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Eliminating Interface Reflections in Hybrid Low-Dispersion
FDTD Algorithms

Mohammed F. Hadi! and Rabie K. Dib?

Electrical Engineering Dept., Kuwait University, P. O. Box 5969, Safat 13060, Kuwait
2College of Technological Studies, PAAET, P. O. Box 4196, Hawalli 32072, Kuwait

Abstract— The numerical phase mismatch across
FDTD lattice layers with different sets of update equa-
tions has been investigated. A predictive equation of
numerical reflections across high-order/low-order layers
has been derived. Based on this equation the standard
Yee (S22) update equations have been modified to allow
their implementation around PEC boundaries and other
special situations in an otherwise global high-order
implementation, while keeping spurious reflections at
the hybrid interface to a practical minimum and in-
dependent of the traversing wave direction. Soo Phase
matching has been developed and verified in both So4
and M24 high-order hybrid algorithms.

Keywords— FDTD, Numerical Dispersion, High-Order
Schemes, Phase-Matching, Electrically Large Struc-
tures.

I. INTRODUCTION

EVERAL FDTD algorithms have been developed

over the past decade to minimize the loss of phase
coherency in wave solutions due to numerical disper-
sion. Shlager and Schneider [1] compared some of the
more prominent low-dispersion algorithms and com-
pared their phase coherency for both single-frequency
and wideband use. While some of the analyzed algo-
rithms that restricted their stencils to a single Yee cell
did extremely well for single-frequency use [2] and [3],
it was the two-dimensional extended-stencil M24 al-
gorithm [4] that excelled in both single-frequency and
wideband suitability. The M24 algorithm utilizes mul-
tiple weighted Ampere’s and Faraday’s loop integrals
over extended FDTD stencils as demonstrated in Fig. 1.
In comparison, the So4 algorithm (second-order in time
and fourth-order in space finite differences) which will
also be discussed in this present work is a special case
of the M24 algorithm when the outermost loop integral
in Fig. 1 is omitted and K is set to —1/8.

The main challenge to such extended-stencil algo-
rithms, however, is porting the wealth of FDTD tools
that were developed over the decades for the standard
single-cell Yee algorithm (Soo for second-order differ-
encing in both time and space). It was suggested in

[4] that this challenge could be simply resolved by
introducing minimal S,o buffer zones where needed in
an otherwise global M24 implementation. Haussmann
in [5], however, demonstrated experimentally that such
an approach would cause measurable reflections at the
interface between the high-order and low-order zones.
Another approach pursued by Georgakopoulos et al. in
[6] was using a fine-meshed S5 buffer zone that would
better match its dispersion characteristics to a coarsely-
meshed So4 zone. Both works, however, left open
the questions as to the extent of interface reflections
at oblique wave incidence angles as well as to the
optimum mesh size ratio between the high-order and
low-order zones.

Recently, Celuch-Marcysiak and Rudnicki [7] and [8]
developed a methodology for predicting numerical re-
flections at normal and oblique angles of incidence
across dissimilarly gridded homogeneous zones and
went on to validate them using FDTD simulations.
In this present work this same methodology will be
applied to derive appropriate equations to predict the
reflection coefficient across similarly gridded homo-
geneous zones but with varying differencing schemes
(in particular, So4/S22 and M24/Ss, interfaces) and
quantify the limitations of using Soo buffer zones
within high-order FDTD implementations. As in [8],
the effect of nonorthogonality of wave polarization to
propagation direction (wavenumber vector) [9] will be
accounted for. Furthermore, new update equations for
the Soo buffer zone will be developed and validated
that will utilize single-cell depth normal to the interface
plane and extended-cell depth tangentially to eliminate
cross-interface reflections while still being usable near
PEC boundaries and other special situations. In effect,
realizing optimum phase matching (minimal interface
reflections) without the need for Soo subgridding.

II. FDTD RENDITION OF PLANE WAVES

When an FDTD algorithm attempts to propagate
a plane wave it introduces two types of numerical
dispersion-related errors that are of interest to us
here. The first is the error in the rendered numerical

1054-4887 © 2007 ACES
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X Ky

Fig. 1. Multiple weighted Ampere’s loops for updating
a centered /., node in the M24 algorithm. A uniform
Ax = Ay = h is assumed and K3 =1 — K1 — K».

wavenumber that causes the accumulation of phase
error as the wave traverses the numerical domain. This
error is a function of the propagation angle and resolu-
tion factor (number of FDTD cells per wavelength, R)
and is well documented in the literature. The other type
of error is the one that affects the polarization of the
propagating wave. It was demonstrated in [9] and [10]
that as the wave bounces around in the FDTD lattice the
orthogonal E and H vectors form a numerical Poynting
vector that is not parallel to the propagation direction

B = dzﬁz + afyﬁy + dzﬁz (1)
but rather to
P =a,D, +a,Dy +a.D., 2)

where D, D, and D, are discrete operators dictated by
the FDTD algorithm of interest, and (3., £, and 3, are
the numerically rendered wavenumber components that
can be derived from the algorithm’s dispersion relation.

A. Discrete Operators

The standard S99 algorithm in 2—D implementations
has the discrete operators

YL SR L S
“ h/2 Yo Rh/2

The M24 algorithm, on the other hand, has the update
equations [4] (see Fig. 1)

OB K Helyog = Haljyg
Hw|z‘71,jf% + H$|i+1,j7%
Ky _Hx|i71,j+% - Hx|i+1,j+%

+_
6h | +Hylipz ;0 +Hyliyz

_Hy|i7%,j71 - Hy|i7%,j+1
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E( Haljmy = Haljry ) 4)
h +Hy|i+% _Hy|i7% ’
0H, Ky
Hor = 3n (EZ|J'—% _Ez|j+%)
1- Ky
+T (Ez|j7% _Ez|j+%); (5)
0H, K,
bt = g (Beleg — Belios)
1-K
+T1 (Ez|i+% _Ez|i7%) (6)

where non-staggered indices are omitted for cleaner
notation and K3 = 1 — K; — K5. These K parameters
are chosen through an optimization routine that will
ensure minimal dispersion error across all angles of
propagation in the numerical lattice. The corresponding
discrete operators are given by

. Buh
SN ——
DY = Ky— 2
@ SThy2
sinwgh
=+ (Kl + KQ COS ﬁyh) 3T/2, (7)
. Bzh s 3Bzh
S1n SN ——
D = (1-K 2 4K 2 8
T
v TR
. 3Byh
V(K + Ky cos foh) o2 (9)
1 x 3h/2 i
D: = (1—K)Sinﬁgh+KSin3@h (10)
v Y2 EP

The operator notation for the M24 algorithm is slightly
different than that of the So2’s as an z, y or z superscript
on the discrete operator denotes its restricted applica-
bility to that particular field component. On the other
hand, the Soy operators are linear; DY = D = D, and
Dy =Dy = D,.

When K; and K5 are substituted with —1/8 and
zero, respectively, equations (4) to (10) produce the
corresponding update equations and discrete operators
for the So4 algorithm. In particular, the latter will be
linear;

9sin% 1 sin 28zh

D, = - = 2 11

‘ 8 h/2 8 3h/2° (D
. Byh . 3Byh

Dy _ 9 sin 5= l sin — 12)

8 h/2 8 3h/2

B. Dispersion Relations

The generalized dispersion relation for FDTD algo-
rithms can be conveniently written in the form [5]

peD} = DYD; + Dy Dy + DYDY (13)
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with
sin “TM
Dy = ————=— 14
t At/2 ) ( )
provided that
DyD? Dy = DYD;Dy. (15)

This latter condition is not a problem for 2-D algorithms
with nonlinear operators as is the case with the M24
algorithm since D7 = DY = 0. For linear-operator
algorithms (S22 and So4), equation (13) can be reduced
to

peD? = D2 + D, + D?. (16)

Direct substitutions of equations (3) and (11) to (12)
into (16), and equations (7) to (10) into (13) will
produce the dispersion relations for the So2, So4 and
M24 algorithms.

C. Stability Criteria

The maximum allowable time step before the onset of
numerical instability for FDTD algorithms with linear
discrete operators and second-order differencing in time
is given by,

2Vhe A7)

At <
\/ (D2 + D3 + DY)y

while for 2-D such algorithms with nonlinear operators
it is given by,
2,/
At < se (18)
\/ (DED; + Dy D;)

max

where the “max” condition exists at 8,h = 3,h = 7 or
its odd multiples. These two inequalities will provide
the well known Soo and So4 stability criteria,

h (6/7)h
Atgyn < — d Atgy < L1~ 19
2 <~ an s24 < o2 (19)
as well as
h 3
At < — . (20
M= V2 /B - 4Ky)(3 - 4K, — 2K,) 0

In hybrid S24/S22 or M24/S.5 implementations the
corresponding Sy or M24 time steps need to be used
to avoid instability since they would be slightly smaller
than the Ss2’s maximum time step. Finally, it should
be mentioned here that v/—1 factors have been omitted
from all the discrete operators since they would even-
tually cancel out for our purposes here.

Zone 1 (So4 or M24) Zone 2 (S22)

_ P4
By

0, 0,
xr
0;
B
Eix H
/o
E‘i T

Fig. 2. Interpretation of a plane wave interaction with
a planar interface separating two similarly gridded ho-
mogeneous zones with different FDTD schemes. Field
nodes on the y-axis are assumed part of zone 2.

III. NUMERICAL REFLECTION COEFFICIENT

Let us assume a planar interface in a standard FDTD
lattice is being traversed at an oblique angle of in-
cidence from left to right with the medium at both
sides of the interface being free space (see Fig. 2).
Let us also assume that Soo update equations are used
in the right zone including field nodes coinciding with
the planar interface itself. In the left zone we will be
using the update equations of the algorithm under study
(So4 or M24). In either zone of this FDTD lattice the
relationship between the direction of propagation and
wavenumber is governed by,

B = @y + @yBy = azBcosd +a,Bsinf  (21)

where 6 could be 6;, 0, or 6, (incidence, reflection
or transmission angles) and 3 could be (7 or (s,
the numerical wavenumbers which are the solutions of
the dispersion relations corresponding to either zonal
algorithm. From equation (2) we can write

P =a,Pcostf + ay P sin 6" (22)

where, again, 6 could be 6F, 67 or 0F and is
calculated from

D
P — —1 y. 2
0 tan D 23)

x

A 0 = = 0 means both propagation and Poynting
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vectors are normal to the interface. Since we are using
uniform space meshing in both zones we can assume
that 0, = 6; and 67 = 67, with the latter being due to
numerical dispersion symmetry around 6 = 0. Also, at
the planar interface (z = 0), boundary conditions will
force

ﬂly = 527; (24)

since both zonal algorithms share the same field nodes
at the interface and the incident, transmitted and possi-
bly reflected field amplitudes are related by E{, +E7}, =
E%,. We will also be using E}, = I'E} where I is the
desired numerical reflection coefficient.

