Fig. 12. Bi-static RCS results of the wedge shown in 
Fig. 10 obtained using the dual mesh approach for 
different number of subdomains per wavelength. 
 
Table 1. Comparison between the numbers of 
iterations required for the single and dual mesh 
approaches for obtaining a residual error of 10-3 for 
different sampling densities for the wedge case.  
 

Subdomains per 
wavelength Single Mesh Dual Mesh 

6 2.061 1.310 
10 19.189 2.495 
20 19.304 3.388 
30 20.684 4.460 

 
The following case considered is of a rotor 

structure shown in Fig. 13. This structure is the 
bottom part of the CHANNEL cavity from ONERA. 
The height of the structure is 13.7 cm and the external 
cylinder has a diameter of 18.8 cm. This cylinder has 

θ 
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been modelled as a volumetric structure with a 2 mm 
of thickness. The blades have a thickness of about 4 
mm. The coordinates system has been fixed 
considering the z axis in the rotor axis. As can be 
noticed the rotor is a structure with lots of electrically 
thin plates oriented in many directions, and is quite a 
difficult problem for the EFIE because it presents lots 
of thin wedges and therefore it is an interesting 
problem for testing the efficiency of the dual mesh 
approach. Figures 14 and 15 show results of the Bi-
static RCS of the rotor structure for a frequency of 3.0 
GHz and for a θ=0º incidence. Again, the plates were 
treated as PEC with the simple mesh approach and 
with 1.Ω of surface impedance with the dual mesh 
approach. Results were obtained from different values 
of the sampling density. Table 2 shows the 
convergence rate for both approaches. It is evident 
that the dual approach convergence rate always is 
better than the simple mesh 
approach.

 
Isometric view 

 
Profile view 

               

Fig. 13. Isometric and profile views of the rotor 
located at the end of the engine cavity “CHANEL” 
from ONERA. 
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Fig. 14. Bi-static RCS results of the CHANEL rotor 
obtained using the EFIE approach for different 
subdomain densities. 
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Fig. 15. Bi-static RCS results of the CHANEL rotor 
obtained using the dual mesh approach for different 
subdomain densities. 
 
Table 2. Comparison between the numbers of 
iterations required for the single and dual mesh 
approach for obtaining a residual error of 10-3 for 
different sampling densities for the CHANEL rotor 
case.  
 

Subdomains per 
wavelength Single Mesh Dual Mesh 

10 465 399 
20 4.233 3.950 
30 9.325 8.127 

 
 

V.    CONCLUSIONS 
 

A new approach to solve the EFIE using a MM 
formulation based on dual meshes and on the IBC has 
been presented. Each mesh is defined by a grid of 
quadrangles. The meshes are dual because the 
quadrangle corners of one mesh are the centers of the 
quadrangles of the other mesh and vice versa. One of 
the meshes is used to represent the electric current and 
the other the magnetic current. In both meshes rooftop 
and razor-blade functions are used as basis and testing 
functions, respectively. This choice of the basis and 
testing functions enforces the duality of the 
formulation: the segment on which the testing 
function of one mesh extends is perpendicular and 
completely crosses the basis function of the other 
mesh. This fact is important because it makes the 
computation of the electric field due to a magnetic 
current more easy and accurate. 
 

Any body over which the IBC applies can be 
treated with the dual mesh formulation including 
realistic conducting bodies and lossy dielectric bodies. 
PEC bodies can be analyzed with a very small error 
by assuming they present small surface impedances, 
for example a thousandth of the free space wave 
impedance.  All these bodies can be analyzed very 
efficiently using this method because it requires a 
lower number of subdomains per wavelength and it 
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presents better convergence when the MM system of 
equations is solved by an iterative method. Using the 
IBC approach we only shall consider the electric 
current unknowns. The approach is useful to solve 
structures with open or closed surfaces and it does not 
suffer a loss of convergence at the frequencies of the 
internal resonances or other classes of problems, for 
instance ill-conditioning due to very narrow wedges. 
In the future the potentiality of the dual mesh 
approach will be extended to solve the CFIE.  
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Abstract − The optimum planar antenna design utilizing 
a simulation tool based an integration of IE3D 
commercial code as an electromagnetic computational 
engine and an add-on optimization algorithm is 
proposed in this paper. The work is motivated by the 
popularity of planar antennas and the need of customized 
designs in industrial applications, which can be 
effectively achieved by using simulation tools. Currently 
available commercial codes are reliable and relatively 
accurate in the analysis with more efforts tending to 
enhance the efficiency. The quality of the antenna design 
will mainly rely on an effective optimization algorithm 
that can be and should be developed independently 
according to engineers’ own need since the variables and 
cost functions for optimization can be flexibly selected. 
The integration of existing analysis codes, as mentioned 
above, and self-developed algorithms will be most 
effective for an engineer in the customized antenna 
design. The concepts and strategies are addressed with 
numerical examples to validate.  
 

I.   INTRODUCTION 
 
The fast growing of wireless communications has 
spurred an increasing need for customized antenna 
designs. Microstrip (or planar) antennas, which are 
conformal and can be integrated within devices’ profiles, 
provide a very flexible design. In realistic applications, it 
however appears more constraints on the antenna design 
since portable devices usually have limited PCB space in 
irregular shapes. Thus a reliable computer-aided tool is 
very essential to less experienced engineers and capable 
of designing antennas in an effective fashion without 
ending up with tuning antenna parameters in an ad hoc 
manner, which is time consuming and inefficient. 
Considering the development of design tools, currently 
available commercial codes such as IE3D and HFSS are 
very reliable and relatively accurate in the analysis with 
currently more efforts tending to enhance the efficiency. 
The quality of the antenna design will mainly rely on an 
effective optimization algorithm that can be and should 
be developed independently according to engineers’ 
own need since the variables and cost functions for 
optimization can be flexibly selected. Thus it can be 

foreseen that more efforts of the engineers will be spent 
on developing a design procedure and algorithms to 
optimize their antenna designs. This work demonstrates 
the idea that an external design optimizer can work with 
a commercial EAD tool. An algorithm developer can 
choose either genetic algorithm or other optimizers for 
design optimization. The integration of existing analysis 
codes, as mentioned above, and self-developed 
algorithms will be most effective for an engineer in the 
customized antenna design.  
This code integration concept is demonstrated in this 
work by using IE3D as the electromagnetic (EM) 
computation engine. A program is designed to automate 
the optimization process. The program monitors the 
optimization process and interacts with the computation 
engine. The process begins with an initial design. The 
computation engine returns prescribed performance 
parameters. The program next adjusts the stepping size 
of the adjustable parameters according to its built-in 
optimization algorithm. Above process is performed 
iteratively until the desired performance or the specified 
iteration number is met. Several optimization schemes 
have been implemented including classical Euler 
method, predictor correlator method and other nonlinear 
optimization methods. In this paper, generic algorithm 
(GA) [1-4] is employed to demonstrate the concept 
because it can be effectively employed to optimize 
discrete variables.  
As to the application potential, such an add-on 
optimization program could be made more capable than 
the optimization functions provided by commercial 
simulation packages. Comparing to the existing 
GeneticEM optimizer of IE3D, which can tune multiple 
geometric parameters that is already defined in the initial 
design, an external add-on optimizer provides more 
degree of freedom in modifying the problem geometry. 
Though not demonstrated in the following design 
example, it is possible to have the optimizer choosing 
from a variety of antenna structures to meet specified 
performance needs. For example, the optimizer may be 
allowed to choose from either corner truncated patch or 
diagonally-fed square patch to produce circular 
polarization. Furthermore, an external add-on optimizer 
enables the developer to directly access the optimizing 
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algorithm. GA related parameters such as the population 
size and gene number can be adjusted to achieve an 
efficient optimization according to the application 
characteristics. Design packages from different venders 
could also be coordinated using this intermediate 
program, and thus create most values in the antenna 
design. 
This paper is formatted in the following order. Section 2 
addresses the implementation strategies of this code 
integration as well as the interface to interact with the 
IE3D. Section 3 demonstrates the concepts by 
considering a dual-band antenna design for the 
applications of Wi-Fi [5] and dedicated short range 
communication systems (DSRC) [6]. Finally a short 
discussion is presented in section 4 for a conclusion.  
 

II.    IMPLEMENTATION STRATEGIES 

A. General Concepts and the Program Structure 
 

The general concept of this work is composed by a 
general procedure of an antenna design optimization as 
illustrated in Fig. 1(a). It starts with an initial guess of the 
antenna structure and parameter inputs to classify the 
antenna performance expectations through an EM 
analysis, where the analysis is performed by IE3D. The 
antenna performance is justified by a comparison with 
the expectation through an evaluation of a cost function 
or fitness function. If the expectation is reached, then the 
design procedure stops. Otherwise, a new design with 
improved performances is created based on the values of 
the fitness function, where the new antenna structure is 
produced by a genetic algorithm procedure. This new 
antenna structure is used in the next iteration (or next 
generation) for EM analysis to justify the performance 
with respect to the expectation. This procedure continues 
until the expectation is reached. To realize the concepts 
with respect to the utilization of IE3D as an EM analysis 
engine with an add-on procedure of generic algorithm to 
adjust the antenna’s parameters, the implementation of 
the program structure is illustrated in Fig. 1(b). It begins 
with the establishment of an automation control program 
that first sets up the program control parameters such as 
the desired antenna performance and the maximum 
number of iteration, and then establishes the procedure 
of code control and optimization algorithm. The initial 
antenna design is performed by IE3D program to yield 
the analysis of antenna performance parameters, which 
is used to generate the fitness value. Thus the parameters 
with respect to the antenna operation such as the 
operational frequency bands are input through IE3D 
GUI. The main body of the automation program is 
composed by four blocks as illustrated in Fig. 1(b). The 
“geometry controller” specifies the parameters and 
variables of the antenna structure to be optimize such as 
the dimensions and coordinates of particular geometries 
in the structure, which are used in the “GA operator 

block” to produce new values for creating new antenna 
structure with superior performances. The “GA 
operator” implements the GA algorithm. Also the 
antenna performance with respect to the design 
anticipation is evaluated in the “fitness function” block 
to justify whether the expectation has been reached 
based on the analysis of “simulation” block which uses 
the IE3D as the EM analysis tool. If the fitness value 
meets the prescribed conditions of requirement, we can 
declare that a satisfying design is found. Otherwise, the 
GA operator will sort designs according to the fitness 
values, then generate new designs as well as new values 
of the parameters for the next generation from superior 
designs.  
 
 

 
 

(a) Optimization Procedure. 
 
 
 

 
 

(b) Automation Control Program Structure. 
 
 
 
 
 
 
 

Fig. 1. The demonstration of the antenna design 
optimization procedure as well as the program structure 
of the proposed strategies to integrate IE3D commercial 
analysis code with an optimization algorithm based on 
genetic algorithm. 
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B. Generic Algorithm for Antenna Design 
Optimization (“GA operator” block) 
 

GA is employed to optimize the antenna structure to 
meet the prior requirement of the antenna operation. It 
sorts the design according to computed values of the 
fitness function, and creates a better design according to 
the superior designs in the previous generations as 
illustrated in Fig. 2 (a), where eight genes (n = 8, each 
gene corresponds to a set of parameter’s values  for an 
individual antenna structure) were assumed to generate 
superior new antenna designs. The fitness function is 
computed for each gene, and compared to justify the 
superiority of the antenna performance. In Fig. 2 (a) a 
larger fitness value indicates a superior performance of 
the antenna associated with this gene. The superior 
genes are retained while the rest is abandoned in the next 
generation, where new offspring genes are produced 
from the superior parent genes (i.e., the superior genes 
retained in the previous generation) to form the same 
number of genes in the competition based on a roulette 
wheel parent selection. The creation of the new offspring 
genes uses either crossover or mutation methods as 
illustrated in Fig. 2 (b). The crossover method means 
that design parameters are swapped between two parent 
designs, while the mutation method implies that a 
parameter of the parent design is replaced with a 
randomly generated number. The decision of using 
either crossover or mutation method is also random. The 
selection of parent designs is done via the roulette wheel 
method, that is, a superior design is assigned to a larger 
piece in the wheel, which is equivalent to a larger 
probability density value. Therefore, stronger parents are 
more likely to produce more children.  
In this work, the following formulations are found to 
work well for the crossover method [7] to produce an 
offspring gene Xo, 
 

,1 ,20.5 0.5o p pX X X= +                    (1) 

,1 ,21.5 0.5o p pX X X= − ,                   (2) 
and 

  ,1 ,20.5 1.5o p pX X X= − +                    (3) 
 
where Xp,1 and Xp,2 are the superior parent genes. Also 
mutation can use the following formulation, 
 

o pX X X= + ∆                                (4) 
 

where Xp is the superior gene and ∆X is an random 
number.  
After the number of the iteration has been reached, the 
gene with largest fitness value (or best performance) is 
employed to determine the optimized antenna structure.  

 

 
 

(a) The general concept of GA. 
 

 
 

(b) Methods to produce superior offspring genes. 
 

Fig. 2. Illustrations of genetic algorithm to generate new 
antenna structures with superior performance.  
 
 
C. Interface to Interact with IE3D Code 
 

(1)  Initial parameter setup 
 
An initial antenna design is first performed within the 
framework of IE3D. The fundamental parameters such 
as the sampled frequencies, radiation patterns and 
geometry of antenna structure should be assigned 
tentatively. Figure 3 shows the input for a demonstration 
example of a simple microstrip antenna design for 
WLAN applications, where the antenna geometry is 
shown in Fig. 3 (a) with the return loss of antenna 
obtained in Fig. 3 (b). The parameter setup page of IE3D 
is shown in Fig. 3 (c), where the parameters designated 
will be used throughout the procedure of the antenna 
design within the proposed work of this paper. Three 
important parameters on this setup pages are the sampled 
frequencies, cell sizes and the “After setup” operation 
selection. In this case, 31 sampled frequencies between 
2.3 GHz and 2.6 GHz are selected for IE3D analysis, 
which will be used in the later optimization of return 
loss. The cell size should be properly selected to assure 
accurate analysis at the sampled frequencies. The “After 
Setup” should select “Invoke IE3D” so that the required 
data files of antenna geometry (filename.geo file) and 
return loss data (filename.sp file) will be created, which 
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can be used later as an interface to interact with IE3D 
and the GA algorithm for antenna design optimization. 
Note that if “Create .sim file only” is selected, then only 
the file to record the simulation procedure (filename.sim 
file) is created.  
The selection of the initial antenna design plays a 
significant role for the success of the optimization 
procedure. It should provide the essential possibility to 
achieve the design goal since the optimization procedure 
tends to minor tune of the antenna structure. For 
example, if a dual band antenna design is of interest, the 
initial antenna design should provide a dual band 
operation, and the GA will tune the antenna structure to 
adjust the operational bands to the designated bands of 
interest.  
 
(2)  Interaction via the IE3D’s input and output files 
 
Once the initial antenna geometry as well as the run 
parameters are designated, they are recorded in data files 
as the inputs to control the IE3D analysis in each 
iteration without any changes throughout the entire 
antenna design procedure except the antenna geometry 
file (i.e., filename.geo) that records the coordinates of 
the initial antenna geometry as shown in Figure 4 and 
will be changed at each iteration by the GA procedure to 
obtain new antenna design with superior performance. 
Note that a new design will be created if any of the 
coordinates is changed, and re-running IE3D will result 
in the performance analysis of the new antenna. The 
antenna performance such as the return loss of the 
example demonstrated in this paper will be recorded in a 
data file (i.e., filename.sp) as shown in Figure 5, which 
will be used to compute the fitness functions for the use 
in the GA to create the coordinates of a new antenna 
structure. 
 
(3)  Execution of IE3D program based on DOS 
command 
 
The execution of the entire antenna design procedure is 
performed within the controls of the automation 
program. The program shall know when to call the IE3D 
for the EM analysis, when the IE3D has completed the 
analysis, and where to pass the parameters of IE3D to the 
GA operator. The access of the IE3D is performed 
through the DOS command by setting the common paths 
in “C:\autoexec.bat” so that the paths can be linked as 
the computer starts. The commands are shown in Figure 
6 where the first line shows the path to find the IE3D 
program and the second line shows the path of the 
automation program. The IE3D execution is performed 
through a run-time function. In Virtual Fortran, the 
command is “AA=RUNQQ (“IE3D”,”filename.sim”)”, 
where the “filename.sim” passes the IE3D parameters to 
the IE3D for execution. The RUNQQ function                       

k           
 

(a) Antenna geometry. 
 

 
 

(b) IE3D parameter setup page. 
 

 
 

(c) Return loss of the antenna. 
 

Fig. 3. An example of an initial antenna design using 
IE3D for WLAN applications. In (a) the dimensions of 
the geometry are W1 = 75 mm, W2 = 30 mm, L1 = 75 
mm and L2 = 20 mm with a thickness 1.6 mm for an Fr4 
substrate ( 4.4=rε ). 
 
executes a new process for the operating system using 
the same path, environment, and resources as the process 
that launched it. The launching process is suspended 
until execution of the launched process is complete. 
“AA” is dummy variable to record the status of the 
function execution. If the program executed with 
RUNQQ terminates normally, the exit code of that 
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program is returned to “AA”. If the program fails, -1 is 
returned to “AA”.  
This usually involves identification of numerical 
accuracy or other limitations, solution convergence, 
numerical and physical modeling error, and parameter 
tradeoffs. However, it is also permissible to address 
issues such as ease-of-use, set-up time, run time, special 
outputs, or other special features. 
 

 

 
 

(a)  IE3D GUI window for the coordinates of the 
polygon’s vertex. 

 

 
 

(b) Geometry file records the coordinates of the 
polygon’s vertex. 

 
Fig. 4. The IE3D GUI and *.geo file to record the 
coordinates of the antenna structures.  
 

 
 

Fig. 5. The IE3D *.sp file to record the return loss at 
sampled frequencies. 

 
 
Fig. 6. The setting of the “C:\autoexec.bat” for the 
common paths setup. 
 

III. DEMONSTRATION EXAMPLES: DUAL 
BAND PATCH DESIGNS 

 
The proposed strategies are demonstrated by considering 
a dual band microstrip patch antenna design for the 
applications of Wi-Fi [5] and dedicated short range 
communications (DSRC) [6] where the operational 
frequency bands of 2.45 GHz and 5.8 GHz are pursued. 
Thus the GA operator uses a fitness function based on 
the return loss spectra to evaluate the performance of a 
design. The fitness function for nth  gene is defined by 
 

1

1

1
n m

nm
m

F
C

=

=
 

+ 
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                        (5) 
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C

S f S f
 >−
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     (6) 

 
and M sampled frequency points are selected in the 
designated frequency bands with fm being the sampled 
frequency so that we can handle dual band or multiple 
band designs. For each frequency point, if the simulated 
S11 (in dB) is lower than the prescribed S*

11, Cnm is 
assigned as 0. Otherwise, the difference in simulated and 
desired values in dB is assigned to Cnm. The summation 
of Cnm contributes to the denominator of Fn. A proper 
design, which meets the S11 specifications in all bands, 
will yield a fitness value of one (Fn =1) that is the largest 
value to occur in the optimization procedure. Also the 
larger value of Fn implies a superior performance as 
required in the GA procedure. 
Figure 7 shows the geometry of the proposed dual band 
antenna design, which is basically a patch printed on a 
substrate which is placed by Z1 beyond a ground plane. 
The patch is fed slightly off center. There are several 
slots cut into the patch, which perturb the fields to yield 
multiple resonant modes. Those geometric parameters 
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such as the slot position, slot length, slot width and patch 
dimensions can be altered to yield different designs, and 
thus can be used as parameters in the GA operator to 
create new design by changing their values according to 
the algorithm. The initial design with the dimensions 
shown in Table 1 is capable of creating two resonance 
frequencies as shown in the return loss of Fig. 8. The GA 
procedure tends to adjust the resonant frequencies to the 
designated frequencies of interest. In the procedure, each 
subsequently created design by GA is fed to the IE3D 
program for performance analysis, where the return 
losses at sampled frequencies are simulated and used to 
compute the fitness function as defined in equation (5).  
If the fitness value has not met the prior designated 
requirement, it is fed back to the GA operator to produce 
a new design of the next generation. 
 

 
 

Fig. 7. Geometry of the initial patch antenna design. 
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Fig. 8. Comparison of simulated reflection spectra of the 
patch before and after optimization. 
 
In this case, the optimization goal is to obtain the first 
resonance at 2.45 GHz with a return loss smaller than -7 
dB, which is equivalent to a VSWR of 2.5, and the 
second resonance should be broad enough to cover the 
5.2 GHz to 6 GHz band. An optimized design was 
derived by altering eight geometric parameters 

sequentially as shown in Table 1. For each parameter, 
four iterations were executed. The optimization process 
took on a Pentium IV machine of 2.4 GHz with 512 GB 
RAM, approximately 36 hours to complete. In each 
IE3D simulation, antenna performance was examined 
from 2 GHz to 6.8 GHz with a 0.1 GHz frequency step. 
The cell size is one fifteenth of a wavelength. Most of 
the time was spent on the IE3D program, which is 
proportional to the complexity of the simulated 
structure, and the time spent on the GA operator is 
negligible. Figure 8 shows the comparison of return loss 
spectra of the initial and optimized designs. According 
to this figure, both resonant bands are shifted up and the 
higher band fits the 5.2 GHz to 5.8 GHz range. The 
optimized values of the antenna dimensions are also 
shown in Table 1.  
 
Table 1. The initial and optimized values of the antenna 
dimensions as illustrated in Fig. 7. 
 

Parameter Initial 
Values(mm) 

Optimized Values(mm)

X1 4 8 
X2 2 8.5 
X3 2 0.5 
X4 2 1 
Y1 16 18 
Y2 18 5.2 
Y3 4 4.5 
Y4 4 2.9 
Z1 4 3.2 

 
To validate the optimization scheme, we manufactured 
the initial and optimized patch designs and measured 
their reflection coefficients. Figure 9 shows the two 
return loss spectra. The null levels are slightly different 
from simulation results. However, the curves exhibit a 
similar trend in the movement of resonant ban locations. 
The difference can be attributed to the error in selecting 
material parameters. Nevertheless, the result indicates 
the proposed approach can effectively predict the 
performance changes due to geometric variation, which 
in turn validate the optimization scheme. 
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Fig. 9. Comparison of measured reflection spectral of 
initial and optimized designs. 
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The radiation patterns of the antenna were measured and 
shown in Fig. 10 at 2.47 GHz and 5.6 GHz, where the 
patterns as well as the beamwidths meet the general 
behaviors of a general planar microstrip antenna. Also 
gains of these two bands are 0.23 dBi and 2.5 dBi, 
respectively. 

 
 

 
 

(a)  2.47 GHz 

 
 

(b) 5.6 GHz 
 

Fig. 10. The radiation patterns of the dual band patch 
antenna at 2.47 GHz and 5.6 GHz.  
 
 

IV.   CONCLUSION 
  
In this work, we integrated the GA-based design 
optimizer and IE3D simulation tools within the 
automation control program. The validness of this 
optimizer is verified via the optimization of the dual 

band patch design for the applications of Wi-Fi and 
DSRC applications. Both the simulation and 
measurement results confirm improvement in antenna 
bandwidth performance and demonstrate that the 
optimizer developed can contribute to design 
automation. 
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Abstract − The design of four-section transmission line 
matching transformer, operating at four arbitrary 
frequencies, is presented. Standard transmission line 
theory is used to obtain a closed form expression that is 
solved using particle swarm optimization technique to 
find the required transformer parameters (lengths, and 
characteristic impedances). Different examples are 
presented which validate the design approach. To further 
validate the analysis and design approach, a microstrip 
line four-section quad-band transmission line transformer 
is designed, analyzed, fabricated and measured.  
 

I.    INTRODUCTION 
      
With the advent of multi-band operation in wireless 

communication systems, it becomes essential to have 
matching transformers that operate at several frequencies. 
Recently, several papers have been published in which 
different techniques were proposed to design dual-
frequency matching transformers [1-4]. In [1], a λ/4 -
shorted stub was added to a conventional single-shunt-
stub matching network that enabled impedance matching 
at two separate frequencies simultaneously. In [2], a novel 
dual-band two-section transmission line transformer 
(TLT) was proposed and simple design equations for the 
impedances and lengths of the two sections were derived 
in [3]. In [4], an extension of this dual-band TLT to match 
complex impedances was presented and applied to 
wideband high-frequency amplifiers. Very recently, a 
triple-band three-section TLT, extended from the two-
section TLT concept, was designed and analyzed in [5]. 
Using simple transmission line theory, design expressions 
for the three-section TLT for three arbitrary operating 
frequencies were derived. Two non-linear equations were 
solved simultaneously via an optimization process to 
obtain the parameters of the transformer. As an 
application of these TLTs, dual-band two-section TLT 
and triple-band three-section TLT have been successfully 
used to design dual-band and triple-band Wilkinson 
power dividers, respectively, [6-8]. 

In this paper, the quad-band four-section TLT, which 
is matched at four arbitrary frequencies (f1, f2, f3 and f4) 
for any transforming ratio (ZL/Z0) is designed and 
analyzed. Four non-linear equations are derived using 
standard transmission line theory, which are then solved 
simultaneously using the particle swarm optimization 

(PSO) technique. The PSO technique is used to find the 
characteristic impedances and lengths of the first two 
sections, from which the impedances and lengths of the 
other sections are obtained using the antimetry conditions 
[9]. The PSO algorithm is a multiple-agents optimization 
algorithm that was introduced by Kennedy and Eberhart 
[10] in 1995 while studying the social behavior of groups 
of animals and insects such as flocks of birds, schools of 
fish, and swarms of bees. Recently, this technique found 
many successful applications in Electromagnetics [11-13]. 
PSO is similar in some ways to genetic algorithms, but 
requires less computational bookkeeping and generally 
fewer lines of code, including the fact that the basic 
algorithm is very easy to understand and implement. It 
should be mentioned that other optimization techniques 
could be used too, but recently, we have been interested in 
the application of PSO method in the design of different 
microwave passive elements [14, 15], and antennas [16].  
The interested reader can refer to [10-16], and the 
references therein, for details of the PSO algorithm. 
 

II.    ANALYSIS AND DESIGN 
 

Figure 1 shows a four-section transmission line 
transformer (TLT) that will be used to match a purely 
resistive load ZL to a lossless transmission line with 
characteristic impedance Z0. The characteristic 
impedances of the transmission-line sections are denoted 
as Z1, Z2, Z3, and Z4, with physical lengths l1, l2, l3, and l4, 
respectively. The problem is to find the lengths and 
impedances of the four sections such that a perfect match 
is obtained at four arbitrary frequencies f1,  f2,  f3, and f4. 

 

 
Fig. 1. Four-section quad-band TLT. 
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Using standard transmission line theory, the input 
impedance of the four-section TLT is given by, 
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For perfect matching at specific frequencies, the lengths 
and impedances should be chosen such that Zin = Z0 at 
those frequencies. Imposing this condition on equation (1) 
and solving for ZA gives, 
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Solving equation (2) for ZB gives, 
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Substituting equation (5) in equation (6), gives, 
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Another equation for ZB can be obtained by substituting 
equation (4) in equation (3), which gives, 
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Equating the complex equations (7) and (8), we get the 
following two expressions, 
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where k is the impedance transforming ratio (or the 
normalized load impedance) defined as k=ZL/Z0.                                           

For a compact size, the characteristics impedances 
must be monotonically increasing or monotonically 
decreasing, i.e., they should satisfy one of the following 
conditions [5], 
 

For k<1: ZL < Z4 < Z3 < Z2 < Z1 < Z0 
 For k>1: Z0 < Z1 < Z2 < Z3 < Z4 < ZL 

              

Moreover, since an optimized transformer, in the sense of 
achieving global minima of the reflection coefficient at 
the design frequencies, is being designed, it should satisfy 
the antimetry conditions given as, [9],   
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                       l1 = l4 and l2 = l3 ,                             (11a) 
 

                      Z1Z4 = Z2Z3 = Z0ZL.                          (11b) 
 

It is worth mentioning that the dual-band TLT [3] and 
the tri-band TLT [5] were found to satisfy these conditions 
too. Enforcing the above antimetry conditions on the left 
side of equation (10) gives a zero; that is equation (10) is 
satisfied if the lengths and the impedances satisfy the 
antimetry conditions. This validates, to some extent, that 
indeed the antimetry conditions have to be satisfied. On 
the other hand, enforcing the antimetry conditions in 
equation (9), and after some simplification, the following 
expression is obtained, 
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In equation (13), normalized impedances are used where 
z1=Z1/Z0, and z2=Z2/Z0. It is clear that there are four 
unknowns in equation (12); namely: z1, z2, l1, and l2. Now, 
equation (12) should be satisfied at the four design 
frequencies f1, f2, f3, and f4 which can be written as 
follows:  f2=u1 f1,   f3=u2 f1, and f4=u3 f1, where u1, u2, and 
u3 are any positive real numbers. 
 

At f1, we get, 
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At f2, we get, 
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At f3, we get, 
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At f4, we get, 
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Finally, given k, u1, u2 and u3, the previous four non-

linear equations (14) to (17), need to be solved 
simultaneously for the four unknowns z1, z2, l1/λ and l2/λ 
via an optimization process, where λ is the wavelength at 
f1.  

As mentioned in the introduction, the particle swarm 
optimization (PSO) technique is used here to solve these 
four equations. The fitness function is chosen to be the 
sum of the absolute values of the left sides of equations 
(14) to (17). Once the four unknowns (z1, z2, l1, and l2) are 
obtained, the other four unknowns z3, z4, l3, and l4 can be 
calculated using the antimetry conditions. In all the results 
presented in the next section, 20 particles are used in the 
PSO code, and the search is stopped once the value of the 
fitness function becomes less than 10-10. Depending on the 
initial swarm positions, 1500-2000 iterations were usually 
needed to reach an acceptable solution. Typically, this 
took around 15-30 seconds using Pentium-3 PC. The 
algorithm was run more than once to make sure that it 
converges to the same solution each time.  

 
III.    RESULTS 

 
Using the approach described in the previous section, 

several designs have been performed to achieve matching 
at four arbitrary frequencies. Table 1 shows the obtained 
results for the case with u1 = 2, u2 = 3, and u3 = 4, while 
the impedance ratio k is changed from 0.5 to 10. Figure 2 
shows the return loss versus frequency for different values 
of k. It can be noticed that there is a perfect match at the 
four design frequencies.  From the figure, as expected, one 
can observe that the response for k and its inverse 1/k are 
the same. Moreover, from the results in Table 1, we notice 
that changing the impedance ratio k changes the 
characteristic impedances, while the lengths of the 
sections are not affected. 

Another case that has been considered is to fix u2, u3 
and k, while changing u1. Table 2 includes some results in 
which u1 is changed between 1.4 and 2.6, with u2 = 3, u3 = 
4, k = 2. It can be noticed that as u1 increases, the 
impedance and length of the first section decrease, while 
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the impedance and length of the second section increase. 
Figure 3 shows the frequency response for some of these 
cases.  