The S22 update equation for the F, field node at the
interface (say, at the x = 0 and y = 0 location) is

1 At Hylt ,— Hyl" .
s __< wlho ="y

E n+z
oo o \ ~HJp,

N

25)
Assuming that each of the above field nodes has the
form e’(“t=B22=Byy) we can replace them, each (after
eliminating common terms) with

n:t—

E.lpo? — (1+T)E]e*Iwat2, (26)

0+ NE:,

Hy@0 — cos OF e=1P22h/2 (27)

I

E ;
Hy",, — ——22cosffeibrsh/2
-10 [

LEi 4
+Tl(’ cos er—ﬂilmh,/z, 28)

7
Hz|gl - %Sinef)e_jﬁlyh/Q
2
IE! _
-I-Tl" sin ng’efjﬁlyh/Q’ 29)

Ei .
Hyly o+ — —lo Sln@f)e]ﬁl”h/Q
T2

TEi :
+71° sin §F e7B1vh/2 (30)

where 7 is the dispersion-immune intrinsic wave
impedance [9]. Assembling these substitutions into
equation (25) and simplifying we get

J2h(14+T)

Al sin(wAt/2) =

— (14 T) cos §F ¢=7P2ah/2
+ cos 6F (ejﬁlmh/2 - re—jﬂlmh,/z)
+72(1 4+ T)sin 6} sin(B1yh/2). (31)

Splitting the reflection coefficient into its real and
imaginary parts (I' = I', + jI';) and decoupling the

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

complex equation we can write,
—(1+T,) cos 6F cos 52”’
{ +(1-T )cosepcos Bich ]
— 2L sin <3t wm + cos OF sin 522*
+cos6F (CosﬁlTTh +sin Ble) ] (32)

and

leh

Iy [cos oF si . cos ] = (33)

(1+T)) CQAht sin “’&At + 2sin 6F sin 512”
"1+ cosOf sin 2+ cos Hf sin 21l

Equations (32) and (33) are satisfied by a real-valued
I" which reduces (32) (when I'; = 0) to
2

(1-T,) cos BF cos === 5

—(14T,) cos 67 cos =0
(34
from which the closed-form expression of the numerical

reflection coefficient can be written as,

r 1—k h cos OF cos BQ;h 35)
= — wi K= ———-—F"+

1+k cos OF cos 5“}’
For any incidence angle 0;, 31, and (31, are obtained
from the left zonal dispersion relation. (3, is then
calculated from the right zonal dispersion relation after
setting B2y = 14, which would also yield 6;. This is
followed by finding 07 and 6 using equation (23),
then finally I is calculated from equation (35).

IV. S24/S22 HYBRID ALGORITHM IN 2-D

Starting with the hybrid So4/S9o algorithm let us first
observe the deviations of the polarization angle from
the propagation angle, # — @, as a function of the
incidence angle 6; in both zones (Fig. 3). As shown,
grid symmetry aligns both angles when the incidence
angle is either zero or /4. At other angles, however,
the deviation in the So2 zone reaches as high as 25 times
that in the So4 zone at the uniform resolution of R = 10
cells per wavelength. Furthermore, as 6; — m/2 the
boundary condition (24) forces an exaggerated error in
both transmission angles, 6; and 0 as shown in Figs. 3
and 4. Figure 5 compares the numerical reflection
coefficient at different resolution factors versus angle
of incidence (solid lines). It is clear from the figure
that spurious reflections can become problematic as the
incidence angle goes beyond 80° unless fine meshing
is used which negates the computational efficiency
advantage of the high-order So4 algorithm.

To solve this problem of increasing reflections near
grazing angles, the Soo algorithm in the right zone is
modified so that second order differencing is maintained
for /0x and a fourth order differencing is applied
to 9/0y as demonstrated in Fig. 6. This approach
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<+
=
X
[
>
|
<
) . N . . . . . .
0 10 20 30 40 50 60 70 80 90
Incidence Propagation Angle, 6;
5
o
=1
=
X
&0
B
|
<
-5

0 10 20 30 40 50 60 70 80 90
Incidence Propagation Angle, 6;

Fig. 3. Deviation between propagation and polarization

angles in both incidence and transmission zones. R =

10 cells per wavelength.

°=t 80

<

2 oot

<

=

£ 40t

E

g 20

F 0 L L L L L L L L

0 10 20 30 40 50 60 70 80 90
Incidence Angle, 0;

Fig. 4. Effect of boundary conditions at the x = 0

interface on the transmission angle. R = 10 cells per
wavelength.

Numerical Reflection Coefficient (in dB)

L L L L \\ L
0 10 20 30 40 50 60 70 80 90
Incidence Angle, 6;

Fig. 5. Numerical reflection coefficient vs. 6;
across an So4/Soo hybrid algorithm interface before
(solid) and after (dashed) tangential phase matching
at the resolution factors (from top to bottom), R =
5,10, 20, 30, 40, 50, 100.

- e A 2
- = - =

(N YRR S O S S TR O
- = - =
- - =
(a) (b)

Fig. 6. FDTD stencil extents at the So4/S9o interface
before (a) and after (b) tangential stretching in the Soo
zone for phase matching purposes.

has the advantage of single-cell interface-normal depth
for modeling physical discontinuities and an extended
interface-tangential cell that matches the numerical
wavenumbers along that direction. The correspond-
ing update equations for the y—stretched algorithm in
zone 2 are given by,

oL, Hy|i+% - Hy|i7%
€ =
ot h
_27(Hx|j+% - Hxlj—%)
24h
Hx|j+% - Hr|jf%
24h
M@Hy _ Ez|1;+% - Ez|i_%
ot h
oH,  21(E:ljyy — Eil;-y)
Fot ~ 24h
Belies — Belyy (36)
24h

and the discrete operators which would replace those of
equation (3) are

sin%}”
Ds = hj2 37
D - gsin’agh_lsin‘g%h (38)
Y 8 h/2 8 3hn/2°

The corresponding dispersion relation is obtainable
from equation (16) and the stability limit is governed

by,
h 72
At < —/ — 39
,C\/ﬁ\/% (39)

a slightly more relaxed condition than that of the left
zone’s So4 algorithm ensuring stability when the latter
is enforced. Figure 5 (dashed lines) demonstrates the
advantage gained in the form of vanishing reflections
at near-grazing incidence angles.

It must be remembered that the numerical reflection
coefficient (35) was derived using the Soo update equa-
tion (25) at the interface. The corresponding expression
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Numerical Reflection Coefficient (in dB)

10 21) ?b 4‘0 5‘0 6:0 7‘0 8‘0 90
Incidence Angle, 6;
Fig. 7. Numerical reflection coefficient vs. 6;
across an M24/Sso hybrid algorithm interface before
(solid) and after (dashed) tangential phase matching
at the resolution factors (from top to bottom) R =
5,10, 20, 30, 40, 50, 100.

for the above phase-matched So4/S92 interface must be
derived from,

n—1 At
= Efoo’ + (Hy@o —Hy|y_bé7o)

ch
) (40)

At 27Hx|gl — 2TH, | _
R —— 22 )
24¢eh —ch|g% + Hxlg_
which necessitates an additional substitution to equa-
tions (26) to (30);

(1+T)E:,

nJr%

Ez|0,0

vl V=

Halg g — sin @ eFI301h/2 - (41)
Completing the substitutions into equation (40) will
only affect the term containing 31, in (31), leaving
(32) and the I'; term in (33) intact and in a manner
that maintains equation’s (35) validity for predicting the
numerical reflection coefficient across the interface in
the present case.

V. M24/S;; HYBRID ALGORITHM

As in the case of the S24/So interface, variations in
the M24 algorithm’s dispersion behavior versus propa-
gation angle compared to those of the Syo algorithm
cause serious spurious numerical reflections at near
grazing angles at the interface as demonstrated in Fig. 7
(solid lines). To remedy these high reflections the Soo
algorithm in the right zone needs to be replaced by one
that maintains single cell normal depth but has matching
tangential dispersion characteristics to the left zone M24
algorithm. A logical choice would be to apply the M24
development methodology using concentric flat (one
cell depth along the x-axis) Ampere’s and Faraday’s
loops. However, such an approach would be an overkill
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and is unnecessary, considering that in real applications
the right zone would be only one cell deep negating the
need for low dispersion for all propagation angles save
for the tangential direction to the interface. A simpler
and more practical scheme is to use again an elongated
Soo algorithm as in the previous case, except that a
tuning parameter is introduced to be used for phase
matching with the left M24 zone,

6cp)‘Ez B Hy|i+% — Hyl; 3
ot h
Kb
+3_h(Hx|j—g — Haljyz)
1-K?
+ h (H:c|j—% - Hx']”r%)
oH, E2|i+% - E2|i7§
o h
0H, K?
H ot = 3_h(Ez|j—% - Ez'j—i—%)
1-K?
h (Ezljfé _Ez|j+%)- (42)
The corresponding discrete operators are
D. - sin% (43)
x - h/2 )
. Byh . 38yh
SI1 — S >
D, = (1-K° 2+ K'—2—, (44

with the dispersion relation obtainable from equation
(16) and the stability limit governed by

At < E ! . (45)

¢ \/1 + (1 —4K?/3)?

The choice for the tuning parameter K° will be based
on an optimization routine that will minimize the nu-
merical reflection coefficient (equation (35) is valid for
this case too) for the particular resolution factor R
used in the simulation. Table 1 lists the K7 and Ko
parameters for the left zone at several R values along
with matching K values for the right zone that will
eliminate spurious reflections at the interface as shown
in Fig. 7 (dashed lines).

VI. NUMERICAL VALIDATION

To verify the effectiveness of the modified update
equations (36) and (42) at eliminating reflections off
the S94/So5 and M24/S45 interfaces, FDTD simulations
were performed where a point sinusoidal source was
initiated very near the interfaces (4 cells away) to
highlight near-grazing wave incidence. The simulations
were run once with high-order update equations for
the left zone and Soo update equations for the right
zone, and again with the former applied to both zones.
Figure 8 highlights the absolute difference between the



HADI, DIB: ELIMINATING INTERFACE REFLECTIONS IN HYBRID FDTD

Table 1. K and K> values for the left zone M24
algorithm with corresponding K values for a phase-
matched right zone Sy algorithm.