 
Table 1. Impedances and normalized lengths of a quad-
band four-section TLT with Z0 = 50 Ω, u1 = 2, u2 = 3, and 
u3 = 4. 

 

 
Fig. 2. Return loss of the four-section transformer 
presented in Table 1 with f1=1 GHz. 
 
 
Table 2. Impedances and normalized lengths of a four-
section TLT with u2 = 3, u3 = 4, k = 2, Z0 = 50 Ω. 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

Similarly, one can fix u1, u3, and k, while changing u2. 
Table 3 includes some results in which u2 is changed 
between 2.4 and 3.6, with u1 = 2, u3 = 4, and k = 2. In this 
case, as u2 increases, Z1 and l2 increase, while Z2 and l1 
decrease. Figure 4 shows the frequency response for some 
of these cases. 
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Fig. 3. Return loss of the four-section transformer 
presented in Table 2 with f1=1 GHz. 
 
Table 3. Impedances and normalized lengths of a four-
section TLT with u1 = 2, u3 = 4, k = 2, Z0 = 50 Ω. 

 
 
 
 
 
 
 

 
 
 
 
 

 

 
 
 
 

 

 
Fig. 4. Return loss of the four-section transformer 
presented in Table 3 with f1=1 GHz. 

k Z1 Z2 Z3 Z4 l1/λ l2/λ 
0.5 43.47 37.87 33.01 28.76 0.1 0.1 
2 57.51 66.02 75.74 86.94 0.1 0.1 
4 66.68 87.51 114.27 149.95 0.1 0.1 
6 73.22 103.54 144.86 204.87 0.1 0.1 
8 78.56 116.89 171.09 254.56 0.1 0.1 

10 83.21 128.58 194.42 300.44 0.1 0.1 

u1 Z1 Z2 Z3 Z4 
1.4 59.09 63.78 78.39 84.60 
1.8 57.98 65.2 76.68 86.24 
2.2 57.17 66.69 74.97 87.45 
2.6 56.81 67.71 73.85 88.02 

u2 Z1 Z2 Z3 Z4 
2.4 56.77 67.84 73.70 88.07 
2.8 57.25 66.55 75.13 87.33 
3.2 57.78 65.56 76.53 86.53 
3.6 58.36 64.81 77.14 85.67 
u2 l1/λ l2/λ 
2.4 0.1221 0.0921 
2.8 0.1068 0.0974 
3.2 0.0937 0.1025 
3.6 0.0822 0.1074 

u1 l1/λ l2/λ 
1.4 0.1493 0.0660 
1.8 0.1079 0.0964 
2.2 0.0943 0.1019 
2.6 0.0858 0.1035 
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Finally, k, u1 and u2 are fixed, and u3 is changed to 
different arbitrary values. Table 4 shows some cases in 
which u3 is changed between 3.4 and 4.6, with u1 = 2, u2 = 
3, and k = 2. Figure 5 shows the frequency response for 
these cases. 
 
 
Table 4. Impedancesand normalized lengths of a four-
section TLT with u1 = 2, u2 = 3, k = 2, Z0 = 50 Ω. 
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Fig. 5. Return loss of the four-section transformer 
presented in Table 4 with f1=1 GHz. 
 

To further validate our analysis, a quad-band four-
section microstrip line transformer is designed, fabricated 
and measured. This transformer is designed to match a 
load impedance ZL = 100 Ω to a 50 Ω microstrip 
transmission line at f1 = 0.3 GHz, f2 = 0.6 GHz, f3 = 0.95 
GHz, and f4 = 1.25 GHz. The ideal transmission line 
sections impedances and lengths are found to be as 
follows: Z1 = 56.8519 Ω, Z2 = 66.8843 Ω, Z3 =  74.7559 
Ω, Z4 = 87.9478 Ω, l = l4 = 69.677 degrees, l2 = l3 = 
34.839 degrees, where the electrical lengths refer to f1.   

Using the software Ansoft Designer SV [17], and 
assuming a 1.6 mm thick FR-4 substrate, the physical 
lengths and microstrip widths are found to be as follows: 

1 =107.225 mm, 2 = 54.2794 mm, 3 = 54.7366 mm, 

4 = 110.761 mm. W1 = 2.312 mm, W2 = 1.697 mm, W3 
= 1.343 mm, and W4 = 0.9157 mm. It should be noted that 
although the electrical lengths of opposite sections are 
equal, their physical lengths differ slightly due to the 
difference in the effective dielectric constant of each 
section, which depends on the microstrip line width. 
Figure 6 presents the simulation results obtained using 
Designer SV, which shows a very good match at the four 
design frequencies. Using the available PCB facility, this 
quad-band microstrip line TLT was fabricated, in which a 
surface mount resistor was used as the load. The overall 
size of the practical circuit seen in Fig. 7 is 25×7 cm. 
Figure 8 presents the measured return loss, which clearly 
shows the quad-band impedance matching. Some of the 
design frequencies are slightly shifted which could be due 
to losses of the connectors, and the inaccuracies in the 
widths and lengths of the microstrip line sections.  
 
 
 

 
 
Fig. 6. Simulation results for a quad-band microstrip TLT 
with a 1.6 mm thick FR-4 substrate ( rε = 4.6). 
 
 
 

 

Fig. 7. Photograph of the fabricated quad-band microstrip 
line TLT. The first and last sections are bent to reduce the 
total length of the TLT. 
 
 
 

u3 Z1 Z2 Z3 Z4 
3.4 56.01 65.29 76.58 89.24 
3.8 56.95 65.69 76.11 87.77 
4.2 58.06 66.49 75.19 86.11 
4.6 59.00 68.13 73.38 84.74 

u3 l1/λ l2/λ 
3.4 0.0987 0.1145 
3.8 0.0982 0.1059 
4.2 0.1033 0.0928 
4.6 0.1140 0.0765 
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Fig. 8. Measured return loss for the fabricated quad-band 
microstrip line TLT. 
 

IV.    CONCLUSIONS 
 

The contributions presented in this paper can be 
summarized as follows: 
(a) A simple configuration for a quad-band transmission 
line transformer (TLT) has been proposed which uses four 
transmission line sections. Using ideal transmission line 
theory, a single equation, that needs to be satisfied 
simultaneously at the four design frequencies, has been 
derived. This equation involved only four unknowns (z1, 
z2, l1/λ, and l2/λ) to be solved for.  
 
(b) The particle swarm optimization (PSO) technique, 
which is drawing much attention at the present time, has 
been used to design the quad-band TLT by searching for 
the four parameters z1, z2, l1/λ, and l2/λ. The other four 
variables z3, z4, l3/λ, and l4/λ were obtained using the 
antimetry conditions. In effect, the obtained impedances 
and lengths minimize the reflection coefficient at the four 
design frequencies.  
 
(c) Finally, to validate the analysis, several quad-band 
four-section TLTs have been designed. The results were 
as expected; perfect match at the four frequencies. It has 
been found that the lengths of the sections do not depend 
on the transforming ratio k for fixed design frequencies. 
Moreover, a microstrip line quad-band TLT has been 
designed, simulated using Ansoft Designer SV, fabricated 
and measured.  At the present time, we are investigating 
the possibility of building a quad-band Wilkinson divider 
based on the quad-band TLT studied here. Moreover, the 
design a quad-band transformer that is able to match 
complex impedances, similar to that presented in [4], will 
be investigated. 
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 Abstract − The dielectric loaded horn radiators are 
commonly used in various applications due to their 
distinguished features, such as low cross-polarization, 
pattern symmetry and simple production. The 
analysis of this kind of horn, mode matching (MM) 
and integral equation methods have been preferred in 
the literature. In the present study, the radiation of 
plane harmonic scalar waves from a dielectric loaded 
circular horn radiator is treated by using the mode 
matching method in conjunction with theWiener-
Hopf technique. The solution is exact but formal 
since infinite series of unknowns and some branch-
cut integrals with unknown integrands are involved. 
Approximation procedures based on rigorous 
asymptotic are used and the approximate solution to 
the Wiener-Hopf equations are derived in terms of 
infinite series of unknowns, which are determined 
from infinite systems of linear algebraic equations. 
Numerical solution of these systems is obtained for 
various values of the parameters, of the problem. 
Their effect is presented on the directivity of the 
circular feed horn.  
 
Key words − Dielectric loaded wide angle scalar horn 
radiator, Wiener-Hopf Technique, integral equations, 
circular waveguide, step discontinuity. 
 

I.   INTRODUCTION 
 

In the recent years, scalar feed horns are 
commonly used widespread applications such as 
feeds in reflector radiator systems used in microwave 
and acoustics, because of their well-known properties 
of pattern symmetry and zero or low cross-
polarization. To analyze the performance of such 
feeds, one needs to know accurately their near- and 
far-field patterns. The aperture fields of a pure-mode 
horn are generated by a single mode, which is the 
dominant mode in the waveguide. These horns use 
"hybrid" modes where there is a single mode, which 
is composed of hybrid combination of two other 
modes. The scalar feed is circular horn antenna with 
grooves, perpendicular to the wall of the horn. The 
grooves change the fields so as to provide desirable 
properties of axial beam symmetry, low side lobes 
and cross-polarization. This means that the horn 
produces an aperture field in which the field’s 
distributions are approximately linear. The very low 
cross-polarization means that the field in the aperture 
are essentially scalar and for this reason, the 

corrugated horn is sometimes referred as scalar horn 
[1]. The radiation characteristics of circular 
waveguides and horns have been the subject to 
several previous investigations [2 - 5]. Some of the 
approximate and computational methods such as 
surface integral methods; hybird MM/ finite element 
(FE)/ method of moment (MoM)/ finite difference 
(FD) methods have been presented for the analysis of 
horns [6]. The analysis reported in [7] is recently 
generalized [8] to the case where the aperture's inner 
surface and the intersection area with the flange of 
the waveguide horn are treated as different 
impedance materials. The aim of the present work is 
to produce an analysis of the case where the aperture 
of the waveguide horn is loaded as different dielectric 
materials, as shown in Fig. 1. 

  
a. Dielectric loaded circular horn radiator. 

 

 
 

b. Geometry of the problem. 
 

Fig. 1. a. Dielectric loaded circular horn radiator, b. 
geometry of the problem. 

 
The aperture region of the scalar horn is loaded 

by a simple dielectric material (non-magnetic and 
non-conducting-dielectric rod) having the permitivity 
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1ε . The variables 1η  and 2η  are the complex 
admittance of the aperture's inner surface of the horn 
and the intersection area with the flange of the 
waveguide, respectively. To this end we consider the 
problem of dominant modes in the circular 
waveguides propagating out of semi-infinite duct, via 
another coaxial cylindrical duct of finite length and 
bigger radius, and the issuing into free space. 

In the progress of the radiation pattern analysis 
of dielectric loaded scalar feed horn, attention has 
been given to consider the propagation of plane 
waves by circular structures, because the complexity 
of these structures is not always possible to obtain 
rigorous analytical solutions to radiation problems. 
The Wiener-Hopf Technique is applicable to open 
and closed structures. 

The method adopted here is similar to the one 
employed in [8] and consists of expressing the total 
field in the waveguide region in terms of normal 
waveguide modes and using the Fourier transform 
elsewhere. To this end, by introducing the Fourier 
transform for the scattered field and applying the 
boundary conditions in the transform domain, the 
problem is reduced into a modified Wiener-Hopf 
equation. Using the mode matching method in 
conjunction with the Wiener-Hopf technique the 
radiation of plane harmonic scalar waves from a 
scalar feed horn were treated. The solution is exact 
but formal since infinite series of unknowns and 
some branch-cut integrals with unknown integrands 
are involved. Approximated procedures based on 
rigorous asymptotic are used, and the approximate 
solution to the Wiener-Hopf equations are derived in 
terms of infinite series of unknowns, which are 
determined from infinite systems of linear algebraic 
equations. Numerical solution of these systems is 
obtained for various values of the parameters of the 
problem and their effect on the directivity of the 
scalar feed horn is presented. The time dependence is 
assumed to be ( )exp i tω− , with ω  being the angular 
frequency, and is suppressed throughout the paper. 
 

II.   ANALYSIS 
 

Consider the radiation of a time harmonic plane 
wave propagating along the positive z  direction from 
a rigid cylindrical horn is defined by, 
{ }= , ( ,0)a zρ ∈ −∞  ∪  ( ){ }, , = 0a b zρ ∈  ∪  

{ }= , (0, )b z lρ ∈  where ( ), , zρ φ  denotes the usual 
cylindrical polar coordinates (Fig. 1). From the 
symmetry of the geometry of the problem, and of the 
incident field, the scalar field everywhere will be 
independent of .φ  
Assuming the incident field is given by 

  ( )= expiu ikz    (1) 
where = /k cω  denotes the wave number. For the 
sake of analytical convenience we will assume that 

the surrounding medium is slightly lossy and k  has a 
small positive imaginary part. The lossless case can 
be obtained by letting 0Imk →  at the end of the 
analysis. 
The total field ( , )Tu zρ  can be written as, 

( )
( )
( )
( ) ( )
( )
( )

( )
( )
( )
( )

( )

1

2

3

4

5

, =

; > ,, ( , )
; , ,, < 0
; 0, ,, , < 0
; 0, ,, 0,
; 0, ,, > .

T

i

u z

bu z z
a bu z z

au z u z z
bu z z l
bu z z l

ρ

ρρ
ρρ
ρρ ρ
ρρ
ρρ

⎧ ∈ −∞ ∞
⎪ ∈⎪⎪ ∈+⎨
⎪ ∈ ∈⎪

∈⎪⎩

    (2) 

By considering 1k  as the wave number of dielectric 
region, ( , ),ju zρ  = 1 5j −  denote the scattered fields 

( , ),ju zρ  = 1 5j − , which satisfy the Helmholtz 
equation, 

2
2

2

1 ( , ) = 0, = 1,2,3,5jk u z j
z

ρ ρ
ρ ρ ρ
⎡ ⎤⎛ ⎞∂ ∂ ∂

+ +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
, 

(3a) 
2

2
12

1 ( , ) = 0, = 4jk u z j
z

ρ ρ
ρ ρ ρ
⎡ ⎤⎛ ⎞∂ ∂ ∂

+ +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
      (3b) 

is the expression to be determined with the help of 
well known boundary, edge, and radiation conditions 
for the perfectly conducting structures. The boundary 
condition on the internal surfaces of the horn yield 

= 0u ik u
n

η∂
+

∂
 , where n  is the normal pointing 

outward the lining, and η  is the complex specific 
admittance of the surfaces, 

1 2( , ) = ( , )u b z u b z , < 0z ,   (4a) 

1 2( , ) = ( , )u ub z b z
ρ ρ

∂ ∂
∂ ∂

, < 0z ,  (4b) 

2 ( , ) = 0u a z
ρ
∂
∂

 , < 0z ,   (4c) 

3( , ) = 0u a z
ρ
∂
∂

 , < 0z ,   (4d) 

 1 5( , ) = ( , )u b z u b z  , >z l ,   (4e) 

51 ( , ) = ( , )uu b z b z
ρ ρ

∂∂
∂ ∂

 >z l ,   (4f) 

1( , ) = 0u b z
ρ
∂
∂

, ( )0,z l∈ ,   (4g)  

 1 1 4( ) ( , ) = 0ik n u b z
ρ
∂

−
∂

  ( )0,z l∈ ,  (4h) 

3( ,0) iu uρ +  , ( )0,aρ ∈  ,   (4i) 

 3( ,0) iu u
z z

ρ∂ ∂
+

∂ ∂
, ( )0,aρ ∈ ,   (4j) 

   4 5( , ) = ( , )u l u lρ ρ , (0, )bρ ∈  ,           (4k) 

 54 ( , ) = ( , )uu l l
z z

ρ ρ∂∂
∂ ∂

, (0, )bρ ∈ ,   (4l) 

389 ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007



 2 ( ,0) = 0u
z

ρ∂
∂

, ( ),a bρ ∈ ,   (4m) 

 4
1 2( )( ,0) = 0uik n

z
ρ∂

+
∂

, ( ),a bρ ∈ .   (4n) 

To ensure the uniqueness of the mixed boundary-
value problem, one has to take into account the 
following radiation and edge conditions, 

   2 2, =
ikreu r z
r

ρ≈ + ,    (4o) 

   ( 0, ) =Tu b z O+ , 0z → − ,  (4p) 

 1/3( 0, ) = ( )Tu b z O z
ρ

−∂
+

∂
, 0z → − , (4q) 

  ( , ) =Tu b z O , 0z l→ + ,   (4r) 

 1/ 2( , ) = (( ) )Tu b z O z l
ρ

−∂
−

∂
, 0z l→ + . (4s) 

By taking the Fourier transform of ( , )u zρ  with 
respect to the variable z and considering also above 
mentioned boundary and continuity conditions in the 
transform domainα , the problem is reduced into the 
following modified Wiener-Hopf equation of the 
third kind, which is valid in the strip 

( ) < ( ) < ( )Im k Im Im kα− , 

[ ]

1 2 2

1
2 2=0
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      (5a) 

where 
0

1( , ) = ( , ) i zH u z e dzαρ α ρ− −∞∫ ,   (5b) 

( )
1( , ) = ( , ) i z l

l
H u z e dzαρ α ρ

∞ −
+ ∫ ,   (5c) 

1 10
( , ) = ( , )

l i zH u z e dzαρ α ρ∫ ,   (5d) 

2 2( ) =K kα α− ,    (5e) 
( )

1 1( ) = ( ) KbR i J Kb Hα π ,   (5f) 
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,(5g) 

( )= , = 0,1,2,..m mZ K mδ ,   (5h) 

1( ) = 0, = 0,1,2,...mJ j m ,    (5i) 

( )2
2= , = 0,1,2,.../m m

k mbjα − , (5j) 
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b
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and 

02 2 0
0

2= ( ) ( ) , 0
( )

b
m

m
m

jh h t J t tdt m
b J j b

≠∫ . (5m) 

Using the factorization and the decomposition 
procedures together with the Liouville theorem, the 
modified Wiener-Hopf equation in (5a) can be 
reduced to the following system of Fredholm integral 
equations of the second kind, 
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 (6b) 

where the paths of integration L+  and L−  are depicted 
in [7]. Here, ( )( ),R Qα α+ +  and ( ) = ( )R Rα α− + − , 

( )Q α− ( )= Q α+ −  are the split functions [8] regular 

and free of zeros in the upper ( )( )>Im Im kα −  and 

lower ( )<Im Imkα  halves of the complex α −  
plane, respectively, resulting from the Wiener-Hopf 
factorization of ( )R α  and ( )Q α , which are given by 
(5f) and (5g), in the following form, 

( ) = ( ) ( )R R Rα α α+ − ,   (7a) 

 ( ) = ( ) ( )Q Q Qα α α+ − .   (7b) 

The explicit expressions for ( )R α+  and ( )Q α+  can 
be obtained by using the results of [9], [10]. For 

>> 1kl  , the coupled system of Fredholm integral 
equations of the second kind in (6a) and (6b), are 
susceptible to a treatment by iterations 

( ) ( )1 2
( , )_ = ( , ) ( , )b b bH H Hα α α

+ + +
+ +  , (8a) 

( ) ( )1 2
( , )_ = ( , ) ( , )b b bH H Hα α α

− − −
+ + .  (8b) 

 
III.   MODAL MATCHING TECHNIQUE: 
DETERMINATION OF THE EXPANSION 

COEFFICIENTS 
 

Modal matching technique (MMT) is a powerful 
numeric method of analyzing horn radiators in which 
the actual profile of the horn is replaced by a series of 
uniform waveguide sections. The MMT can be 
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considered as a method of obtaining the overall 
transmission and reflection properties of a horn. The 
horn is represented as a box as shown in Fig. 2, where 
[A] and [B] are column matrices containing the 
forward and reflection coefficients of all the modes 
looking into the horn from source side. Similarly, [C] 
and [D] represent column matrices containing the 
forward and reflection coefficients of all the modes 
looking into the aperture of the horn from outside [11 
- 13]. 
  

 
[ ] [ ]

= [ ]
[ ] [ ]
B A

S
D C

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 [ ] 11 12

21 22

[ ] [ ]
S =

[ ] [ ]
s s
s s

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Fig. 2. Horn represented as a scattering matrix [S]. 
 
The field in the cavity can be expressed in terms of 
the waveguide normal modes as follow, 

3 0=0
( , ) = ( )i n

n nn

zu z c e J j
a

β ρρ ∞ −∑   (9a) 

with 
2

2
2= , = 0,1,2... .n

n
jk n
a

β − .   (9b) 

Here nξ  's are the roots of the characteristic equation 

1( ) = 0, = 0,1,2... .nJ j n .   (9c) 
Similarly, in the region 0 < < ,bρ  0 < <z l , 

( )4 ,u zρ  can be expressed in terms of the following 
normal waveguide modes, 
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Now, from the continuity relations we get 
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Inserting the series expansions of ( )g ρ  and ( )h ρ  
[14] given in equations (5l) and (5m) into equations 
(11c) and (11d), respectively, and using equations 
(9a) and (10a) we get, 
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Multiplying both sides of equations (12a) and (12b) 
by 0 ( )l bJ ρρ ξ  and by 0 ( )l aJ ρξ , respectively, and 
integrating from 0  to b  and from 0  to a , 
respectively, we obtain the following system of linear 
algebraic equations (13a)-(13f), 
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This system of equations can be rearranged as, 
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To obtain an approximate value for ( , )aH α
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 and 
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 , we substitute 1 2= , , ,..., Nkα α α α  in 
equation (6a) and 1 2= , ,..., Nα δ δ δ− − −  in equation 
(6b). These equations together with equations (13g) 
to (13i) result in 3( 1)N +  equations for 3( 1)N +  
unknowns. The solution of these simultaneous 
equations yields approximate solutions for ( , ),b kH +
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The function 1/2 ( )W ξ−  is related to the Whittaker 
function 1/2,0 ( )W ξ−  [15] by the relation (14h), 

1/2
1/2 1/2,0( ) = exp( /2) ( )W Wξ ξ ξ ξ−
− − .          (14h) 
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By substituting equations (13g) and (13h) into 
equations (14a) and (14b) and also considering 
equation (13i), one can easily obtain the three infinite 
systems of linear algebraic equations with 
coefficients np  , nq  and nf  . 
 

IV.   THE RADIATED FAR-FIELD AND 
COMPUTATIONAL RESULTS 

 
The radiated field in the region > bρ  can be 

obtained using,  
(1)
0

1 (1)
1

( )1( )
2 ( ) ( )

[ ( ) ( )]

H K
u z

K H KbL
i l i zb e b e dH H

ρ
ρ

π α

α αα α α

, = − ×∫

−, + ,− +

(15a) 

where L  is a straight line parallel to the real α  -axis, 
lying in the strip ( ) < ( ) < ( )Im k Im Im kα−  . Utilizing 
the asymptotic expansion of (1)

0 kH ρ( )  as kρ →∞  

(1) ( /4)
0 ( )

2= i KKH e
K

ρ π
ρ

π ρ
− .  (15b) 

The asymptotic evaluation of the integral in equation 
(15a) using the saddle point technique yields for the 
diffracted field for 2 2 >> ,k z klρ +  

1
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where ( , )bH α
+

 and ( , )bH α
−

 are given by 
equations (6a) and (6b), respectively. 1 1, ,r θ  and 2 2,r θ  
are the spherical coordinates defined by  

1 1= sinrρ θ , 1 1= cosz r θ    (17a) 
and 

2 2= sinrρ θ , 2 2= cosz l r θ− .  (17b) 
In the far field region equation (16) reduces to 
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1 1
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(18) 
We can see that mf  and mq  decay exponentially with 
m  so that the infinite algebraic systems converge 
very rapidly. Thus, they can be solved by truncating 
the infinite matrix and numerically inverting the 
resulting finite system. The value of the truncation 
number N  is increased until the final physical 
quantities such as the amplitude of the radiated field 
or the reflection coefficients become insensitive up to 
desired digit after the decimal point. 

The reflection coefficient is calculated by using 
hybrid mode-matching (hMM)/ method-of-moment 
(MoM) technique presented in the waveguide 
synthesis program for waveguide networks WASP-

Net [16]. The reflection coefficient calculating by 
WH is very close to hMM-MoM. The discrepancy 
between WH and hMM-MoM is %0.23 at the 
dominant mode propagation of the waveguide. The 
amplitude of the reflection coefficient is reduced by 
increasing the radius of the waveguide (ka) and the 
length of the aperture (kl) while kb is fixed. It is 
observed that the relative errors are reduced for 
higher frequencies by increasing number truncation 
number N. 
Showing numerically can make another effective 
check of the analysis that the continuity relation in 
equation (12b) is satisfied. The absolute error is less 
than %1.02 for 14N ≥ . 
 

 
Fig. 3. Normalized radiated field versus the 
observation angle for different values of the 1k  

1 1 2 2 1 2( = , = , , > 0)iX iX X Xη η . 
 

Figure 3 shows the variation of the normalized 
diffracted field amplitude ( ) ( )1 1 1 1 1, / ,0u r u rθ  versus 

the observation angle 1θ , for different values of 1k  
when ,ka kb  and kl  is fixed. Note that the directivity 
of the horn increases with increasing values of the 
dielectric material. Also it has been noted side lobe 
level is decrease explicitly with increasing values of 
the dielectric material. 

 
Fig. 4. 3dB beam-width to aperture diameter ( 2 /b λ ) ( 

1 2= = 0.1, / = 0.6, = 1.5X X a lλ λ  ). 
 

Figure 4 shows the variation of the -3dB 
beamwidth versus the observation angle for different 
values of normalized aperture diameter. The 3-dB 
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beamwidth decrease with the increasing values of 
2 / .b λ  Also note that the 3-dB beamwidth of the horn 
decreases with increasing values of the dielectric 
material. 

Finally, Fig. 5 display the amplitude of the 
relative power level obtained in the present work for 

0 0875a λ = . , 0 5b λ = . , 1.6l λ = , the numerical 
results calculated by using MoM programmed by 
[17]. We can see that the results obtained in this work 
approach the numerical solution for 1 2η η=  and fit 

quite well along the observation angle. 
 

 
Fig. 5. Relative power level versus the observation 
angle (comparison with the MoM solution). 
 
 

V.   CONCLUSION 
 

The radiation of plane harmonic scalar waves 
from a dielectric loaded using the mode matching 
method in conjunction with the Wiener-Hopf 
technique treats scalar feed horn. The solution is 
exact but formal since infinite series of unknowns 
and some branch-cut integrals with unknown 
integrands are involved. Approximation procedures 
based on rigorous asymptotic are used and the 
approximate solution to the Wiener-Hopf equations 
are derived in terms of infinite series of unknowns, 
which are determined from infinite systems of linear 
algebraic equations. The advantage of the WH 
Technique over other methods is that it is rigorous in 
the sense that the edge condition is explicitly 
incorporated in the analysis and that it has the 
potential of providing accurate and reliable results 
over broad frequency ranges. Furthermore, contrary 
to some numerical techniques, which are efficient 
only when the problem involves finite boundaries of 
limited length, the WH method does not suffer from 
restrictions. Numerical solution of these systems is 
obtained for various values of the dielectric materials 
of the problem and their effect on the directivity of 
the circular feed horn is presented in the scope of this 
work. By dielectric loading, it is possible to 
narrowing of the beamwidth and can provide low 
levels of the side lobes. 
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Y > GY a E F , b5lP * b:lP D V ? <J@
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¡­¬�²&¿·§£³·Ál²i§£¦{¤a³i¦�§±³V®!²i§�¨¹²iÆlÆ>¡£¢l¿&¤a³Òª«¥�¤y¥�¯y¨�¡±¢>¥Ð¸�µ>¡±®nµ¼Æl¯a³�¦
®�¥g¬a¬a³�¯�¡±¬�¬d¤a³�¯y¡±¢>¿1²&Æl²�¯d¤y¡±®�»>§­²i¯ÊÁl§£³«®nÌÒ³i´4®�³·§£»l¨�¢U¬�ÃÒË�µ>¡±¬
¨¹²iÆ>Æl¡£¢>¿Ý®!²i¢2ÁU¥¼®�³�¨©Æ>»«¤y¥!ª2¥!²·¬d¡±§£¾Ô³�¢2¥!²�®nµRÆ>¯y³V®�¥!¬y¬d³·¯
¬a¡£¢l®�¥Ê¡£¤4¡­¬�ÌV¢>³~¸�¢&µ>³~¸�¨¹²i¢V¾�Æl¯a³«®�¥g¬a¬a³�¯n¬�²i¯y¥3¡±¢�¤aµ>¥4Â�³�ÁSÑ
¤aµl¥�¢V»>¨ÊÁK¥�¯�³i´�®�³·§£»l¨�¢U¬�ÆU¥!¯ÊÁ>§±³«®nÌÒ²�¢lªÒ¤aµl¥�¢V»>¨ÊÁK¥�¯�³i´
¬a»>ÁKª>³�¨¹²i¡±¢«¦�ÁU³·»>¢lª>²�¯a¾�»l¢>ÌV¢>³~¸�¢l¬�¡±¢Ð¤yµ>¥�Æ>¯y³�Á>§±¥�¨�Ã 2�²�®nµ
Á>§±³«®nÌÒ³�´'®�³·§£»l¨�¢U¬Ê³�´�¤aµ>¥�¬d»lÁKª«³·¨¹²i¡±¢«¦{ÁK³�»l¢lª>²i¯y¾Ò¨©²i¤a¯y¡ÎÓ
²i¯y¥�ª>¡±¬d¤a¯y¡£Ál»«¤a¥gª1²i¨©³·¢>¿�²i§±§
³i´�¤yµ>¥�Æl¯a³«®�¥g¬a¬a³�¯n¬�¡±¢B¤yµ>¥4Â�³·Á
¡±¢�² � ¯a³·»>¢lªV¦�¯a³·Á>¡±¢��Ê³·¯yª>¥�¯y¡£¢>¿©²�¬�¬aµ>³~¸�¢E¡£¢& �¡£¿UÃ N>Ã��� ����� �!��QSJ#2{L��Ê<«G~D :Xµ>¥!¢¹¤aµl¥'§±¡£¢l¥!²i¯�¬d¾«¬d¤a¥!¨ç¡­¬�²�¬d¦
¬a¥�¨ÊÁl§£¥gª�Ñ�¤aµl¥BÆl²i¯n²i§±§±¥�§'¬a³�§±¶�¥!¯ �r� ���������Ð¡±¬Ð®�²�§£§±¥!ª�ÃýË�µl¥
¬a³�§±¶�¥�¯�¬d³�´�¤�¸�²�¯a¥�¡­¬ Æl²·¬a¬a¥!ª�¤yµ>¥'®�³F¥�Ü�®�¡±¥�¢F¤�¨¹²~¤y¯a¡£Ó©²�¢lª�¤aµl¥
¥�Ó>®�¡Î¤n²~¤a¡±³�¢2¶�¥g®6¤y³�¯ ? ¬t@�´M¯y³�¨�¤aµ>¥¼®�²�§£§±¡±¢>¿ÙÆ>¯a³·¿�¯n²i¨�ÃëË�µl¥��� ����� �!�¹´M»>¢l®6¤y¡£³·¢X¯a¥�¤a»>¯y¢l¬¹²Ò¨¹²~¤y¯a¡£ÓØ³i´�¬a³�§±»«¤a¡±³�¢l¬ ��³·¢>¥
®�³·§£»l¨�¢Å´M³�¯�¥g²�®nµ1¥�Ó>®�¡£¤y²~¤y¡£³·¢1¶·¥!®6¤y³�¯gÃ3É�"l³~¸�®nµU²i¯a¤'¬dµl³~¸�¦
¡±¢>¿¼¤aµl¥Å¬a¥!ºF»>¥�¢U®�¥&³i´3¬d¤a¥!Æl¬�¡­¬�¬aµ>³~¸�¢Ù¡£¢Ý �¡±¿lÃ 5Í²�¢lªX²