R Ky K> K*

5 —0.144932  0.1020689 —0.0933211
10 —0.116193 0.0734445 —0.0793836
20 —0.110322 0.0678920 —0.0763555
30 —0.109283 0.0669205 —0.0758122
40 —0.108922 0.0665844 —0.0756233
50 —0.108756 0.0664296 —0.0755362

100 —0.108535 0.0662238 —0.0754201

0.025 |
0.02 ‘ U} | 3
0015

0.01

0.005

100

40

o 0 0
FDTD cell along x FDTD cells along y

Fig. 8. Isolated numerical reflections at the interface of
a typical hybrid So4/Sos algorithm. R = 10 at 1 GHz.

two simulation runs for the S4/Soo case isolating net
numerical reflections off the interface.! Note in this fig-
ure the increasing reflection noise levels as the surface
wave propagates further away from the source location
along the interface. In comparison, Fig. 9 demonstrates
the total absence of this interface hugging reflection
noise due to the implementation of equations (36) in
the right zone. Figures 10 and 11 demonstrate a similar
accomplishment for the M24/S,5 case. Table 2 sum-
marizes a comparison between these measured after-
modification reflections and those predicted in Figs. 5
and 7 showing reasonable agreements, especially in the
M24/S55 case.

Finally, reflection noise levels could be further re-
duced by using a soft-start sinusoidal source. For ex-
ample, using Furse et al.’s raised cosine ramp function
[11],

t<0
(1—005%), 0<t<arl (46)
t>al

r(t) =

o= O

'Only the upper-left quadrant data of Fig. 2 are shown as the
reflections were symmetric across the z-axis.

0.025

0.02

0.015

40

FDTD cell along = FDTD cells along y

Fig. 9.  Elimination of tangential reflections due to
Soo phase-matching with the So4 scheme in a hybrid
S24/S92 algorithm. R = 10 at 1 GHz.

0.025 \
0.02

0.015

FDTD cell along z FDTD cells along y

Fig. 10. Isolated numerical reflections at the interface
of a typical hybrid M24/Sqs algorithm. R = 10 at
1 GHz.

0.025
0.02

0.015

FDTD cell along «

FDTD cells along y

Fig. 11. Elimination of tangential reflections due to
S22 phase-matching with the M24 scheme in a hybrid
M?24/S55 algorithm. R = 10 at 1 GHz.
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Table 2. Comparison of predicted and measured
numerical reflections after phase-matching the high-
order and low-order schemes in the hybrid algorithms
discussed in this work. R = 10 at 1 GHz.

Algorithm  Predicted T'p,x  Measured Ty«
S24/S90 —62 dB —55 dB
M24/S59 —54 dB —57 dB

Soft Start

Fig. 12.  Filtering out high-frequency content of the
reflection noise in the phase-matched hybrid M24/S;9
algorithm by replacing the abruptly-starting sine source
with a smooth-starting ramped-cosine source.

with T = 27/w and « chosen as 1.5, we can re-
place the sin(wt) source in the FDTD simulations with
7(t) cos(wt). Such a substitution would effectively filter
out the high frequency content of the reflection noise
as demonstrated in Fig 12.

VII. CONCLUSION

The phase velocity mismatches across hybrid high-
order/low-order FDTD implementations cause unac-
ceptably growing reflections across the hybrid interface
when the traversing wave is at near grazing incidence
angles. A predictive equation of the ensuing numerical
reflections has been derived, investigated and used along
with the dispersion relations of both the high-order and
low-order schemes to modify the latter and match its
tangential (to the interface) phase velocity to that of
the former. Numerical experiments have demonstrated
that this modification has completely eliminated the ex-
cessive interface-hugging reflection noises and reduced
them to the same level as the axial reflection noises.
These experiments have been performed for the S24/S22
and M24/S,5 hybrid algorithms with good agreement
between predicted and measured reflections after the
phase-matching algorithm modifications. In practical
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applications this innovation allows efficient use of thin
(one cell deep) So5 buffer zones where needed in an oth-
erwise global high-order implementation for modeling
electrically large structures with high phase accuracy.
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Abstract — For the analysis of grounding resistance with
the finite-difference time-domain (FDTD) method for
solving Maxwell's equations, an equivalent radius of a
naked thin wire in a lossy medium is derived by means
of the static field approximation, proposed for derivation
of that of an aerial thin wire. It is 0.23 times the size of
each cell employed, which is the same as that of an aerial
thin wire. The validity is tested by comparing the
grounding-resistance values obtained through FDTD
simulation on simple buried structures with the
theoretical values.

Key words — FDTD method, grounding electrode,
grounding resistance, thin wire, and conductor.

I. INTRODUCTION

The role of grounding electrodes is to dissipate fault
currents effectively into the soil, and thereby to prevent
damage of insulations in power systems. Thus, the
performance of power systems is influenced by proper
functioning of grounding systems.

No formulas of impedance and admittance have
been derived even for simple vertical or horizontal naked
conductor buried in a homogeneous ground. Hence,
transient characteristics of grounding electrodes have
been investigated by experiments and recently numerical
electromagnetic analyses [1 - 4] based on the method of
moments (MoM), the finite element method (FEM), or
the finite-difference time-domain (FDTD) method [5 -
6]. Numerical electromagnetic analyses can be
performed assuming well-profiled condition that the
values of conductivity and permittivity of a ground are
known or set arbitrarily. Such results are useful in
understanding the phenomena as well as in confirming
measured results.

Numerical electromagnetic analyses based on the
FDTD method are effective to analyze the transient
response of a large solid conductor or electrode. The
accuracy of this method, in the case of being applied to
such analysis, has been fully investigated in comparison
with an experiment and shown to be satisfactory [7]. As
this method requires long computation time and large
capacity of memory, the analysis is restricted to a rather
small space. A transient analysis of a large system or a
system composed of various elements still need to be

performed by such tools like Electromagnetic Transients
Program (EMTP) [8]. One reasonable process of study,
therefore, is to investigate the physical characteristics of
a grounding electrode by a numerical electromagnetic
analysis, and then to represent the obtained
characteristics by an equivalent circuit model or to
determine the values of its parameters [3].

So far in most of the FDTD analyses of transient
and steady-state grounding resistance, large solid
electrodes [6], [7], which can be decomposed into small
cubic cells, have been chosen and thin-wire electrodes
have not been dealt with. This is because an equivalent
radius of a thin wire in a lossy medium has not been
made clear. In [9], a rigorous method has been shown for
determining the effective radius of a single axial field
component, E, or Hy, in a two-dimensional (2-D) TM, or
TE, FDTD grid. The method is based upon matching
FDTD results for a filamentary field source with the
analytical Green's function in two dimensions. It is
therefore, essential to clarify the equivalent radius of a
buried thin wire for more general analyses of grounding
systems. In the present paper, an equivalent radius of a
thin wire in lossy medium is derived with the help of the
concept proposed for derivation of that of an aerial thin
wire [10]. Then its validity is tested by comparing the
grounding-resistance values obtained through FDTD
simulations on simple buried structures with the
theoretical values.

Il. METHOD OF ANALYSIS

The FDTD method employs a simple way to
discretize a differential form of Maxwell's equations. In
the Cartesian coordinate system, it generally requires the
entire space of interest to be divided into small
rectangular cells and calculates the electric and magnetic
fields of the cells using the discretize Maxwell's
equations. As the material constant of each cell can be
specified arbitrarily, a complex inhomogeneous medium
can be easily analyzed. To analyze fields in an open
space, an absorbing boundary has to be set on each plane
which limits the space to be analyzed, so as to avoid
reflection there. In the present analysis, the second-order
Mur's method [11] is employed to represent absorbing
planes.

1054-4887 © 2007 ACES



11l. DERIVATION OF EQUIVALENT RADIUS OF
BURIED THIN WIRE

In [8], it has been shown that an aerial thin wire has
some equivalent radius in the case that the electric-field
elements along the thin wire are set to zero in an
orthogonal and uniform-spacing Cartesian grid. When
the size of cubic cells employed is As, the equivalent
radius is 0.23As. In the present paper, an equivalent
radius of a naked thin wire in a lossy medium is derived.
Note that in [10] an equivalent radius of an aerial thin
wire has been shown to be 0.135As. In a quasi-steady
state, however, 0.23As is more appropriate than 0.135As
as an equivalent radius [8] which is very close to the
effective radius 0.2As [7].

Figure 1 illustrates the cross section of a long thin
wire surrounded by a cylindrical sheath conductor. The
radii of the thin wire and the sheath are a and b,
respectively. The conductivity and the relative
permittivity of a medium between the thin wire and
sheath conductor are assumed to be ¢ and &,
respectively. In this condition, the conductance G and the
susceptance B between the thin wire and the sheath are
given as follows,

2ro 2re .0

G=——, B= . e
In(b/ a) In(b/ a)

Note that g, is the permittivity of vacuum and o is the

angular frequency. Therefore, the conductance becomes

equal to the susceptance when the frequency f is

fo=0/Q2regys,). )

For instance, f is 1.5 or 7.5 MHz for a medium of & =
12 and o = 1 mS/m or 5 mS/m, respectively.

Fig. 1. Cross section of a thin wire surrounded by a
cylindrical sheath.

Figure 2 shows the cross section of a thin wire
surrounded by a rectangular sheath conductor for an
FDTD simulation. Both the thin wire core and the sheath
are perfectly conducting. The cross-sectional area of the
sheath is 2.5 X 2.5 m® and the length is 25 m. The
conductor system is represented with cubic cells whose
side As is 0.25 m. A voltage, which has a rise-time of 20
ns and a magnitude of 100V, is applied between the thin
wire and the sheath at its one end. The other end is open.
The response is calculated up to 10 ps with a time
increment of 0.4 ns.
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Figure 3 shows the time-variations of the ratios of
Ei, E, and E; to E, which are radial electric fields
calculated for 0.5As, 1.5As, and 2.5As, at 12.5 m from
the ends of the conductor. It is found that the ratios settle
down after 100 ns or so, and they are almost equal to
those calculated for a thin wire in air [10]: 2.21, 1.00 and
0.59. This is natural because both the conductance and
the susceptance of a thin wire follow similar expressions
as shown in equation (1). Furthermore, the ratios change
a little even if a different conductivity such as 0.2 or 10
mS/m is employed and a different time increment 0.25 or
0.48 ns is used. Thus electric field around the thin wire
can also be approximated by the following function [10],

E =3As/(2x). 3)

Note that x is the distance from the centre of the thin
wire. In this function, the electric field E is normalized
so that E should be unity at x =1.5 As. Figure 4 shows
the radial electric fields calculated by this function and
those obtained by the FDTD simulation.