ª«¥�¤n²i¡±§£¥gª¹ª«¥!¬y®�¯y¡±Æ«¤a¡±³�¢©³i´ ��� �������!��¡­¬ Æ>¯y¥!¬a¥�¢F¤a¥gª�¡£¢¹¤yµ>¥�´M³·§Î¦
§£³~¸�¡±¢>¿©¬d¥g®6¤y¡£³·¢SÃ

Operations Requiring 
Interprocessor Communications

Solution(s)

Linear System

Factor Diagonal
Blocks

Calculate and Distribute Subdomain−Boundary
Block Modification Vectors

Factor Subdomain−Boundary Block

Solve System (possibly multiple times)

 �¡±¿lÃ 5«Ã  �§±³~¸�®nµl²i¯a¤�³�´r¤yµ>¥ �r� ����������²�§£¿·³�¯y¡Î¤yµ>¨�Ã
Ë�µ>¥ ��� �������!� ´M»>¢l®�¤a¡±³�¢�®!²i§±§£¥gª©²~´�¤a¥!¯ ¤yµ>¥4¿·§£³·Ál²i§l¬a¾«¬�¦

¤a¥!¨Úµl²�¬�ÁK¥�¥�¢�Àl§±§£¥gª�Ã�è�¤�²·®�®�¥�Æ«¤n¬�¤yµ>¥�§£¡±¢>¥!²�¯�¬d¾«¬d¤a¥�¨Ú²·¬�¡±¢«¦
Æ>»«¤'²�¢lªE¯a¥�¤a»>¯y¢l¬�¤yµ>¥Ê¬a³�§±»«¤a¡±³�¢E¶�¥g®6¤a³·¯ ? ¬k@�Ã�Ë�µ>¥�Àl¯n¬d¤4®�³�¨�¦
Æ>»«¤n²~¤a¡±³�¢Ù¥�ÓV¥g®�»«¤y¥!ªÖÁV¾ ��� ����� �!��¡±¬©¤yµ>¥Bª«¡­²i¿·³�¢l²�§�Ál§£³«®nÌ
´;²�®�¤a³�¯y¡±°!²~¤y¡£³·¢SÃ4Ë�µ>¡­¬4´;²�®6¤y³�¯y¡£°g²~¤y¡£³·¢&¡±¬�¬dµl³~¸�¢B¨¹²~¤aµl¥�¨¹²~¤y¡Î¦
®�²�§£§±¾�¡±¢B¥!ºF»l²i¤a¡±³�¢l¬ ? ÷J@�²i¢lª ? 5�@6Ã�Ë�µ>¡­¬4¬d¤a¥!Æ&¡±¬4ÆU¥!¯d´M³·¯a¨©¥gª
¡£¢©Æl²�¯y²�§£§±¥�§«¸�¡£¤aµ©¢>³�¡±¢F¤a¥!¯aÆ>¯y³«®�¥g¬a¬a³�¯
®�³·¨�¨�»>¢>¡­®�²i¤a¡±³�¢l¬
¢>¥g®6¦
¥!¬y¬a²�¯a¾·Ã
Ë�µl¥E¢l¥�ÓV¤�³�ÆK¥�¯n²~¤y¡£³·¢Ø¡±¢×¤yµ>¥;�r� ����������®�³«ª«¥�¡±¬¹ª«¥�¤a¥!¯d¦

¨©¡£¢>¥gªÒÁF¾1¤aµ>¥�¢F»l¨ÊÁK¥�¯3³�´�Æ>¯y³«®�¥g¬a¬a³�¯n¬4»U¬d¥gª1¤y³B¬d³·§£¶·¥�¤aµ>¥
Æ>¯y³�Á>§±¥�¨�Ã�è�´ ²¹¬a¥�¯y¡±²�§«Â�³�Á�¸�²�¬�¬aÆK¥!®�¡£Àl¥gª�Ñl¡{Ã ¥·Ã£ÑU³�¢>¥�Æl¯a³«®�¥g¬�¦
¬d³·¯�¡­¬�»l¬a¥!ª�ÑU¤aµ>¥!¢�¤aµ>¥3´M³�¯y¸�²�¯yª�²i¢UªÐÁU²�®nÌV¸�²�¯yªE¬a³�§±¶�¥!¬4²i¯y¥
ÆU¥!¯d´M³·¯a¨©¥gªÅ²�¢lªÅ¤aµ>¥�¬a³�§±»«¤y¡£³·¢Å¡­¬�¯y¥�¤a»l¯a¢>¥gªÅ¤a³�¤aµl¥�®�²i§±§±¡£¢>¿
Æ>¯y³�¿�¯n²i¨�Ã :Xµ>¡£§±¥E¤aµ>¥B¬a³�§±»«¤y¡£³·¢×Æ>µU²�¬a¥E³�´4¤yµ>¥&¬d¥!¯a¡­²i§
Â�³·Á
¤y²�Ì�¥!¬4²�ª«¶~²i¢F¤n²i¿�¥�³�´�¤yµ>¥�¬aÆl²�¯y¬a¡Î¤�¾�³i´
¤aµ>¥�¬d¾«¬d¤a¥!¨EÑl¤aµ>¥Ê³�Æ«¦
¥�¯n²~¤y¡£³·¢l¬
²i¯y¥�¯y¥�§­²~¤y¡£¶·¥�§±¾Ê¬d¡±¨©Æ>§±¥�²�¢lª�®�²i¢©ÁK¥�´M³�»>¢lª�¡±¢©¨�³F¬�¤
§£¡±¢>¥g²i¯�²i§±¿�¥!Á>¯n²3¤y¥�ÓV¤y¬!Ã
è�´S¨�»>§£¤a¡±Æ>§£¥�Æ>¯y³«®�¥!¬y¬a³�¯n¬�²i¯y¥�»l¬a¥!ª©¤y³Ê¬d³·§£¶·¥�¤aµl¥4Æ>¯y³�Á>§±¥�¨�Ñ

¤aµ>¥!¢Ò¤aµ>¥¹¬a³�§±»«¤a¡±³�¢ÒÆ>¯y³V®�¥!¬y¬�¡±¬�¨©³�¯y¥©®�³�¨©Æ>§±¡­®�²~¤y¥!ª�Ã¹ �¡±¯y¬d¤!Ñ
¨©³Vª>¡ÎÀU®!²~¤y¡£³·¢l¬
µl²I¶�¥�¤y³�ÁK¥�ÆK¥�¯a´M³�¯y¨�¥gª�³�¢�¤aµ>¥�¬a»>Á_ª«³�¨¹²i¡±¢«¦
ÁU³·»>¢lª>²�¯a¾ÍÁ>§±³«®nÌÍÆ>¯a¡±³�¯�¤a³Ò¡£¤y¬�´;²�®�¤a³�¯y¡±°!²~¤y¡£³·¢SÃÍË�µ>¥Ð¨©³«ªV¦
¡ÎÀK®�²~¤y¡£³·¢2®�³�¨©Æ>»«¤n²~¤y¡£³·¢l¬&²i¯y¥Å³·»«¤a§±¡±¢>¥!ªR¡£¢�¥gº·»U²~¤a¡±³�¢U¬ ? <J@
¤aµ>¯y³�»l¿�µ ? ö'DJ@6Ã�Ër³¹¡±¢l®�¯y¥!²·¬d¥�¤yµ>¥3¥�Ü�®�¡£¥!¢l®�¾Ð³i´
¤aµ>¥Ê¨�³«ª«¡£À>¦
®�²i¤a¡±³�¢¹®�³·¨�¨�»>¢>¡­®�²i¤a¡±³�¢l¬!Ñ·²�¨¹²iÆlÆ>¡£¢l¿3³i´_¤aµl¥�¨©³Vª>¡ÎÀU®!²~¤y¡£³·¢
¶�¥g®6¤a³·¯y¬�¤y³Í¤aµ>¥!¡£¯�ª>¥!¬d¤a¡±¢l²~¤y¡£³·¢×Æ>¯y³«®�¥g¬a¬a³�¯n¬�¡±¬©¨¹²�ª>¥&Æ>¯a¡±³�¯
¤a³�ÁU¥!¿�¡±¢>¢>¡±¢>¿�¤aµ>¥�®�³�¨©Æ>»«¤n²~¤a¡±³�¢U¬�Ã�Ä'¢l®�¥4¤yµ>¥�®�³�¨©¨�»>¢>¡­®�²~¦
¤a¡±³�¢©Æl²i¤d¤a¥!¯a¢¹¡­¬�ÌV¢>³~¸�¢�´M³�¯�¥!²�®nµ©¨©³«ª«¡£ÀU®�²i¤a¡±³�¢©¶�¥g®6¤a³·¯!Ñi¤aµ>¥
®�³·¨�Æl»«¤y²i¤a¡±³�¢l¬�¤n²iÌ�¥©Æ>§­²�®�¥¹²i¢lª1¤aµ>¥�ªl²~¤y²�®!²i¢ÒÁU¥�¬a¥�¢F¤�¤a³
³i¤yµ>¥�¯�Æ>¯y³«®�¥g¬a¬a³�¯n¬�²·¬�¢>¥�¥gª«¥!ªSÃ
Ë�µl¥�¢l¥�ÓV¤�¬�¤y¥�Æ�¡£¢¹²�¨Ê»l§Î¤y¡£Æ>§±¥�¦�Æ>¯y³«®�¥!¬y¬a³�¯UÂ�³�Á©¡±¬�¤y³�´;²�®6¤y³�¯

¤aµ>¥E¬d»lÁKª«³·¨¹²i¡±¢«¦{ÁK³�»l¢lª>²i¯y¾ÒÁ>§£³«®nÌÒ¡£¢F¤y³1»>Æ>ÆK¥�¯©²i¢Uª¼§£³~¸�¥�¯
´;²�®�¤a³�¯n¬!ÃrË�µ>¥ ÀU¯y¬d¤�Æl²�¯d¤�³i´«¤aµl¥�´;²·®6¤a³·¯a¡±°!²i¤a¡±³�¢�´M»>¢l®�¤a¡±³�¢�ÆU¥!¯d¦
´M³�¯y¨¹¬'¬a³�¨©¥ � ÁU³V³·ÌFÌ·¥�¥!Æ>¡£¢l¿��¹³·ÆU¥!¯y²i¤a¡±³�¢l¬'¬d³Ð¤aµl²i¤�²�¨¹²iÆ«¦
Æ>¡±¢>¿¼¡±¬�¨¹²�ª«¥B³�´�¸�µl¡±®nµXÆ>¯y³«®�¥g¬a¬a³�¯¹¬d¤a³�¯y¥!¬�¥!²�®nµX®�³�§±»>¨©¢
²i¢lªÒ¥g²�®nµÍÁ>§±³V®nÌÅ³i´�®�³·§£»>¨©¢l¬ÊË�µ>¥�¬a»>ÁKª>³�¨¹²i¡±¢«¦�ÁU³·»>¢lª>²�¯a¾
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Á>§±³«®nÌ'´;²·®6¤y³�¯y¡£°g²~¤a¡±³�¢3²�§£¿·³�¯y¡Î¤yµ>¨�»«¤a¡±§±¡£°!¥!¬r¤aµ>¥�9��rÉ1/V¦�N�´M»>¢l®6¦
¤a¡±³�¢U¬�¤a³�¥�¢>µl²�¢l®�¥'¤aµl¥�®�³�¨©Æ>»«¤n²~¤y¡£³·¢l²i§_ÆK¥�¯a´M³�¯y¨©²�¢l®�¥·Ã�Ë�µl¥
Á>§±³«®nÌV¬S¤�¾VÆ>¡±®!²i§±§£¾�®�³·¢·¤n²i¡±¢>¥!ª NFþ�®�³·§£»>¨©¢l¬�²iÆ>¡±¥!®�¥�¸�µ>¡­®nµ�¸�²·¬
¬aµ>³~¸�¢X¤a³Ö¯y»>¢Ý¨©³·¬d¤E¥�Ü�®�¡±¥�¢F¤a§±¾Ù³�¢R²���¥!¸�§£¥�¤d¤d¦G-�²�®nÌ~²�¯yª
Æl²�¯y²�§£§±¥�§
¬d¥!¯a¶·¥�¯�¡±¢1¥g²i¯y§£¡±¥�¯4¤a¡±¨©¡£¢>¿�¤a¥g¬�¤n¬�Ã �'»>¯a¡±¢>¿�¤aµ>¥�´;²�®�¦
¤a³·¯a¡±°!²i¤a¡±³�¢�®�³�¨©Æ>»>¤y²~¤y¡£³·¢l¬!Ñi§£³«®!²i§VÆ>¡±¶�³i¤y¡£¢l¿�¡­¬
ÆK¥�¯a´M³�¯y¨�¥gª�¤y³
¥�¢U¬d»>¯y¥�¢V»>¨©¥�¯y¡±®!²i§S¬d¤y²iÁl¡£§±¡Î¤�¾·Ã

:Xµ>¥�¢1¤aµ>¥Ê´;²�®6¤y³�¯y¡£°g²~¤y¡£³·¢&¡±¬'®�³�¨©Æ>§±¥�¤y¥�Ñ�²¹Æl²�¯y²�§£§±¥�§�¬d³·§£»>¦
¤a¡±³�¢E´M»>¢U®6¤a¡±³�¢�¡­¬�®�²�§£§±¥!ª�¤a³¹ÆK¥�¯a´M³�¯y¨ù²�´M³�¯y¸�²i¯nª�²i¢Uª�Ál²·®nÌF¦
¸�²i¯nªB¬d³·§£¶·¥3´M³·¯�¥g²�®nµB¥�Ó>®�¡£¤y²~¤y¡£³·¢B¶�¥g®6¤y³�¯gÃ3Ä'¢l¥�²·ª«¶~²i¢F¤y²�¿�¥
³i´�¤aµl¥3ª«¡£¯y¥!®�¤�¬d³·§£¶·¥�¯�¡±¬�¤aµ>¥3²�Á>¡£§±¡£¤�¾¹¤a³¹¬a³�§±¶�¥�´M³�¯�¨¹²i¢V¾�¥�ÓV¦
®�¡£¤y²i¤a¡±³�¢½¶·¥!®�¤a³�¯n¬3¥�Ü�®�¡±¥�¢F¤a§±¾�ÃÒË�µ>¥�Æl²�¯d¤n¬3³�´�¤aµ>¥�¬d³·§£»>¤a¡±³�¢
®�³·¨©Æ>»«¤y²i¤a¡±³�¢l¬Ð¡±¢F¶·³�§±¶V¡£¢>¿½¤aµ>¥Íª«¡­²i¿�³·¢l²i§'Á>§±³V®nÌ«¬Ð²i¯y¥1ÆK¥�¯a¦
´M³�¯y¨©¥!ªÖ®�³·¨�Æl§£¥�¤a¥�§±¾¼¡±¢×Æl²�¯y²�§£§±¥�§�Á>»>¤�¤yµ>¥�ÆU³·¯d¤y¡£³·¢Ø³�´4¤aµl¥
¬a³�§±»«¤a¡±³�¢½¡±¢V¶�³·§£¶V¡±¢>¿�¤aµ>¥E¬d»lÁKª«³·¨¹²i¡±¢«¦{ÁK³�»l¢lª>²i¯y¾1Ál§£³«®nÌÒ¯a¥�¦
ºF»>¡±¯a¥g¬�²'¢V»>¨�ÁU¥!¯�³i´�®�³·¨�¨�»>¢>¡­®�²i¤a¡±³�¢�´M»>¢l®6¤y¡£³·¢¹®�²i§±§­¬�Ã�Ë�µ>¡±¬
¡­¬�ª«»>¥�¤y³©¤aµ>¥�´;²·®6¤�¤yµl²~¤�¤yµ>¥Êª«¥!¢l¬a¥�Á>§£³«®nÌ�¡­¬�¬d¤a³·¯a¥gªÐ³·¢E²�§£§
³i´�¤yµ>¥�Æ>¯a³«®�¥!¬y¬d³·¯y¬�¡±¢B¤yµ>¥�Â�³·ÁSÃ12�²�®nµ&Æ>¯y³«®�¥!¬y¬a³�¯�ÆK¥�¯a´M³�¯y¨¹¬
¬a³�§±»«¤a¡±³�¢&³·ÆU¥!¯y²i¤a¡±³�¢l¬�³·¢E¤aµ>¥�ª«¡±²�¿�³·¢l²i§�Á>§±³«®nÌ«¬�´M³�¯4³�¢>¥3¥�ÓV¦
®�¡£¤y²i¤a¡±³�¢E¶�¥g®6¤a³·¯!ÑF¯y¥�ÆK¥!²~¤y¡£¢l¿Ê¤yµ>¥�¬�¤y¥�Æl¬�´M³·¯�¥g²�®nµÐ¥�Ó>®�¡£¤y²i¤a¡±³�¢
¶�¥g®6¤y³�¯gÃÒË�µ>¥�¬a³�§±»«¤a¡±³�¢½³·ÆU¥!¯y²i¤a¡±³�¢l¬Ê¸�µ>¡­®nµ¼¤y²�Ì�¥�Æl§±²·®�¥�³·¢
¤aµl¥Ð¬a»>ÁKª>³�¨¹²i¡±¢«¦�ÁU³·»>¢lª>²�¯a¾BÁl§£³«®nÌÒµl²i¢lª>§£¥�²·¬�¨¹²i¢V¾Å¥�Ó>®�¡£¦
¤y²i¤a¡±³�¢×¶�¥!®�¤a³·¯y¬�¬d¡±¨Ê»>§£¤y²�¢>¥�³·»l¬a§£¾¼²�¬Ê¤aµl¥�¯y¥Ð²i¯y¥�Æl¯a³«®�¥g¬a¬a³�¯n¬
¡±¢¼¤aµ>¥3Â�³�ÁSÃ& �¡£¿·»>¯y¥E<�¡£§±§£»U¬�¤y¯y²i¤a¥!¬3¤aµ>¥Ð¬d¥gº·»l¥�¢l®�¥¹³i´�¬�¤y¥�Æl¬
¤y²�Ì�¥!¢�¤a³�ÆK¥�¯a´M³�¯y¨R¤aµ>¥�¬d³·§£¶·¥ ³�¢�¤yµ>¥�¬a»>Á_ª«³�¨¹²i¡±¢«¦�ÁU³·»>¢lª>²�¯a¾
Á>§±³«®nÌ�´M³�¯�´M³·»>¯�¥�Ó>®�¡Î¤n²~¤a¡±³�¢E¶�¥g®6¤y³�¯n¬�Ã

0 1 2 3

Processor Number

First Step

First Right-Hand Side

Second Right-Hand Side

Third Right-Hand Side

Fourth Right-Hand Side

Second Step

Third Step

Fourth Step

Fifth Step

Final Step

 �¡±¿lÃ�<>Ã>/«»>ÁKª>³�¨¹²i¡±¢«¦�ÁU³·»>¢lª>²�¯a¾�Ál§£³«®nÌ�¬a³�§±¶�¥·Ã

Ë�µl¥ëÀU¯y¬d¤ù¬�¤y¥�Æ ¡£¢ ¤yµ>¥ðÆl²i¯n²i§±§±¥�§X¬d³·§£»>¤a¡±³�¢ ³�¢Õ¤aµ>¥
¬d»lÁKª«³·¨¹²i¡±¢«¦{ÁK³�»l¢lª>²i¯y¾©¨¹²~¤a¯y¡£Ó�¡±¬�¤aµU²~¤�Æ>¯y³V®�¥!¬y¬d³·¯8D�¬�¤n²i¯a¤y¬
¸�¡Î¤yµ�¤aµ>¥4¬a³�§±¶�¥�³·¢Ê¤yµ>¥�ÆK³�¯a¤a¡±³�¢�³i´K¤aµ>¥�¨¹²i¤a¯y¡ÎÓÊ¡±¢©¡Î¤n¬ ¨©¥�¨�¦
³�¯y¾�Ã :Xµl¥�¢Ùî0-8� D&µU²�¬�ª«³�¢>¥E²i§±§�³�´�¤aµ>¥E®�³·¨�Æl»«¤y²i¤a¡±³�¢l¬
¡Î¤�®�²i¢�³·¢&³�¢>¥�¯y³~¸R³�´�¤yµ>¥3¨¹²~¤y¯a¡£Ó�Ñ>¤yµ>¥Êª>²i¤y²©¡­¬�Æl²·¬a¬a¥!ªÐ¤a³
î0->�Úö3²�¢lª1î0->� D�¬�¤n²i¯a¤y¬�¸�³�¯yÌV¡£¢l¿�¸�¡£¤aµB¤aµ>¥3¢l¥�ÓV¤4¥�Ó>®�¡Î¦
¤y²i¤a¡±³�¢�¶·¥!®�¤a³�¯gÃQ:Xµ>¥�¢Bî0->�$ö4¡­¬�ª«³�¢>¥�¸�¡£¤aµE¡Î¤n¬�®�³�¨©Æ>»«¤n²~¦
¤a¡±³�¢l¬�³·¢B¤yµ>¥©Àl¯n¬�¤�¯a¡±¿�µF¤a¦{µl²�¢lª1¬a¡­ª«¥�Ñ�¤yµl²~¤3ª>²i¤y²E¡­¬'ÆU²�¬y¬d¥gª
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²~Ï_¥!®�¤a¥gª1ÁV¾&§±³·²�ª1¡£¨�Ál²i§­²i¢U®�¥�¬a¡±¢l®�¥�¤aµ>¥¹®�³�§±»>¨©¢l¬�²i¯y¥�ª«¡­¬�¦
¤a¯y¡±Á>»«¤a¥gªÒ¡£¢¼²EÁ>§±³V®nÌF¦�®�³·§£»>¨©¢Å¸�¯y²�Æ>ÆU¥gª1¨¹²�¢>¢>¥�¯�¤y³&²i§±§�³i´
¤aµl¥�Æ>¯a³«®�¥!¬y¬d³·¯y¬�¡£¢E¤yµ>¥�Â�³�ÁSÃ É4¢V¾�ª«¡£ÏK¥!¯a¥!¢l®�¥g¬�¡£¢Ð¤aµl¥�¢F»l¨�¦
ÁK¥�¯�³�´�®�³·§£»l¨�¢U¬¹²�¬y¬d¡±¿�¢>¥gªØ²ÅÆ>¯y³V®�¥!¬y¬d³·¯�µU²�¬¹²Ò¢>¥�¿·§£¡±¿�¡±Á>§±¥
¡±¨�ÆU²�®6¤�³·¢�¤yµ>¥�´;²�®�¤a³·¯a¡±°!²i¤a¡±³�¢Ð¤a¡±¨�¥·Ã
Ë�µ>¥Å§±³·²·ªX¡±¨ÊÁl²�§±²�¢l®�¥Å¡£§±§£»U¬�¤y¯y²i¤a¥!ªÔµ>¥�¯y¥1ÆK³�¡±¢F¤y¬Ð¤a³×¤aµl¥

¢>¥!¥!ªÅ´M³�¯3¨©³·¯a¥�¤aµl³�¯y³�»>¿·µÅ¡±¢V¶�¥!¬d¤a¡±¿·²i¤a¡±³�¢Å¡£¢F¤a³�¿·¯y²�Æ>µÅÆU²i¯a¦
¤a¡£¤a¡±³�¢l¡£¢>¿¹¬a³i´�¤�¸�²i¯y¥'¡­¬y¬d»>¥g¬�²�¬�¸�¥!§£§S²·¬�¤aµ>¥�¢>¥!¥!ª�¤a³©¥�Ó«Æ>§±³�¯y¥
²i§£¤a¥!¯a¢U²~¤a¡±¶�¥g¬
¤a³Ê»l¬d¡±¢>¿�¤yµ>¥4³·¢>¥�¦�¸�²I¾Êª«¡­¬a¬a¥!®�¤a¡±³�¢¹¯y¥�³�¯nª«¥!¯a¡±¢>¿
³�¢E¤yµ>¥3ª«¡­²i¿�³·¢l²i§_Á>§±³«®nÌ«¬�Ã

Y�A W'D·G�2�DV�iLg9^4ÝYÊJKO�P 9��iLg8;O o Y 4S9:8;O�P�DFG
Ë�µ>¥3Àl¯n¬d¤4¥�§±¥!®�¤a¯y³�¨¹²i¿·¢>¥�¤y¡±®�¬y®�²i¤d¤a¥!¯a¡±¢>¿�Æl¯a³·Á>§£¥!¨ë³�´�¡£¢«¦

¤a¥!¯a¥g¬�¤ ¡­¬ ²�¢�¡±¢«Àl¢>¡£¤a¥4ÆU¥!¯d´M¥g®6¤a§±¾�®�³�¢lª>»l®6¤y¡£¢>¿�®�¾F§±¡±¢lª«¥�¯gÃ
Ë�µ>¡±¬
¡­¬Ê²&¬d¤y²i¢Uª>²i¯nª � ¤a¥�ÓV¤aÁK³F³·Ì �ÐÆl¯a³·Á>§£¥!¨ò¸�¡£¤aµ½²�¸�¥�§±§Î¦�ÌV¢>³~¸�¢
¬a¥�¯y¡£¥g¬�¬d³·§£»>¤a¡±³�¢X®�³·¨�ÆK³·¬a¥!ªÖ³�´ 9�¥!¬y¬a¥�§4²�¢lª��4²i¢lÌ�¥�§�´M»>¢l®6¦
¤a¡±³�¢U¬�Ã
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 �¡±¿lÃUþKD>Ã -
¥�¯a´M¥!®�¤a§±¾�®�³�¢Uª«»l®6¤y¡£¢l¿�®�¾V§£¡±¢lª«¥!¯!Ã

Ë�µ>¥�¿�¥�³·¨©¥�¤a¯y¾3®�³·¢l¬a¡±¬d¤y¬�³i´_²4ÁK³IÓÊ®�³·¢F¤y²i¡±¢>¡±¢>¿�²�®�¾V§£¡±¢lª«¥!¯
¸�¡£¤aµ¼²Ðª>¡±²�¨�¥�¤a¥!¯�³�´0D V ÿ �ÅÃ©Ë�µ>¥©®�¥!¢·¤y¥�¯�³�´ ¤aµ>¥�®�¾V§£¡±¢lª«¥!¯§±¡£¥g¬�²i¤�¤yµ>¥�³�¯y¡£¿·¡£¢ ? ¬d¥!¥' �¡±¿lÃ�þ"DO@6Ã
Ë�µ>¥�¡£¢F¤a¥!¯a¡±³�¯�³i´�¤yµ>¥�ÁU³IÓ
¡­¬8N V D �ó§£³·¢>¿3¬a³Ê²�¬ ¤a³Ê®!²iÆ«¤y»>¯a¥�¤aµ>¥4¬d¤y²�¢lª«¡±¢>¿3¸�²I¶�¥�¡±¢¹¤aµl¥
¡±¢l®�¡­ª«¥�¢F¤ ? a � ª«¡±¯y¥!®6¤y¡£³·¢3@
²i¢Uª�¤aµ>¥4¬aµl²·ª«³~¸ ? � � ª«¡±¯a¥g®6¤a¡±³�¢#@
¯y¥�¿�¡±³�¢U¬¹³i´�¤aµl¥1¬d³·§£»>¤a¡±³�¢Xª«³�¨¹²�¡£¢SÃÈÉð§­²I¾�¥!¯¹³i´3²i¯a¤a¡£ÀU®�¡±²�§

²iÁl¬a³�¯yÁK¥�¯ ? ->4 � @�D V N �ï¤aµl¡±®nÌ&¡­¬4Æl§±²·®�¥!ª&²i¤'¤yµ>¥Ê¥gª«¿�¥g¬4³�´
¤aµ>¥ÐÁU³IÓ½¬a»>¯y¯a³·»>¢lª«¡±¢>¿�¤aµl¥E®�¾F§±¡±¢lª«¥�¯gÃ1Ë�µ>¥ ->4 �X¯a¥!¿�¡±³�¢l¬
²i¯y¥Ê¬aµ>³~¸�¢&¡£¢1¿�¯y¥�¾�Ã'Ë�µ>¥3¤y³�Æ1²�¢lª&ÁK³i¤d¤y³�¨*Æ>§­²i¢>¥g¬�³�´�¤aµ>¥
ÁU³IÓ�Ñ>²i¤ � > a

D V PFÿ �ò²�¢lª � > � D V PFÿ �ÒÑ>²i¯y¥�®�³~¶�¥!¯a¥gª¹¡£¢->2�î'Ã
 l³�¯�¤aµl¥�¤a¥!¬d¤y¬©¯y»>¢Ö¡£¢×¤aµl¡±¬¹¬a¥!®�¤a¡±³�¢SÑ�¤aµ>¥&®�¾F§±¡±¢lª«¥�¯¹¸�²�¬