3% A 1 .
:'g_"} X I R
'—I' 5, ey By I.
x .‘1 PR |
X
Fig. 2. Electric field around a thin wire in a rectangular
sheath to be used for an FDTD simulation.

4

w

Elsctrie feld
n

Time | miciosacond |

Fig. 3. Time-variation of the ratios of E;, E, and E; to E,
calculated by the FDTD method in the case of 6 = 5
mS/m and ¢, = 12.

E =3 ag/{2u)
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E Exeidd
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Fig. 4. Radial electric fields around the thin wire.
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If the equivalent radius of the thin wire now in
question is assumed to be ry and the electric field is
assumed to follow the above function, the potential
difference between x = ry and x = As is given as follows,

As
[E dx=3—§sln£. 4

)

If the above expression is equated to 2.2 As, which is the
potential difference obtained by the FDTD simulation,
the equivalent radius ry is given as,

7, =0.23As. )

This is an equivalent radius of a naked thin wire in a
lossy medium.

IV. COMPARISON WITH SUNDE'S FORMULA
ON GROUNDING RESISTANCE

A. Models for Analysis

Figure 5 shows a side view of an analysis model,
which is composed of two naked vertical thin wires and
an overhead horizontal thin wire. The buried portion of
vertical thin wires is 3 or 5 m. The horizontal thin wire is
30 m long and 1 m high over the surface of a
homogeneous ground. The conductor system is excited
by a voltage source at a connection point between the
horizontal wire and one of the buried vertical wires. The
voltage source produces a steep-front wave having a
rise-time of 10 ns, after which it maintains a magnitude
of 100V, [12 - 16].

Fig. 5. Two buried vertical thin wires connected by an
overhead horizontal wire to be analyzed by the FDTD
method.

The conductivity of the homogeneous ground o is
set to 0.2 mS/m, 1.0 mS/m, and 5 mS/m in order to
visualize the moisture contained in the soil, where the
conductors are buried. The thickness and relative
permittivity (&) of the ground are set to 20 m and 12,
respectively. For the FDTD simulation, the conductor
system shown in Fig. 5 is accommodated by a large
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rectangular analysis space of 80 x120 x 60 m® with
space length As = 0.5 m. The voltage in the gap which
exists between the horizontal wire and one of the buried
vertical wires represents conductor-top voltage. The gap
length is maintained as the space length of the conductor
system. The time-step was determined by equation (14)
found in [10] with a = 0.01, and all the six boundaries of
the cell were treated as the second-order Liao's absorbing
boundary.

It may be believed that the FDTD method is a time-
consuming method. However, the progress of computers
in terms of speed and memory is considerable, and even
a personal computer can be used for the FDTD
calculation. In fact, the simulation presented in this paper
were performed by a personal computer with Intel
Pentium 4, 2.80 GHz CPU and 512 MB RAM.
Responses are calculated up to 1.5 ps with a time
increment of 0.9 ns. Therefore, the computation time for
one case is about 3 hours.

B. Analyzed Results

Figures 6 and 7 show both voltage and current
waveforms at the vertical conductor-top, respectively,
i.e., at the injection point calculated for the model of Fig.
5 in case of the vertical thin wires are buried up to 3 m
and 5 m with different conductivity of the earth soil.
Tables I and II summarizes the values of transient
grounding resistance Rgy of the 3-m and 5-m vertical
thin wires evaluated at 1.5 ps for Figs. 6 and 7. They are
simply calculated from the following relation: =V, /
Rgy. Note that Vs is the magnitude of the voltage and I is
the current of the circuit.

Figure 8 shows the propagation of the current at
different heights of the 6 m-vertical electrodes, which are
buried up to 5 m and with different conductivity. These
currents are simulated at 5.5 m, 2.5 m and at the bottom
of the electrode in which the source is applied and thus
treated as upper, middle and lower currents. It is noted
that the middle and lower currents are characterized by
the ground parameters. The magnitudes of current
waveforms are increasing with the increase of the
conductivity and thus the time required to settle down
the currents is increasing. It is also noted that as the
conductivity gets higher, the wavefronts of voltage and
current become less steep. The waveform of a voltage of
the buried naked conductor is not similar to that of a
current, particularly around the injection point. If the
buried conductor is insulated, the waveform of a voltage
is almost identical to that of a current just, as if it is a
coaxial cable [17].

C. Discussion

The wavelength of an electromagnetic field, which
corresponds to the evaluation time (1.5 ps), is several
hundred meters. It is ten times longer than the length of
the conductor system shown in Fig. 5. Hence, it is
considered that the transient-resistance value at 1.5 ps is
close to the resistance in the steady state. Sunde [18] has



derived a theoretical formula for the DC resistance of a
vertical conductor buried in a homogeneous ground. It is
expressed as

4d

—-1D), Q)
r

R = In
GVsunpe 2 T Od (

where, d is the length and  is the radius of the electrode.
The values of grounding resistance calculated by this
theoretical formula are also included in Tables I and II.
The values of the transient grounding resistance obtained
by the FDTD simulation are only 8 % lower than those
calculated by Sunde's formula regardless of the ground
conductivity.
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Fig. 6. Voltages evaluated at the injection point of
vertical thin electrodes of Fig. 5 buried up to 3 m and 5
m with different ground conductivity.
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Fig. 7. Calculated current waveforms at the injection
point of the model of Fig. 5 with different conductivity
in the case that the vertical thin wires are buried up to 3
and 5 m.

Table I. Transient grounding resistance of a 3-m vertical
electrode obtained by the FDTD analysis and the DC
resistance calculated by Sunde’s formula.

0=0.2mS/m o=ImS/m o=5mS/m
FDTD 900 178 36
Theory 967 193 38.7
Difference | 6.9% 7.7% 7%

Table II. Transient grounding resistance of a 5-m vertical
electrode obtained by the FDTD analysis and the DC
resistance calculated by Sunde’s formula.

0=0.2mS/m o=ImS/m =5 mS/m
FDTD 615 121 21.5
Theory 661 131 26.5
Difference | 7% 8% 7.5%
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Fig. 8. Propagating current observed at a different height
of the vertical thin wire with different conductivity (5 m
buried vertical thin wires).

When the length of the overhead horizontal thin
wire is shortened or enlarged from 30 m to 20 m or 40
m, the transient resistance decreases only by 0.5 Q (1.7\
%) or increases by 0.4 Q (1.3\ %) for a 5-m buried
vertical thin wire in a ground having the conductivity of
5 mS/m, as shown in Table III. Therefore, it is clear that
the influence of the 30-m distance between the two
electrodes is insignificant than the properties and the
depth of the lossy ground.

As a consequence, it has become clear that the 0.23
As is valid as the equivalent radius of a thin wire buried
in a lossy ground. Note that Sunde has proposed a
theoretical formula of resistance also for a horizontal
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cylindrical electrode [18]. As it is a function of the
natural logarithm of the square root of r, the resistance
value of a horizontal thin electrode is not so sensitive to
the radius of the electrode. This is the reason why a
horizontal electrode is not employed for comparison.

Table III. Dependency of the transient grounding
resistance of a 5-m vertical electrode, calculated by the
FDTD analysis on the distant two electrodes.

Distance 20 m 30 m 40 m
Resistance | 25.8 26.5 27.7

V. CONCLUSIONS

In the present paper, for the analysis of grounding
resistance with the FDTD method, an equivalent radius
of a naked vertical thin wire in a lossy medium has been
investigated with the help of the static-field concept
proposed for an aerial thin wire. It is 0.23 times the side
of cells employed, which is the same as that of the aerial
thin wire. The validity has also been examined by
comparing the grounding-resistance value obtained
through FDTD simulations on simple buried structures
with the theoretical values, and are shown to be
satisfactory.
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Abstract — For obtaining the electromagnetic scattering
characteristic of a complex target efficiently, GRECO
(Graphical Electromagnetic COmputing) is
implemented by a programmable pipeline of a modern
GPU (Graphics Processing Unit). The speed of the
simulation can be improved up to 20 times compared
with the raw GRECO. The ray tracing algorithm based
on a GPU is implemented to obtain the multiple
reflection contribution of a target with concave
structure. This approach will redound to research works
such as radar target identification and Inverse Synthetic
Aperture Radar (ISAR) imaging.

Key words — EM scattering, GRECO, and GPU.
I. INTRODUCTION

GRECO (GRaphics Electromagnetic COmputing)
is an effective method for computing the
high-frequency radar cross section (RCS) of complex
targets based on physical optics (PO), and physical
theory of diffraction (PTD) [1]. In this paper, an
accelerated version of the GRECO method is
implemented by the programmable pipeline of a
modern GPU (Graphics Processing Unit), the speed of
the simulation can be improved up to 20 times
compared with the base GRECO. Furthermore, the ray
tracing algorithm based on the GPU is implemented to
obtain the contribution of multiple reflection of a target.

Compared with the raw GRECO, the GPU
accelerated GRECO has higher efficiency and enhanced
ability to simulate the multiple reflection of a complex
target with concave structure.

With the development of GPU and the creation of
the new feature of programmability, researchers begin
to transfer some of the processing stages in the graphics
output pipeline or some graphics algorithms from the
CPU (Central Processing Unit) to the GPU. Except for
those  graphics-only  applications, GPU finds
applications in general purpose computations in other
fields, and it has become a hot topic for research in
recent years. In the electromagnetics filed, the FDTD
method has been implemented based on the GPU for
higher efficiency [2].

In some applications such as computational
electromagnetics and signal processing, the speed of the
CPU can not meet the requirement of efficiency. One

can use other high-speed processing unit like DSP
(Digital Signal Processing) or HPC (High Performance
Cluster) system, but DSP or HPC system is very
expensive and limited in application. By contrast with a
general CPU, a GPU consists of higher-bandwidth
memory and more floating-point hardware units. For
example, current GPU such as the Nvidia 6800 Ultra
has a peak performance of 40 Gflops and a memory
bandwidth of 35.2 Gbytes per second, compared to 6.8
Gflops and 6 Gbytes per second for a 3-GHz Pentium 4
CPU. Furthermore, GPU performance for graphics
applications throughput has been increased from 2 to
2.5 times a year. This growth rate is faster than Moores
law as it applies to CPUs, which corresponds to about
1.5 times a year. In a GPU, there are several vertex
pipelines using MIMD (Multiple Instructions Multiple
Data), and fragment pipelines using SIMD (Single
Instruction Multiple Data) to provide the ability for
high-speed parallel data processing. So the GPU can be
treated as a parallel vector machine that is suitable for
some kinds of numerical computations [3], [4].