¡£§±§±»>¨©¡£¢l²i¤a¥gªÐÁV¾�²�¢�¡£¢l®�¡±ª>¥�¢F¤�Æ>§­²i¢>¥�¸�²I¶�¥�³i´�¤aµ>¥�´M³·¯a¨�Ñ
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¡±¬�ÁK¥�¡±¢>¿&¨©³«ª«¥�§±¥!ªÍ²·®�®�»l¯y²i¤a¥�§±¾�Ã©Ë�µ>¥©Àl¯n¬d¤d¦�³�¯nª«¥�¯�¤a¥g¬�¤3¸�²�¬
¯a»l¢Ð¸�¡£¤aµ�÷�÷lÑ þ>öON�Àl¯n¬d¤d¦�³�¯nª«¥�¯�¥�§±¥�¨©¥�¢F¤n¬�²i¢lª <�÷lÑ <Fþ�P3¥gª«¿�¥g¬�Ã
Ë�µ>¥4¥!§£¥g®6¤y¯a¡­®�ÀU¥�§­ª¹¸�²·¬�¬y²i¨©Æ>§±¥!ª�¡£¢�¤�¸�³�ª«¡£¯y¥!®�¤a¡±³�¢l¬�¬dµl³~¸�¢
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Ë�µl¥�Àl¥�§­ª¹¡±¢¹¤aµl¥�¯y²·ª«¡­²i§Uª>¡£¯y¥!®�¤a¡±³�¢©¡±¬�®�³·¨©Æ>»«¤a¥gª¹²~¤4ö'DKD�D
Æ>§­²�®�¥g¬ ²i§±³�¢l¿�¤aµ>¥�ÓV¦�²~Ó«¡­¬
³i´_¤aµ>¥4ÁU³IÓ¹®�³·¢·¤n²i¡±¢>¡±¢>¿�¤aµ>¥'®�¾V§£¡±¢«¦
ª«¥�¯gÃ�Ë�µl¥�¨¹²i¿·¢>¡Î¤y»lª«¥�²i¢lª�Ælµl²�¬a¥�®�³�¨©ÆU³·¢>¥�¢F¤n¬S³i´«¤yµ>¥�¤a³i¤n²i§
Àl¥�§­ªÊ²�¯a¥�¬dµl³~¸�¢3¡£¢© �¡£¿UÃ�þ·þ«Ã�Ë�µl¥�¬a³�§±¡±ªÊ§£¡±¢>¥�¡±¬�¤yµ>¥�¬a³�§±»«¤y¡£³·¢
®�³·¨�Æl»«¤a¥gª¹»l¬a¡£¢>¿Ê¤aµ>¥ �r� 4����2¬a³i´�¤�¸�²i¯y¥�¸�µ>¡±§£¥4¤aµ>¥�ª>²�¬aµ>¥gª
§£¡±¢>¥�¯y¥�Æ>¯y¥!¬a¥�¢F¤n¬�¤yµ>¥3¬a¥�¯y¡£¥g¬�¬a³�§±»«¤y¡£³·¢SÃ
Ë�µl¥ Àl¥!§±ª�¡±¢�¤yµ>¥���ª«¡±¯a¥g®6¤y¡£³·¢�¡±¬�®�³·¨�Æl»«¤a¥gª3²~¤CN·÷KD�²�¢>¿�§±¥!¬? ³·¢>¥�¦�ª«¥�¿·¯a¥!¥�¡£¢U®�¯y¥�¨©¥�¢F¤y¬t@�¡±¢1²�®�³�¢l¬d¤y²�¢F¤4¯y²·ª«¡±»l¬4®�¥�¢F¤a¥!¯a¥gª

²iÁK³�»«¤r¤aµ>¥�®�¾V§£¡±¢lª«¥!¯y¬S²iÓ«¡±¬!ÃrË�µ>¥�ÀU¥�§­ª�ÆU³·¡£¢F¤y¬�²i¯y¥�®�³�¨©Æ>»>¤a¥!ª
²~¤©®�³�¢U¬�¤n²i¢F¤�ª«¡­¬�¤n²i¢l®�¥�³�´�D V P��Û´M¯y³�¨ñ¤yµ>¥E®�¥�¢F¤a¥!¯Ê³�´�¤aµ>¥
®�¾V§±¡£¢lª>¥�¯gÃ�Ë�µ>¥�¨¹²�¿�¢>¡£¤a»lª>¥�²i¢lª�Æ>µl²·¬d¥�®�³�¨©ÆU³·¢>¥�¢F¤n¬
³i´K¤aµ>¥
¤a³�¤y²i§�Àl¥!§±ªÅ²i¯y¥�¬aµ>³~¸�¢B¡±¢Ò �¡±¿lÃÊþKN>Ã�Ë�µ>¥©¬d³·§£¡­ªB§±¡£¢l¥�¡­¬'¤aµ>¥
¬d³·§£»>¤a¡±³�¢3®�³·¨©Æ>»«¤a¥gª�»l¬a¡£¢l¿�¤aµ>¥ �r� 4����Ö¬a³i´�¤�¸�²i¯y¥�¸�µ>¡±§£¥�¤aµ>¥
ª>²�¬aµ>¥gª�§±¡£¢l¥�¯a¥!Æ>¯a¥g¬d¥!¢F¤y¬�¤aµ>¥3¬a¥�¯y¡±¥!¬�¬a³�§±»«¤a¡±³�¢SÃ
Ë�µl¥�¯y¥�²i¯y¥�²�®�³·»>Æ>§±¥�³�´l¡±¨�ÆK³�¯a¤y²�¢F¤�®�³·¢l¬a¡±ª«¥!¯y²i¤a¡±³�¢l¬r¸�µ>¥�¢

ª«¥�¤y¥�¯y¨©¡£¢>¡±¢>¿�µ>³~¸Øª>¥�¢l¬a¥�¤a³�¨¹²iÌ�¥�²'¨�¥g¬dµrÃ�Ë�µ>¥�Àl¯n¬d¤
¡­¬y¬d»>¥
¡±¬3¤aµl²i¤Ê¤yµ>¥�¥!§£¥g®6¤a¯y¡­®©Àl¥�§­ª¼µl²·¬�¤y³BÁU¥Ð¨©³Vª>¥�§±¥!ª½®�³�¯y¯a¥g®6¤a§±¾�Ã
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 �¡£¿UÃUþ"NlÃ 4B²i¿·¢>¡£¤a»lª«¥3²�¢lªÐÆ>µl²�¬a¥�Æ>§±³i¤n¬�´M³�¯�¤yµ>¥�Àl¯n¬�¤a¦{³·¯yª«¥!¯
¨©¥!¬aµSÑl®�¾F§±¡±¢lª«¯y¡±®!²i§S¬y®�²~¤a¤a¥!¯a¥!¯ ? Æ>µ>¡rª>¡£¯y¥!®�¤a¡±³�¢3@�Ã
Ë�µ>¡­¬�¡±¬y¬d»l¥�¸�²�¬�²�ª>ª«¯y¥!¬y¬a¥!ª�¸�¡£¤aµÊ¤aµ>¥�Æl²i¯n²i§±§±¥�§£¦{Æ>§­²~¤y¥�¸�²I¶�¥!¿i¦
»>¡­ª«¥�²�¢lª�¡£¤�¸�²�¬S´M³�»>¢lª�¤aµl²i¤�¯y¥!²�¬a³�¢U²iÁ>§±¾4²�®!®�»>¯n²~¤y¥�²i¢U¬d¸�¥�¯n¬
¸�¥�¯y¥Ê³�Á>¤y²i¡±¢>¥gª&»l¬a¡£¢>¿1ögþI¦nö�P¹¥gª«¿�¥g¬4ÆK¥�¯�¸�²I¶�¥�§±¥�¢l¿i¤aµrÃ���¢«¦
´M³�¯a¤a»l¢l²~¤y¥�§±¾�Ñ ¸�µ>¡±§±¥Ð²B¨©¥g¬dµ×¸�¡Î¤yµ½¤aµl¡±¬©ª«¥!¢l¬d¡£¤�¾ÍÆ>¯y³Vª>»l®�¥g¬
¿�³V³«ª¼²i¢U¬d¸�¥�¯n¬�³�¢½²B¯a¥g®6¤y²�¢>¿�»l§±²�¯3¿�¥!³�¨©¥�¤y¯a¾·Ñ�¡£¤�ª«³V¥g¬3¢>³�¤
²�®!®�»>¯n²~¤y¥�§±¾Å¨©³«ª«¥!§�¤yµ>¥�®�»>¯y¶~²~¤a»l¯a¥�³�´�¤aµl¥Ð®�¾V§±¡£¢Uª«¥�¯gÃÒË�µl¥
¨©¥!¬aµ½¿�¥!¢>¥�¯n²~¤y³�¯�»l¬a¥!ªÍ¡±¢Í¤aµl¡±¬�¯a¥g¬d¥g²i¯n®nµÒ²�§£§±³~¸�¬3²&ÆK¥�¯n¬a³�¢
¤a³Ð®nµ>³V³·¬a¥�²¹ª>¡ÎÏ_¥�¯y¥�¢F¤�¨©¥!¬aµ&ª«¥�¢l¬a¡£¤a¡±¥!¬�¡±¢&ª«¡£ÏK¥!¯a¥!¢·¤'Æ>§±²·®�¥g¬
¡±¢X¤aµ>¥Í®�³·¨©Æ>»«¤y²i¤a¡±³�¢l²�§'ª«³·¨¹²i¡±¢SÃê >³·¯�¯y¥!¬a»>§£¤y¬�¬aµ>³~¸�¢X¡±¢
 �¡£¿F¬�ÃBþKNE¤aµ>¯y³�»>¿·µ½þ�ÿ«Ñ�²&¨©¥!¬aµ½ª«¥�¢U¬d¡£¤�¾1³�´�ög÷�¥!ª«¿·¥!¬�ÆK¥�¯
¸�²I¶�¥�§±¥�¢l¿i¤aµÒ¸�²�¬�»l¬a¥!ªÍ¢l¥!²i¯�¤yµ>¥�¬a»>¯a´;²�®�¥¹³�´�¤aµ>¥�®�¾V§£¡±¢lª«¥!¯
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Abstract − An analytic solution to the problem of 
scattering of a plane electromagnetic wave by a lossy or 
lossless dielectric confocal elliptic shell loading a semi-
elliptic channel is derived. The incident, scattered and 
transmitted fields in every region are expressed in terms 
of complex Mathieu functions. Applying the boundary 
conditions at various faces and interfaces along with the 
partial orthogonality properties of angular Mathieu 
functions, the unknown scattered and transmitted field 
coefficients are obtained. The presented numerical 
results show a good agreement with the published data 
especially for the case of a lossless dielectric shell 
loading a semi-circular channel.  
 

I.   INTRODUCTION 
 

The electromagnetic scattering from grooves, 
channels and cracks have been investigated by many 
researchers. The investigations have shown that when 
these structures are loaded with dielectric materials, the 
overall scattering patterns significantly change and thus 
it is important to obtain an analytic solution to predict 
the new scattering behavior of the target.  

Lately, there have been many analytic studies 
available in the literature on the scattering by hollow 
and lossless dielectric loaded semi-circular or elliptic 
channels [1-9].  Most of these studies were based on the 
exact series eigen-function solution. On the other hand, 
numerical solutions based on the coupled integral 
equations for the induced currents were obtained by 
Senior et. al. [10-11]. 

To the best of our knowledge, there has been no 
analytical or numerical solution to the problem of 
scattering from a lossy or lossless dielectric elliptic 
shell loading a semi-elliptic channel in a ground plane.   

In this paper, we present the solution to the 
scattering by a semi-elliptic channel loaded by two 
lossy dielectric layers.  The presented solution will be 
the most general one available in the literature and the 
special lossless circular case may be deduced by 
making the axial ratios almost equal to unity [5], while 

the lossless dielectric coated conducting elliptic 
cylinder may be deduced by making the relative 
permittivity of the inside dielectric layer very high [9].  

 
II.   THEORY 

 
Consider the case of a linearly polarized 

electromagnetic TM plane wave assumed to be incident 
on a lossy or lossless dielectric elliptic shell loading a 
semi-elliptic channel in a ground plane at an angle 

iφ with respect to the x axis, as shown in Fig. 1. The 
major axis of the outer dielectric coating is denoted by 
a2 and the minor axis is denoted by b2.  Furthermore, the 
major axis of inner dielectric elliptic cylinder is denoted 
by a1 and the minor axis is denoted by b1. The ground 
plane is assumed to be perfectly conducting. 

Fig. 1. Scattering geometry of a semi-elliptic channel in 
a ground plane loaded by a lossy or losslessconfocal 
dielectric elliptic shell.  

 
The time dependence tje ω  is assumed and omitted 
throughout. The elliptical coordinate system (u,v,z) is 
defined in terms of the Cartesian coordinate system 
(x,y,z) by )cos()cosh( νuFx = and )sin()sinh( νuFy = , 
where F is the semi focal length of the elliptical cross 
section [12]. The electric field component of the TM 
polarized plane wave of amplitude 0E  is given in terms 
of polar coordinates ρ , φ  by, 

)cos( ieEE jk
o

i
z

φφρ −=                       (1) 
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where k=2 λπ /  and λ  is the wavelength. The 
incident electric field may be expressed in terms of 
Mathieu functions in elliptic cylindrical coordinatesξ , 
η as follows [12], 
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om
emA  and )( o

om
em cN  are defined in [9], kFco = , mSe  

and mSo  are the even and odd angular Mathieu 
functions of order m, respectively, )1(Re m  and )1(

mRo  are 
the even and odd radial Mathieu functions of the first 
kind of order m, while emN  and omN are the even and 
odd normalized constants of order m. It should be noted 
that ucosh=ξ  and νη cos=  [12]. The reflected field 

( 1ξξ >  and πη ≤≤0 ) due to the presence of the 
ground plane can bewritten as,  
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The scattered field ( 1ξξ >  and πη ≤≤0 ) due to the 
presence of the channel can be written as, 
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where omB  are the unknown odd scattered field 

expansion coefficients and )4(
mRo  is the odd radial 

Mathieu function of the fourth kind.  The transmitted 
electric field inside the outer dielectric layer 
( 21 ξξξ ≤≤ ) can also be written also in terms of 
Mathieu functions as, 
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where Fkc 11 = , 
11 rkk ε= , ''

1
'
11 rrr jεεε −= , emC , emD  

and omC , omD are the even and odd unknown 
tansmitted field expansion coefficients, and )2(Re m

 and 

)2(
mRo  are the even and odd radial Mathieu functions of 

the second kind [12]. Furthermore, the transmitted 
electric field inside the inner dielectric layer ( 20 ξξ ≤≤ ) 
can also be expressed in terms of Mathieu functions as,  
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where Fkc 22 = , 22 rkk ε= , ''
2

'
22 rrr jεεε −=  while 

emG  and 
omG  are the even and odd unknown transmitted 

field expansion coefficients. The magnetic field in 
every region can be obtained using Maxwell’s 
equations. The unknown field expansion coefficients 
given in equations (4) to (6) are yet to be determined 
using the boundary conditions. The boundary 
conditions at 2ξξ =  require the tangential electric and 
magnetic field components in the inner and outer 
dielectric layers to be continuous. Enforcing this 
boundary condition along with orthogonality property 
of the angular Mathieu functions, we obtain  
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where  
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The prime in equation (8) denotes derivative with 
respect to u . Similar equations can be written 
corresponding to the odd solution. To eliminate Gen, we 
solve for Gen from equation (8) and substitute into 
equation (7). This leads to  
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We can write a similar equation for the odd solution, 
i.e, 
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The boundary condition at 1ξξ = ( πηπ 2<< ) requires 
the tangential electric field component to vanish at 
surface, and the total tangential electric and magnetic 
field components to be continuous across the interface 
at 1ξξ =  ( πη <<0 ). Enforcing these boundary 
conditions along with the partial orthogonality property 
of the angular Mathieu functions, we get  [7, 9] 
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Equations (13) to (15) are evaluated for m=0,1,2… and 
n=0,1,2,.... In case of co=c1, equation (16) reduces to 
Wmn=

mnδπ )0.2/( , where mnδ  is the Kronecker delta. 
Equations (10), (11), and (13) to (15) may be written in 
matrix form to solve for the unknown scattered and 
transmitted field expansion coefficients [9]. 
The lossy case requires the computation of Mathieu 
functions with complex argument and more details on 
the computation of Mathieu function can be found in 
[13-14]. 
 