The function of the fixed pipeline of graphics
hardware used in raw GRECO is to obtain the shadow
of different parts of a complex target in the rendering
process. Based on the raw GRECO, the programmable
pipeline of a GPU can be applied to implement GRECO
method without a rendering process. The customized
vertex and fragment shaders for RCS computing can be
compiled and linked into the GPU pipeline to substitute
some functions of the fixed-pipeline [5]. Since most of
the time-consuming computation in raw GRECO is
used to obtain the scattering contribution of the small
facets represented by the pixels on the screen, thus it
can be implemented by the parallel fragment shader to
accelerate the simulation. In this paper, the vertex and
fragment shaders are applied to the raw GRECO
method based on prior work to obtain the mono and
bistatic RCS of complex targets [6]. The GPU-based
ray tracing algorithm is implemented to obtain the
contribution of multiple reflection of a target with
concave structure. The paper is focused on the
combination of GRECO and GPU programming, the
GRECO and related techniques will not be discussed
here, its details can be found in [1] and [7].

Compared with the raw GRECO, the main
advantages of GPU-based GRECO are:

1) Higher efficiency, where the speed can be improved
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up to 20 times compared with the raw GRECO.

2) Ability to simulate multiple reflection of the complex
targets (see section 11.C), this feature is not involved in
raw GRECO.

The development of GPU-based GRECO is part of
the work for the target echo simulation for radar target
identification and Inverse Synthetic Aperture Radar
(ISAR) imaging. High speed simulation is required for
obtaining the wide-band and wide-angle scattering
response of many complex targets, it is the main
motivation of the work.

I1. METHODOLOGY

In GRECO, the procedures of RCS prediction are:
1) Read the 3D model files created by CAD software.
2) Render the 3D model in the frame-buffer of a
graphics card.
3) Obtain the depth information of each pixel.
4) Obtain the surface normal of each pixel using two
different lighting configurations.
5) Map the depth information to the real depth of the
target.
6) Obtain the scattering contribution of each pixel
using PO/PTD.
7) Obtain the total scattering contribution by
accumulating the contribution of each pixel coherently.

In the procedures mentioned above, normal vector
computation, depth mapping, scattering simulation of
each pixel, and final accumulating are done in the CPU.
There are three massive data exchanges between main
memory and video memory: two for color information
of two different lighting configurations and one for
depth information. In the CPU, massive floating point
operations are needed for computing the normal vector
and scattering contribution of each pixel on the target
surface based on serial processing mechanism, that is,
many loop operations are needed in the raw GRECO.
Using the programmable pipeline of the GPU, the
normal vector and depth can be accessed directly by
using built-in variables of shading languages such as Cg
(C for Graphics, released by Nvidia) and GLSL
(Graphics Library Shading Language) [8], so the two
different lighting configurations and depth mapping are
needless. Thus scattering contribution of each pixel can
be obtained rapidly based on parallel processing
mechanism of fragment shader, and the final total
scattering contribution can be obtained by a parallel
reduction process in the GPU [9]. The detailed
procedures are explained as follows.

A. PO Simulation by Shader

Figure 1 represents the procedures of the GPU’s
fixed-pipeline (solid line) and the programmable
pipeline (dashed line). Some functions of the

fixed-pipeline can be replaced by the programmable
pipeline using vertex shaders and fragment shaders.
Vertex shaders can be used to specify a general
sequence of operations to be applied to each vertex and
its associated data, and the fragment shaders can be
used to specify the operations on fragment values and
its associated data.

CPU GPU

| 3D API l——vl Transformation & Lighting |--{ Vertex Shader ‘

Culling & Clipping

|Ra.atcr1'ng & interpolation |

|Tc:\'t.uro picking & a,pp]ic‘at.icm‘

—

-

Fog Computing
[Rasterlization ———] Frame-Buffer |

Fig.1. GPU pipeline.

In GRECO, the main time for the RCS prediction
is spent on the electromagnetic computation, while the
geometric model manipulations are left to the graphics
hardware. Raster element is applied to discrete the
target surface natively, and automatic culling technique
is used to remove the shadowed parts of the target.
With the rapid development of graphics hardware
especially the programmable pipeline of the GPU,
GRECO can be implemented entirely in the GPU. The
key procedures of GPU accelerated GRECO are:

1) Write the user-defined vertex shaders and fragment
shaders for RCS computation based on PO/PTD.

2) Compile and link the shaders, and then embed the
shaders to the GPU pipeline.

3) Start up the general drawing process and store the
scattering results of each pixel in the frame buffer.

4) Obtain total scattering contribution by the reduction
technique that will be described in section I1.D.

For GPU accelerated GRECO, the 3D geometrical
transformation, including normal transformation can be
implemented in a vertex shader. The scattering results
of each pixel can be obtained directly in a fragment
shader by equation (5) in [1], then it can be written into
the R component and G component of RGB (Red,
Green, Blue) by render-to-texture technique, where R
and G components represent the real part and imagery
part, respectively. Finally, the reduction technique can
be applied to obtain the total scattering contribution.

B. Diffraction of Edge
In [1], the Element Edge Wave (EEW) is applied
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to obtain the edge diffraction contribution. The
geometrical parameters such as the normal vectors of
two facets that construct the edge, edge inner angle and
the direction of the edge should be obtained correctly.
The method used in [1] can obtain the edge information
on the condition that two facets are all illuminable. It
will fail when one of the facets that construct the edge
is shadowed.

In [10] and [11], the complete edge information is
obtained from the model information stored in the 3D
model file based on some principles of computer
graphics. It is found that the edge diffraction can be
obtained by the GPU programming. The primary issue
is how to obtain the edge information with the shadow
between model and edges must be considered, and the
second issue is how to pass the edge information to the
fragment shader for diffraction computation using PTD
or ILDC (Incremental Length Diffraction Coefficient)
[71.

The 3D facet model is constructed by a number of
triangles with a certain topological relationship. For a
regular 3D model, the common edge exists in the
adjacent facets. If the angle between two normal
vectors of two facets is larger than the predefined
threshold, the common edge needs to be considered for
diffraction; otherwise, the two facets are treated as
locating on the smooth surface. This is similar to
normal averaging in computer graphics [8].

Through the preprocessing of the model
information, edge information such as normal vectors,
edge direction, and inner angle of each edge can be
obtained for edge diffraction computation later. These
parameters are dependent, the edge direction and inner
angle can be obtained by the cross product and dot
product of two normal vectors respectively. The normal
vector of one illuminable facet, edge direction and inner
angle are sufficient for edge diffraction computation. In
paper [11], three display lists [8] are used to store the
normal vector, edge direction and inner angle
respectively. In order to eliminate the shadowed edge,
the “dark” model (r,g,b=0,0,0) can be rendered with
lighting disabled before the edges are rendered. In this
paper, only one display list is used to store the three
parameters for edge diffraction by eliminating the
shadowed edges and pass this edge information to the
fragment shader.

In OpenGL, the main color and secondary color
can be assigned for each vertex of a 3D model and each
color has four components named RGBA (Red, Green,
Blue, and Alpha). In the rendering procedure of an edge,
the RGBA of the main color can be used to store the
normal vector n of illuminated facet and the inner angle
a, that is, R =n.x, G =n.y, B =n.z, and A = a, while
the RGB of the secondary color can store the edge
direction. Eliminating the shadowed edges can be
implemented by the “dark” model mentioned above.
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Figure 2 illustrates the rendering result of a missile
model with shadowed edges that are eliminated. The
smooth part of the model, such as the fuselage and
wings, is full dark as the background, while the edges
of the wings are rendered with the geometrical
parameters passed to the fragment shader by main color
and secondary color for diffraction computation. When
all information for diffraction computation is available,
the EEW method can be implemented in the fragment
shader for edge diffraction.

Fig. 2. Rendering result of edges.

C. Multiple Reflections

Multiple reflections play an important role in the
scattering of complex targets. The Shooting and
Bouncing Ray (SBR) technique has been developed for
RCS prediction for a target with concave structure [12].
The software Xpatch based on SBR has been released
by ASIC Inc. Ray tracing is the core algorithm of SBR.
In order to obtain multiple reflection contribution, the
ray propagation paths of incident wave and reflected
wave need to be recorded to obtain the amplitude and
phase of each ray that bounced between different parts
of the target surface. All contributions from scattering
and iterative multiple reflection should be accumulated
in the direction in which the receiver is located.

Conventional ray tracing algorithm computes light
intensity and color components of the scene. The
coherence of light is not considered in conventional ray
tracing because the phase of the light is not important
for rendering scene in computer graphics. However, it
is as important as the amplitude in the EM scattering of
complex targets. Thus the modifications should be
applied to conventional ray tracing algorithm for
obtaining the multiple reflections’ contribution. The
differences between conventional ray tracing and SBR
in EM scattering are:
1) Conventional ray tracing calculates the amplitude of
light. As for the EM scattering, both the amplitude and
phase are to be calculated.
2) The light amplitude in a conventional ray tracing is
obtained by the Phong lighting model, while the
amplitude and phase of the EM scattering are obtained
by physical optics, geometrical optics, and PTD.
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3) Refraction must be considered in conventional ray
tracing while there is no refraction contribution from
metal target surface for EM scattering computation.

To obtain the multiple reflections’ contribution, the
propagation paths bounced between different parts of
the complex target should be recorded including the
sequences of the intersections between the radar beam
and the facets of the target. It is very time-consuming
because massive intersection tests are needed to be
computed.

In order to accelerate the ray tracing by GPU,
Purcell mapped the vertices of the complex model to
three textures and constructed a texture representing the
linked list which stores the triangles of the model
surface [13]. Thus, the ray tracing algorithm can be
implemented by the GPU. The GPU accelerated ray
tracing for EM scattering is implemented in the
fragment shader based on Purcell’s work in this paper.
The algorithm flow chart is shown in Fig. 3.

Create initial ray

‘eye direction & location

‘ Spatially Enumerated Octree H Tranversal Octree Grid ‘

Fig. 3. Ray tracing for multiple reflection.

Normal of Intersected Surface

The algorithm can be divided into five parts and
implemented by fragment shader, except the ray tube
initialization is preprocessed in the CPU. The method
provided by Didier Badouel is applied to obtain fast
ray-polygon intersection [14] and the Proximity Clouds
algorithm is applied to scene traversal [15]. The
performance of the 3D traversal is important to the
efficiency of the algorithm. BSP (Binary Space
Partition) tree, Adaptive octree, KD tree, and SEADS
(Spatially Enumerated Auxiliary Data Structure) [16]
etc., can be adopted to store the 3D scene data for
acceleration of traversal [17]. In this paper, the SEADS
method is applied to fast traversal due to the following
reasons:

1) It is simple for parallel processing.

2) The time for each data access is constant and with
linear time complexity.

3) Easy code for hardware implementation.

The ray tracing algorithm is very complicated; it is
a hot topic in computer graphics, the detailed
procedures of the ray tracing accelerated by the GPU is
not described here. It should be noted that if the depth
of tracing is reduced to 1, the algorithm degenerates to
GRECO.

D. Reduction

When shaders for PO/PTD and multiple
reflections are applied to scattering computing, the
contribution of each pixel is stored in RG components
of the current texture and has to be accumulated to
obtain the total scattering contribution. Traditionally,
the RGB components can be read back to the main
memory and then accumulated by CPU. It is
time-consuming because of long time loop operations
for accumulation and massive data exchanges between
video memory and main memory, for example, if the
viewport is 1024 by 1024, this means that there is
1024x1024 = 1048576 accumulation operations that are
needed to obtain the final total contribution.
Additionally, it is slow to read the RGB components
from video memory to main memory. If the
accumulation can be implemented in GPU without the
massive data exchanges and loop operations, higher
execution efficiency will be obtained.

After investigating the parallel mechanism of the
fragment shader, it is found that the parallel reduction
technique is suitable for acceleration of accumulation [9]
in GPU. After several reduction processes, only one
complex number that represents the total contribution is
needed to be read back to the main memory resulting in
no massive data exchange.

In computer graphics, reduction technique is
mainly applied to obtain the maximum value or
accumulation of the floating point numbers stored in
texture. Here, texture can be treated as a 2D array that
stores the scattering contribution of each pixel. The
maximum value in a 2D array can be obtained by the
procedure shown in Fig. 4.

34 (64| 83(97

88197193199 197199

—— —— —1— 99
93180 81|86 [93]87 -
7082 |85 | 87

Fig. 4. Reduction for obtaining the maximum.

For obtaining the maximum of the 4 by 4 array,
the maximums of 4 subregions with the elements {84,
64, 88,97}, {83, 97, 93,99}, {98, 80, 70, 82}, and {81,
86, 85, 87} should be first obtained, and then a new
array can be created with the elements {97, 99, 98, 87}
that are the maximums of 4 subregions.

The same procedure can be applied to the new
array for obtaining the final maximum of the array, that
is, 99. For obtaining the accumulation result of the
array, similar procedure can be applied.

In the implementation of reduction by the GPU,
the accumulation can be applied to a 2 by 2 subregion
of the texture, then a new texture can be constructed
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with 1/4 the size of the current texture. Iteratively, the
final accumulated result can be obtained. This operation
limits the size of the texture to the integer number that
is power of 2 but it is suitable for parallel processing in
fragment shader. In this paper, the size of the texture is
set to 2'° = 1024, only 10 reduction operations are
needed to obtain the total contribution without massive
data exchanges from video memory to main memory
and large amount of loop operations (up to 1048576).

Jinwook Kim provided a reduction example on the
web and helped us to implement the reduction easily
[18]. The reduction procedure for computing the RCS
of a missile model is illustrated as shown in Fig. 5.

Fig. 5. Reduction for RCS accumulation.

The R and G components of the images in Fig. 5
represent the real and imaginary parts of the scattering
contribution of each pixel, respectively. The size of the
first image is 1024x1024. After one reduction operation,
the size of the image is reduced to 512x512 and the
accumulation results of each 2 by 2 subregion are
obtained. The final accumulation result is obtained after
10 iterative reduction operations and stored in a 1x1
array.

1. EXAMPLES

In order to compare the simulation speed, the RCS
of a scaled missile model (1:8) is simulated by raw
GRECO and the GPU accelerated GRECO. The view
port for computing is 1024 by 1024, f = 10GHz, aspect
angle is from 0° to 360° with an angle step of 0.25¢, that
is, 1441 RCS results are calculated. The CPU in our
platform is an Intel Pentium 4 with clock frequency 2.8
GHz and the GPU is provided by Nvidia GeForce 6600
GT graphics card. The time for raw GRECO is 390 s
and that for GPU accelerated GRECO is only 19 s. The
speed of the simulation is improved up to 20 times. The
RCS of the model is also measured by CATR (Compact
Antenna Test Range) system and the results that are
smoothed by 10-point adjacent average are shown in
Fig. 6.

For illustration of multiple reflection contributions,
the RCS of a dihedral constructed with two Im X Im
metal planes is simulated with the depth of tracing set
to 2. The result shown in Fig. 7 agrees well with that
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shown in [7]. The time for computing the RCS in the
aspect angle range [-60°, 60°] with step 1° is about
100s.

Furthermore, the wide-band, wide-angle scattering
data of complex targets are simulated by the GPU
accelerated GRECO to obtain the high resolution range
profile and ISAR image. Figure 8 is the turntable ISAR
image of a Boeing 737 model obtained by the simulated
data at X-band with bandwidth 300 MHz.

Measured
04 --=--GRECO GPU

RCS(dBsm)

=20 <

3048 |

T T T T T T T T T 1
0 30 60 90 120 150 180 210 240 270 300 330 360

Aspect Angle

Fig. 6. Measured and simulated RCS of the missile
model.
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Fig. 7. Simulated RCS of dihedral.
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Fig. 8. Turntable ISAR image of a Boeing 737 model.
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IV. CONCLUSION

The programmable pipeline of a modern GPU is
applied successfully to the implementation of a GPU
accelerated GRECO method with multiple reflection
contribution included. The speed of simulation is
improved up to 20 times compared with the raw
GRECO. The GPU accelerated GRECO method has
been used to simulate radar echo for different radar
systems and the wide-band wide-angle scattering data
of different targets for constructing the database for the
radar target identification. Further improvement on
simulation speed can be obtained by a more powerful
GPU and better algorithms with the rapid development
of computer graphics.
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Abstract — The small dimensions of Radio Frequency
Micro-ElectroMechanical Switches (RF MEMS) raise
significant modeling challenges in terms of accuracy and
solver efficiency. This paper introduces a practical RF
MEMS switch analysis based on an extended finite
element-boundary integral (EFE-BI) method with an
iterative solver incorporating a new sparse-matrix
preconditioner whose large eigenvalues are very close to
those of the original matrix. This sparse preconditioner is
key to successfully solving the ill-conditioned EFE-BI
matrix. The smaller condition number and almost
positive-definite eigenvalue spectrum after
preconditioning leads to fast convergence. Specific RF
MEMS simulations are presented to demonstrate the
accuracy and effectiveness of the methodology and
solution process.

I. INTRODUCTION

RF MEMS switches have demonstrated low on-state
insertion loss, high off-state isolation, and very linear
behavior over a broad frequency range [1] and [2].
Despite their excellent characteristics, they generally
suffer from low power-handling capability, with most
switches operating well below 1W [2]. This limitation is
due to the complex interactions among electromagnetic
losses, heat transfer, and mechanical deformations of the
switch. To better understand the associated failures, a
multiphysics model was proposed in [3]. However, the
work in [3] employed an approximate two-dimensional
modeling of the RF current though the switch. As such it
was not sufficiently rigorous in characterizing the edge
current behavior which is critical for the heat dissipation
process. Toward the goal of developing a more accurate
and reliable analysis of RF MEMS, we proposed in [4]
and [5] a more robust and efficient analysis method
referred to as the extended finite element-boundary
integral (EFE-BI) method.

Of importance in our EFE-BI analysis was the
treatment of very small features associated with the
MEMS switches. For example, at 2 GHz, the beam length
corresponds to an electrical size of /1500 to 1/250 and a
gap of 2/150,000 to A4/50,000. Because of these small
features, the resulting hybrid matrix system is highly ill-
conditioned and the matrix entries (viz. the integrals

defining the matrix entries) are difficult to be accurately
evaluated. Standard implementations of the finite element
(FEM) and moment methods (MoM) employ integrations
based on the Gaussian quadrature formulae for evaluating
the matrix entries. However, for the small RF MEMS
dimensions, these standard integral treatments were
found to lead to ill-conditioned matrices with erratic
changes in the output of the observable quantities. In [6]
we proposed a set of semi-analytic evaluations of the
matrix entries for the resulting EFE-BI hybrid system.
However, a good preconditioner is still needed to ensure
convergence, especially for frequencies below X band (10
GHz).

Many authors have explored preconditioning
matrices for ill-conditioned matrix systems [7], [8], and
[9]. Although the standard diagonal (DP) and block-
diagonal preconditioners (BDP) can partially overcome
convergence issues, they are still not reliable for RF
MEMS modeling. In this paper, we present a highly
efficient and reliable analysis of RF MEMS systems
based on a new preconditioner referred to as the Large-
Eigenvalue-Sparse =~ Preconditioner ~ (LESP).  This
preconditioner is implemented within the Generalized
Minimal Residual iterative solver (GMRES) and is
shown to significantly reduce the condition number and
lead to almost positive-definite preconditioned matrix for
RF MEMS switches. The reader is referred to [4], [6] and
[10] for details related to the formulation of the EFE-BI
and the element evaluations. Here, we focus only on the
preconditioning approach and the relevant results. The
reader is also referred to [9] and [11] for a review of
iterative  solvers and  pre-conditioners.  Other
preconditioners for RF applications are mentioned in [7]
and [12]. However, our particular application relates to
the unique issue of RF MEMS switches where the entire
geometry is A/250 or less in size.