III.   NUMERICAL RESULTS 
 

The scattered near and far fields can be calculated 
once the scattered field expansion coefficients are 
computed. The scattered far field expression may be 
written as follows, 
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In order to solve for the unknown scattered field 
coefficients, the infinite series are first truncated to 
include only the first N terms, where N in general is a 
suitable truncation number proportional to the channel 
electrical size. In the computation, the value of N has 
been chosen to impose a convergence condition that 
provides solution accuracy with at least four significant 
figures, The accuracy of the numerical results is checked 
against the special case of a semi-circular channel 
loaded with a lossless dielectric shell [4].  
Figure 2 shows the normalized backscattered field 

|)cos,(| iocP φ  for a lossy or lossless dielectric shell 
loading a semicircular channel versus ka2 with ka1=1.0, 
a1/b1=1.0, εr1 = 1.5, εr2 = 12 and φi = 90o. The solid line 
represents the calculated numerical results while the 
circled curve represents the solution in [4]. For example, 
the convergence for this is achieved for N=9. It can be 
seen that the calculated results agree very well with [4] 
for ka2 < 3.2, the range given by [4].  Further, high peak 
resonances occur at different values of ka2 and the 
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amplitude of these peaks becomes even larger with the 
channel size. The strong resonant behavior may be due 
to the multiple scattering between the circular shell and 
channel. Finally, the dotted line represents the lossy 
dielectric case with εr1 = 1.5- j0.5 and εr2 = 12-j0.5. For 
example, the convergence for this is achieved for N = 7. 
The presence of lossy material seems to have little effect 
on the normalized backscattered field especially for ka2 
< 2.0, and attenuates the amplitude of the high peak 
resonances for ka2 > 2.0. Figure 3 shows the normalized 
backscattered field for a lossy or lossless confocal 
dielectric elliptic shell loading a semi-elliptic channel 
versus the major axis of electrical size ka2 . The major 
axis electrical size of the inner elliptic dielectric shell is 
kept constant at ka1=1.0 with axial ratio a1/b1=1.43 and 
φi = 90o. The solid line represents the lossless dielectric 
case, εr1 = 3.0 and εr2 = 5.0. The circled line represents 
the weakly lossy case, εr1 = 3.0-j0.1 and εr2 = 5.0-j0.1, 
while the dotted curve represents the strongly lossy case 
of εr1 = 3.0-j0.5 and εr2 = 5.0-j0.5.    
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Fig. 2. Normalized backscattered field versus electrical 
size ka2 for a lossy or lossless dielectric circular shell 
loading a semi-circular channel with ka1=1.0, a1/b1=1.0 
and φi = 90o. 
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Fig. 3. Normalized backscattered field versus electrical 
size ka2 for a lossy or lossless confocal dielectric 
elliptic shell loading a semi-elliptic channel with 
ka1=1.0, a1/b1=1.43 and φi = 90o. 

In Fig. 4 we have plotted the normalized echo pattern 
width |)cos,(| φocP against the scattering angle φ  for a 
lossy or lossless dielectric circular shell loading a semi-
circular channel with ka1=2.0, a1/b1=1.0, ka2=2π , 
a2/b2=1.0 and φi =60o. The solid line represents the 
lossless case with εr1 = 4.0, εr2  = 2.0. A strong resonance 
with high amplitude is located at φ =120o, as expected, 
in addition to other resonances located at φ =40o and 90o. 
It seems that the presence of lossy dielectric material has 
little effect on the amplitude of the resonance at φ =120o 
while strong effect may be observed on the amplitude of 
the resonances located at φ = 40o and 90o.  Figure 5 
shows normalized echo pattern width for a lossy or 
lossless dielectric elliptic shell loading a semi-elliptic 
channel with ka1=5.73, a1/b1=5.73, ka2=2π , a2/b2=2.3 
and φi = 60o. The solid line represents the lossless case, 
εr1 = 4.0, εr2 = 2.0, which seems to have strong 
resonances at different scattering angles and the 
strongest resonance peak is located at φ = 120o. It can 
also be observed that the presence of the lossy dielectric 
material has a significant effect on the amplitude of the 
high peaks resonances, but has no effect on the location 
of resonances.   

Figure 6 shows the normalized backscattered far 
field versus the incident angle φi for a lossy or lossless 
dielectric elliptic shell loading a semi-elliptic channel 
with ka1=2.0, a1/b1=2.0, ka2=4.36 and a2/b2=1.1.  It 
seems that the normalized backscattered field of the 
elliptical channels is highest at the incident angle φi = 
90o. It can also be observed that the presence of lossy 
dielectric material has shifted the resonance peaks at φi = 
30o and 55o. 
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Fig. 4. Normalized scattered field versus the scattering 
angle φ for a lossy or lossless dielectric circular shell 
loading a semi-circular channel with ka1=2.0, a1/b1=1.0, 
ka2 = 2π , a2/b2 = 1.0 and φi = 60o.  
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Fig. 5. Normalized scattered field versus the scattering 
angle φ for a lossy or lossless dielectric elliptic shell 
loading a semi-elliptic channel with ka1 = 5.73, a1/b1 = 
5.73, ka2 = 2π , a2/b2 = 2.3 and φi = 60o.  
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Fig. 6. Normalized backscattered field versus the 
incident angle φi for a lossy or lossless dielectric elliptic 
shell loading a semi-elliptic channel with ka1 = 2.0, 
a1/b1 = 2.0, ka2 = 4.36, a2/b2 = 1.1. 
 
 

IV.    CONCLUSIONS 
 

An analytical solution and numerical results for the 
electromagnetic scattering by a lossy or lossless 
dielectric circular or elliptic shell loading a semi-
circular or semi-elliptical channel in a ground plane is 
obtained. The presence of lossy or lossless dielectric 
shell has significantly affected the appearance and 
attenuation of the channel resonances. Finally, the 
presented solution is the most general one available in 
the literature and special cases can be deduced by 
choosing the appropriate axial ratio and dielectric 
constant.     
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Abstract − Numerical computer simulations using the 
NEC Method of Moments (MoM) code were performed 
on wire grid models of resonant cavities in order to 
study how well conductive structures and their surface 
impedances can be modeled by wire meshes. The 
resonant cavity quality factor, or Q, was examined due 
to its high sensitivity to surface impedance. Several 
half-wave coaxial cavities were simulated using various 
mesh element sizes.  The cavities’ outer conductor 
radius was varied to obtain different geometries.  The 
quality factor Q was determined from the simulated 
input impedance spectra. The wire grid model results 
were compared to well known theoretical and 
experiment results. Qualitative agreement between 
simulation, theoretical, and experimental results was 
achieved for fixed mesh parameters, giving confidence 
in comparative simulation using the same wire grid 
meshing parameters.  Quantitative agreement of 
simulation results was achieved through repeated 
simulation with varying mesh element lengths and 
extrapolating the simulation results to a conceptual 
mesh element length of zero. This shows that 
simulations to determine quantities sensitive to surface 
impedances can be successfully performed with codes 
such as NEC. 
 
Key words − Wire grid modeling, method of moments, 
extrapolation, and surface impedance. 
 

I. INTRODUCTION 
 
A resonant cavity’s quality factor, Q, is highly 
dependent on the surface impedance, Rs, of the cavity’s 
interior conducting surface. Numerical simulation of 
well understood cavities can serve to investigate 
numerical techniques employed to model conductive 
surfaces and their impedances.  Once shortcomings of a 
particular numerical modeling technique are 
determined, they can often be compensated for and 
hence result in more accurate simulation results. These 
techniques can then be applied with confidence to the 
simulation of more complicated resonant structures for 

which analytical solutions are not readily available.  In 
this paper, the well known quality factor of cylindrical 
half-wave coaxial cavity resonators was investigated, to 
determine how well wire grid models can represent 
conductor surfaces in resonant cavity structures. 
 

II.   THEORETICAL BACKGROUND ON 
QUALITY FACTOR OF HALF-WAVE 

RESONANT COAXIAL CAVITIES 
 
A basic definition of quality factor, Q, for a resonant 
structure is given in equation                         (1). For the 
case of an electromagnetic half-wave coaxial cavity 
resonator, the energy stored, ES, can be calculated 
through equation (2, the integral over the cavity 
volume, V, of the magnetic-field intensity, H. The 
energy dissipated per cycle, ED, is given by equation        
(3), the surface integral of the ohmic losses due to the 
surface current density Js, over the interior cavity 
surface area, A.  The Q of a resonant cavity is often 
normalized with respect to the wavelength, λ, and 
conductor skin depth, δ, as shown in equation                 
(4), and is then referred to as the cavity form factor [1], 
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Since the fields in a half-wave long resonant cavity are 
standing transverse electromagnetic (TEM) waves, the 
time average magnetic-field intensity, H, which is 
strictly in the φ-direction for this mode, is known to be 
of the form given in equation           (5) where C is a 
constant and z0 is the length of the cavity as shown in 
Fig. 1. 
 
 

 

Fig. 1.  Coaxial cavity geometry with inner radius, a, 
outer radius, b, and length, z0. 
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Substituting H into equation                 (4) and 
evaluating, provides results shown in equation         (6) 
for the form factor of a half-wave coaxial cavity [1].  
Note that this quality factor is the unloaded quality 
factor, Qu, which does not include losses due to a 
coupling structure or associated source impedance.  If 
simulations of wire grid representations of such coaxial 
cavities result in quality factors predicted by theory, 
then the simulation technique must properly model 
conductive structures and their surface impedance 
losses with wire grids. 
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III. BACKGROUND ON CONDUCTIVE 
SURFACE MODELING BY WIRE GRIDS 

 
Richmond pioneered modeling of conductive 
geometries using wire grid representations and this 
technique has become accepted radiation and scattering 
problems [2].  Rules of thumb have been developed for 
modeling conductive structures.  A usual requirement 
for the wire grid models is that the grid element size be 
“small” with respect to a wavelength.  Another 
commonly used rule is “the equal surface area rule”, 
where the total surface area of the cylindrical wires 
comprising the grid is made to match the surface area of 
the conductive object being modeled [3-5].  It has been 
found that a rectangular wire grid, with the grid axes 
aligned to electromagnetic polarization, generally gives 
more accurate simulation results than other types of 
grids, including triangular grids [5]. A more elaborated 
set of rules for wire grid simulation of surfaces using 
the Numerical Electromagnetics Code (NEC) [6], a 
popular and well tested method of moments code, is 
discussed in Truman and Kubina [3]. However, these 
rules are only guidelines. According to Moore and 
Pizer, some simulations require the wire grid surface 
area to be up to five times larger than the object’s actual 
surface area in order to match experimental results, so 
surface impedance seems to not be modeled well in 
these wire grid simulations [6]. 
 

IV. IMPLEMENTATION OF WIRE GRID 
MODELS FOR COAXIAL CAVITIES  

 
To facilitate the construction of various simulation wire 
grid geometries for this study’s simulations, a 
commercial computer aided design (CAD) program was 
employed. Each resulting cavity model mesh was 
exported to a text file in the open-Wavefront OBJ 
format [8]. This format specifies the mesh as a series of 
numbered vertices followed by a series of planar faces 
or patches with the vertices at the corners of these 
patches.  This text file was then processed into a format 
compatible with NEC through custom written software.  
The process generated a wire segment for each edge of 
each mesh surface patch, while avoiding duplication 
amongst adjacent patches. The equal area rule was 
applied, in which the cylindrical surface area of a wire 
segment was chosen to be the average of the surface 
areas of the quadrilateral grid patches on either side of 
the wire. The wire mesh generated used equally sized, 
primarily square patches, and as such, polarization 
alignment of the mesh was not completely achieved at 
the shorted ends of the resonator. The equal area rule 
resulted in a total surface area of the grid elements of 
approximately twice the modeled conductor area.   
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V. MODEL FIELD EXCITATION AND 

SIMULATION 
 
A small rectangular loop near the base of the cavity 
wire grid model provided the excitation to the model.  
This loop was added by manually editing the NEC 
geometry input file. The input files were then simulated 
using NEC2++ ver. 1.2.3, a PC implementation of NEC 
in the C++ programming language [9].  Approximate 
resonance peaks were found through iterative frequency 
sweeps.  The coupling loop area and the loop’s position 
were adjusted so that the simulation achieved 
reasonable coupling and the cavity Q could be reliably 
determined.  Note that the effect of the coupling 
structure on Q was later removed from the data, and 
attention was focused on the unloaded quality factor, 
independent of the coupling structure.    
A series of half-wave coaxial cavities were modeled to 
obtain the simulated impedance spectra. The inner 
conductor radius, a, and the cavity length, z, were held 
fixed arbitrarily, at 1 m and 12 m, respectively. The 
outer radius b was allowed to vary from 2 m to 6 m in 
increments of 0.5 m. Larger outer radii were not 
simulated, as 6 m is close to the upper limit for the TEM 
resonance mode [10]. Some sample cavity models are 
shown in Fig. 2.   
 

 
Fig. 2.  Sample wire grid cavity models, a = 1 m, b = 2 
m to 6 m, and z = 12 m. 

 

VI. THEORETICAL, SIMULATION, AND 
EXPERIMENTAL RESULTS 

 
Once simulations were complete, the simulated 
impedance spectra were used to determine the 
corresponding unloaded quality factors.  The impedance 
spectra were transformed to reflection coefficients, as 
they would have been measured with a 50 Ω network 
analyzer. The loaded (by coupling loop) and unloaded 
quality factors were then determined by the half power 
frequency span about the resonance frequency.  This 
was performed on the Smith chart, where the locus of 
the impedance is known to form a circle in the vicinity 
of the resonance frequency. A freely available piece of 
software readily performs these calculations from 

network the analyzer data. For references on the 
software and other methods of determining quality 
factors from impedance data, refer to Ginzton, Kaifez, 
and Hwan [11][13]. The resulting unloaded quality 
factors for the half-wave cavities were then normalized 
with respect to the skin depth, δ, and the wavelength, λ, 
and compared to theoretically calculated values, as 
given in equation         (6). Several mesh edge lengths 
were simulated for each cavity. The edge length data 
was then extrapolated to a conceptual length of zero 
through a quadratic least squares fit of Qu. For 
comparison purpose, experimental cavities (Fig. 3) with 
correspondingly scaled dimensions were constructed 
from brass and measured on a network analyzer. The 
measured data were processed identically to the 
simulated data to determine the normalized cavity form 
factors. The results are plotted in Fig. 4. 
 

 
 

Fig. 3.  Experimental cavity models, a = 1 in, b = 2 in to 
6 in, and z = 12 in. 

 
VII. DISCUSSION AND CONCLUSIONS 

 
As shown in Fig. 4, mesh size has a considerable effect 
on the magnitude of the simulated form factors.  
However, the general shape of the simulated curves for 
each mesh element size agrees with theory and 
experiment.  A large mesh size seems to result in erratic 
simulation results especially around b/a = 5.5 m, which 
is not reflected in the experimental data. These erratic 
results must therefore be numerical instabilities rather 
than excitation of higher resonance modes.  As 
expected, finer mesh sizes result in more accurate and 
better behaved simulation results, but at the cost of 
additional computation time. The simulation error in 
absolute magnitude can be corrected by artificially 
shifting up the curves, which is equivalent to decreasing 
the conductivity of the wire grid elements.  The required 
adjustments in conductivity for the  0.5 m and 0.375 m 
grids, is about 1/5 and 1/4, respectively, and seems to 
correlate well with Moore and Pizer’s suggestion of a 
simulated area up to five times the actual area [6].  
Alternatively, the simulation results for each b/a can be 
extrapolated to a conceptual mesh element length of 
zero. This then results in excellent agreement between 
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Fig. 4.  Comparison of theoretical, simulated and experimental form factors. 

 
experiment, theory and simulation. In practice, 
experimental data is expected to be slightly below 
theoretical, due to surface imperfections that lower the 
overall surface conductivity. Despite modeling errors, 
such as low level radiation leakage from meshed 
structures representing closed volumes and inaccurate 
absolute surface impedance modeling at larger mesh 
element sizes, trends in the simulation results are 
retained. This allows for meaningful comparison of 
other resonant geometries via simulation by using wire 
grid meshes with identical mesh parameters. As an 
alternative, the mesh element size can be varied and the 
results extrapolated to the limiting case of a zero length 
edge element. This will give quantitatively simulation 
results with much better accuracy. Wire grid modeling 
can be a valuable tool, not just for radiation and 
scattering problems, but even for problems that show 
sensitivity to surface impedance. 
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