Il. PRECONDITIONING OF THE HYBRID
MATRIX SYSTEM

A simplified RF MEMS switch is illustrated in Fig.1.
As it is well known, the RF MEMS switch beam
experiences shape deformation during its dynamic
operation. The conventional FE-BI [13] with rectangular
gridding cannot track this deformation with sufficient

1054-4887 © 2007 ACES
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geometrical accuracy. For this purpose in [4], we
introduced an extended FE-BI analysis method (EFE-BI)
for RF MEMS switches. The EFE-BI employs the
moment method to model the beam and the usual FE-BI
for the substrate and conducting sections on the boundary
of the same substrate. As a result, the beam mesh is
separated from the FE-BI section of the model. It can
therefore be readily re-meshed as the beam curves. This
approach allows for full flexibility in modeling the
deformed 3D surfaces while reducing the computational
expense. The typical EFE-BI matrix takes the form [4]

and [6]
E. | _[b!
G o

where A™ and A*® represent the FE-BI system for the
fixed volume V; enclosed by S; as shown in Fig. 1. As

A5

A5

AFEM N ASISI
A5

usual, A" is a very sparse submatrix whereas A™! is
dense. Similarly, A** and A% are the dense matrices
representing the interaction between the beam and the BI
enclosing the substrate, whereas A** is a dense
submatrix representing the discrete method of moments
system. The small sizes discussed above lead to near-
zone integrals in the various submatrices of equation (1).
These integrals can be efficiently evaluated using the
semi-analytic integrations [6]. However, the resulting
matrices are still ill-conditioned (Fig. 2).

Given the small number of unknowns due to the
electrically small size of RF MEMS switch, GMRES
(without restart) [8] and [11] is a good choice for solving
equation (1). A description of the GMRES algorithm is
given in [11] and [14]. We also note that available
commercial software typically converges rather slowly or
never at frequencies below ~50 GHz due to the extremely
small MEMS dimension. This highlights the need for a
preconditioner, but also points to the need for improved
methods to carry out a reliable analysis of RF MEMS
switches. The next paragraphs describe the construction
of the proposed LESP. We then proceed to demonstrate
the solution effectiveness of the entire EFE-BI approach
for RF MEMS analysis.

It is well known that a good preconditioner is sparse
and should have eigenvalues close to the larger ones of
the original matrix. This approach generates a
preconditioner that is a highly sparse matrix, but
incorporates the critical elements of the original matrix.
A preconditioner 4, can be applied to equation (1) as

ASISZ EV . bV
AS2S2 sz = Al { 0 } (2)

AP AP

A5

Afl

LESP

with

AFEM (AS1S1 ) (A51S2 )
A = (Aszsl ) v (ASZSZ )NZ]Z . 3)
NZ21 NZ22

Beam (S2) Substrate (V1)

S1

P

Fig. 1. RF-MEMS simplified model.

1014

13

10+

12

107+

Condition Number

11

10+

10

10

5 10 15 20 25 30 35 40 45 50
Frequency (GHz)

Fig. 2. Matrix condition number versus frequency
(75*50%2 um).

In this, {A%"},, contains an optimal number of the
strongest coupling elements in each row of {A*"}. To
actually generate {A”"'} ., the matrix elements within

each row of {A**}are sorted with respect to their
modulus and the n,,, elements with the largest modulus
are included to form the preconditioning matrix
{ASIS’ Ynz1- Typically, most elements of (A1} are

located in a band around the main diagonal, but edge
numbering can make some of the large elements
distributed over the entire extent of the square matrix. A

. . . . . S,S 5,8
similar procedure is applied to submatrices A2, A™

and A**2 | Unlike the conventional preconditioners, our
approach includes the high modulus elements from the
submatrices A’*? and A™" . For simplicity, in this
paper, the same NZ from each row of the original matrix
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is selected to construct the preconditioner matrix, and an
optimal NZ is found to achieve the best compromise
between convergence versus CPU cost.

I1l. NUMERICAL APPLICATION

In this section, we present examples that demonstrate
the efficiency of the LESP preconditioner. As a solver we
used the general minimal residual algorithm (GMRES)
with Krylov subspace methods [13] because it converges
monotonically and (generally) gives the smallest residual
errors among other Krylov subspace methods. The
dimensions of the considered example are given in Fig. 3,
and we note that the glass substrate was meshed using
brick elements to reduce the number of unknowns.
However, triangular surface (S2) elements were used to
model the MEMS beam to accurately represent of the
deformed beam surface. Beam thickness and conductivity
were modeled using the resistive sheet model [13].

Figure 4 shows the construction of LESP.
Specifically the original EFE-BI matrix is shown at the
top of the figure with the corresponding preconditioner
given at the bottom. We also remark that the elements in
the beam are all in the near zone with respect to each
other and are therefore strongly coupled. Thus, we found
it necessary to include the entire BI matrix (marked in
black in Fig. 4 (b)) to construct the preconditioner. This
process was later found to ensure convergence in all
cases.

A convergence rate comparison using different
preconditioners with GMRES is shown in Fig. 5. We
observe that the matrix condition number is very high
(3.694x10") and therefore LESP preconditioner is
needed to obtain fast convergence.

Fig. 3. RF-MEMS switch for our modeling.

From Fig. 5, it is seen that LESP leads to faster
convergence as compared to the diagonal/block
preconditioner. In addition, LESP has an optimized
number of high-coupling terms which generate the best
convergence (here NZ = 10 for the 50 GHz case). As can
be expected, the value of NZ is dependent on the
geometry. The mesh size and expansion function also
affect the number of the near zone elements to be
included in the preconditioner.
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Figure 6 presents the convergence rate versus
frequency. As seen, more iteration is needed to obtain the
same convergence as the frequency is reduced. At the
same time, the optimized NZ rises due to the much higher
coupling among the matrix elements. It is also interesting
to point out that the convergence rate is much better at
the beginning of the iteration process. However, it
reaches a relatively stable rate at lower frequencies. At
higher frequencies, the convergence rate is slower at the
start, but is more consistent and reaches the convergence
criteria more quickly.
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Fig. 4. Profile of the EFE-BI and preconditioner matrices.

To better understand the preconditioner's influence on
convergence, Fig. 7 shows the eigenvalue spectrum
before and after preconditioning. Specifically, we show
the spectrum when NZ = 1 (same as the diagonal
preconditioner) and 15 (optimal) at 30 GHz. It is seen in
Fig. 7 (a) that for NZ=15, most of the eigenvalues are
closer to those of the original matrix. Nevertheless, of
importance is that after preconditioning (Fig. 7 (b)): (1)
the eigenvalue spectrum cluster becomes tighter and the
convergence is faster since the condition number is
proportional to the ratio of the maximum to minimum
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eigenvalues (as compared to the NZ = 1 case); (2) the
preconditioned matrix with the optimized LESP leads to
an almost all-real and positive eigenvalue spectrum
(implying an almost positive-definite system).
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Fig. 5. Convergence versus iteration number for the
preconditioned EFE-BI matrix.
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Fig. 6. Convergence versus frequency using an optimal
number of non-zero rows (NZ is given in the
parenthesis).

To compare the proposed LESP with the diagonal
and block preconditioner, we repeated the example at 50
GHz (1241 unknowns) on an Intel Pentium-IV® [2-9]. It
was found that at each iteration, LESP (NZ = 10) took
1.92 sec, whereas the diagonal preconditioner took about
the same time of 1.914 sec. However, LESP (NZ = 10)
was 4.2 times faster in reaching the normalized residual
norm (set to 0.005) as compared to the diagonal
preconditioner and 3 times faster as compared to the
block preconditioner (NZ = 20) due to the fewer
iterations. At the same time, the memory requirements
were reduced dramatically since the needed storage per
iteration rises linearly with the iteration count [15].

Using the preconditioner discussed above, we
simulated the model in Fig. 3 at 5 GHz. The current is
shown in Fig. 8. As seen, it compares well to the static
approximation.
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IV. CONCLUSION

The extremely small dimensions of RF MEMS
switches inevitably lead to highly ill-conditioned matrix
systems for RF analysis. Consequently, poor convergence
is experienced when the RF MEMS switches are modeled
via the conventional FE-BI method. In this paper, we
presented a new preconditioner (LESP) to solve the
matrix system generated via the extended FE-BI method.
This new preconditioner preserves the matrix elements
consisting of the largest eigenvalues associated with the
original matrix. After preconditioning, the resulting
system is almost positive-definite, implying fast and
reliable convergence. Using the proposed preconditioner
we were able to reliably predict the behavior of RF
MEMS switches over a broad range of frequencies (500
MHz - 50 GHz).
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Abstract — This paper presents the parallelization of a
previously-developed two-dimensional floating random
walk (FRW) algorithm for the solution of the nonlinear
Poisson-Boltzmann (NPB) equation. Historically, the
FRW method has not been applied efficiently to the
solution of the NPB equation which can be attributed to
the absence of analytical expressions for volumetric
Green’s functions. Stochastic approaches to solving
nonlinear equations (in particular the NPB equation)
that have been suggested in literature involve an
iterative solution of a series of linear problems. As a
result, previous applications of the FRW method have
examined only the linearized Poisson-Boltzmann
equation. In our proposed approach, an approximate
(yet accurate) expression for the Green’s function for
the nonlinear problem is obtained through perturbation
theory, which gives rise to an integral formulation that
is valid for the entire nonlinear problem. As a result,
our algorithm does not have any iteration steps, and
thus has a lower computational cost. A unique
advantage of the FRW method is that it requires no
discretization of either the volume or the surface of the
problem domains. Furthermore, each random walk is
independent, so that the computational procedure is
highly parallelizable. In previously published work, we
have presented the fundamentals of our algorithm and
in this paper we report the parallelization of this
algorithm in two dimensions. The solution of the NPB
equation has many interesting applications, including
the modeling of plasma discharges, semiconductor
device modeling and the modeling of biomolecules.

Key words — Monte Carlo, random walk, stochastic
algorithm, nonlinear Poisson-Boltzmann equation,
modeling of plasma sheaths, semiconductor device
modeling, and modeling of biomolecular structure and
dynamics.

I. INTRODUCTION

The solution of the nonlinear Poisson-Boltzmann
(NPB) equation has widespread applications in science

and engineering. These applications include the
modeling of plasma sheaths [1], semiconductor device
modeling [2] and the modeling of biomolecular
structures and dynamics [3]. In this paper, we address
the parallelization of a two-dimensional floating
random-walk (FRW) [4-6] algorithm (a sub-class of
Monte Carlo algorithms) for the NPB equation, subject
to Dirichlet boundary conditions.

The FRW method is based on probabilistic
interpretations of deterministic equations. We consider
a differential equation, with a differential operator L,

Lum)]= £ (), (1)

where the solution U(r) is a function of the three-
dimensional position vector r. The function f{r) is a
source term. Using Green’s integral representation [7]
U(r) can be written as

U(r,)=|[[avG(rir,) /()
- <ﬁ> [dsV.U(r)] G(rlr,) (2)

+§pldsv,G(rlr,)] U®).

The symbol G(r|r,) is the volumetric Green’s function
[7] for equation (1) at r given an impulse function at r,

and is given by the solution of the equation
L[U(r)]: o(r-r,). V.G(r|r,) , which on the other
hand is called the surface Green’s function [7]. The first
term on the right hand side of equation (2) is a volume
integral involving the source term in the entire volume
V' of interest. The second and third terms are vector
surface integrals over the surface S enclosing V, where
ds is a vector whose magnitude is equal to that of an
infinitesimally small area unit on the surface S and
directed normally outward from the center of the area
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unit. The second integral on the right hand side of
equation (2) corresponds to the Neumann [7] boundary
condition, whereas the third integral corresponds to the
Dirichlet [7] boundary condition.

Equation (2) forms the mathematical basis of the FRW
method. To evaluate the solution of equation (1) at a
particular point in the domain of interest, we consider
maximal spheres, cubes, or any geometrical object for
which the volumetric Green’s function of equation (1)
is known [4-6]. We then make random hops to the
surface of that geometrical object based on any
predefined probability density. The weights for such
random hops are determined by sampling the various
integrands in equation (2). For example, in the case of a
Dirichlet problem with no source term [that
is, f(r)=0], the problem reduces to a Monte Carlo

integration of an infinite-dimensional integral, as given
by [8],

U(ro)=qus1K(r0 |r1)><¢a’s2K(r1 1)
s, S,
><q‘>dsnK(rn_1 I ) (r,), ©)

K(r 1 |rn)=‘vr"G(rn—l |rn)

n—

c0s(7, 1) -

where y, ., is the angle between V _G(r,, |r,) and

ds,,being a vector whose magnitude (dsn) is equal to
that of an infinitesimally small area unit on the surface
S, and directed normally outward from the center of

the area unit. The successive surface integrals in
equation (3) relate to successive random hops across the
problem domain and the weight factors of the form
K (rn_1 | rn) are derived from the third integral term on

the right hand side of equation (2) that corresponds to
the Dirichlet boundary condition. A particular random
walk is terminated at the boundary, where the solution
is known, and the samples of successive weight factors
multiplied by the solution at the boundary yield a
particular sample of the solution. A numerical solution
of equation (1) is obtained by averaging over a
statistically large number of such samples.

At this point, we note that this method does not require
any discretization, as the solution can be evaluated at
the point of origination of the random walks
irrespective of the solution at any other point. In
contrast, deterministic numerical methods require the
discretization of either the volume or the surface of the
problem domain. Methods such as the finite-difference
[9] or the finite-element [10] are based on volume
discretization, while methods such as the method of
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moments [11] require surface discretization. As a
result, the FRW method has lower memory
requirements compared to deterministic numerical
methods.

We also note that this method is inherently
parallelizable, since different random-walks can be
performed in different processors, and inter-processor
communication is required only during the final
averaging of the contributions from different walks. As
a result, one can obtain very close to linear rate of
parallelization for a large number of processors, which
is a very unique advantage that the FRW method enjoys
over deterministic methods. In this paper, the
superiority of the FRW method over the finite-
difference method as regard to parallelization will be
demonstrated.

In spite of these unique advantages, the FRW method
has not being applied to the NPB equation and other
important nonlinear equations. This can be attributed to
the absence of analytical expressions for volumetric
Green’s functions of these equations. Early researchers
in the area expressed the apprehension that the
extension of the stochastic solution methodology to
nonlinear problems might not be possible. In a 1954
paper [12], J. R. Curtiss wrote: “So far as the author is
aware, the extension of Monte Carlo methods to non-
linear processes has not yet been accomplished and
may be impossible.” Stochastic approaches to solving
nonlinear equations (in particular the NPB equation)
that have been suggested in literature [13], involve an
iterative solution of a series of linear problems and as a
result random-walk algorithms that have been presented
in literature [14-15], involve prior linearization of the
NPB equation. In our proposed approach, an
approximate (yet accurate) expression for the Green’s
function for the nonlinear problem is obtained through
perturbation theory, which gives rise to an integral
formulation that is wvalid for the entire nonlinear
problem. As a result, our algorithm does not have any
iteration steps, and thus has a lower computational cost.
The wvalidity of such an integral expression is
maintained by restricting the size of a random hop and
increasing the order of perturbation in the Green’s
function would allow one to increase the hop size, thus
increasing computational speed. An approach utilizing
a perturbation-based Green’s function was used to
develop an FRW algorithm for the Helmholtz equation
in heterogeneous problem domains (important for IC
interconnect analysis at high frequencies) by Prof. K.
Chatterjee in Ref. [16-17], where the idea of extending
the approach to nonlinear problems was also proposed.
Later that idea was extended to develop the
fundamentals of a floating random-walk (FRW)
algorithm for the NPB equation [18-20]. In this paper,

334



335

we present the results of parallelization of the FRW
algorithm for the two-dimensional NPB equation.

II. FORMULATION OF THE ALGORITHM

The formulation of the two-dimensional algorithm is
presented in detail in [19, 20], along with its validation
with the help of finite-difference based benchmarks. In
this section, we give a brief description of that
formulation before presenting the details of the
parallelization.

In our problem of interest, the dependent variable ¢ is
governed by the NPB equation, given as

v2¢=ci2(ek¢<f> —e M) rew, )

where r(r,f) is the two-dimensional

coordinate, ¢ and k are constants, while ¥ is the two-
dimensional problem domain. Dirichlet boundary
conditions have been imposed,

position

g=g(r), redw 5)

where OW is the boundary of the domain W . Equation
(4) can be normalized to

. o )
éi ;% +;M: e’ —e™, (6)
ror\ or ) 7 of?

where 7=r/4, 0=0, $=kpand A=c/\k. We
further normalize the length scales to the radius R of a
circular domain (the chosen geometry for random-
walks) and substitute p=7/R and p, =7 /R in
equation (6). The twice-normalized NPB equation is
written as,

li(ﬁa—éJ+ 1 % =R2(e¢3—e"”;). (7

pop\op) p o

A volumetric Green’s function of equation (7),
é(f)| f)o) at p, assuming a dirac-delta function at
p, inside the circular domain, is given as the solution of
the equation

10 (Aaéj
T Al Pt
pop\ op
(®)

A zero-order approximation (assuming homogeneous
Dirichlet boundary conditions) for the volumetric

1 8°G .
bz aéz _Rz( G c,)
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Green’s function, G@(p|p,) is the solution of

equation

1 o( _ aG" 1 0°G” .
——| |+ =5(-p,) O
P 0p op p 00

and is given as [7]

A o 1
G (plp,)=—
e et
1+p0°p -2p ,bocos(ﬁ—&a)
(10)

Equation (10) can be used to obtain a first-order
approximation, G (p|p,) to the volumetric Green’s

function and is given as a solution of the following
equation,

Based on equations (2), (10) and (11), GV (p|p,) is
given by the following expression,

GOp1p,)=G"p1p,)+

127 AT A (12)
RZH[dp 6 5'GO (1 K rivl,
00

where f{y}=e’ —e” with y=G(p|p,). It can
again be noted that {G(”(Mf)o)}i):l =0 along the

circumference of the circular domain. Based on this
approximate expression for the volumetric Green’s
function and equation (2), an expression for normalized
potential at a point p, is given by a line integral over

the circumference of the unit circle and is expressed as,

Ho- [ad 2] oo a3

For the development of the FRW algorithm, we need to
)
f; } in equation (13). This estimate is
P s
p=1

obtained by differentiating equation (12), and in the
zero-centered notation (i.e. p, =0) is given by,

estimate {



2 127
{dﬂ =L+R—”,3'd,3'de'AxB, (14)
dp |,., 27 4myy,

where 4 and B are given by,

1 1

a={ (- |

N (15)
o -G
1+(,13')2 —Zﬁ'cos(é—é')

Equation (13) in conjunction with equations (14) and
(15) is used to develop the FRW algorithm for the
problem under consideration. In order to calculate the
normalized potential at a point of interest, we start our
random-walks at that point and hop to the
circumference of a circle of radius R. The random-
walks have to be restricted to a small fraction of the
characteristic length A4 in order to maintain the validity
of the first-order approximation in the perturbation
expression for the volumetric Green’s function. For
every hop there is a weight factor obtained by sampling
the multi-dimensional integrand of equation (13)
according to a pre-determined probability distribution
for each of the variables. As explained in the previous
section, a particular random-walk, consisting of several
such random hops, is terminated on the boundary of the
problem domain, where the value of the potential is
known. The contribution from a particular random-walk
is obtained by multiplying the overall weight factor
(which is obtained by multiplying the weight factors of
individual hops) with the boundary value. An estimate

43 of the potential, at the point of origination of the hops

is then obtained by averaging over a statistically large
number of random-walks.

The error in the result has a deterministic component
arising from the truncation of the perturbation-based
Green’s function in equation (12), which can be
controlled by controlling the radius of the hop. The
error also has a stochastic component, a measure of
which is given by the “1-c error o, ” given by [21],

(16)

Or =

VN
where o is the standard deviation of the contributions

from different random-walks, N being the number of
random-walks. As a result, the statistical error can be
controlled by controlling the number of random-walks.

The FRW algorithm described previously was
parallelized. Two levels of parallelism are inherent in
an FRW algorithm. First, the solutions for different
points in the domain (different origins for the random
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walks) are independent of each other. Second, for a
given point of origin, each random walk is independent,
and inter-processor communication is required only to
sum up the contributions of the walks. For this initial
parallel implementation, the test points in the domain
were handled serially. The walks were distributed in
groups across computer  processors, with
communication and a reduction operation at the
completion of the walks. The FRW algorithm was
implemented in C, and the serial version of the code
was converted to parallel using the Message Passing
Interface (MPI) library. The elegance and inherent
parallelism of the FRW algorithm is demonstrated in
the fact that the serial and parallel versions of the code
differ by only four function calls, three of which are
merely initialization routines. The results of this
parallelization are given in the next section.

III. RESULTS

In our benchmark problem (Fig. 1) [20], a circle A in
diameter, is surrounded by a rectangle of dimensions
314 x2A . The normalized potential is unity on the inner
circle and zero on the outer rectangle. When run in a
single processor, 20000 random-walks were performed
per solution point, while the radii of the hops were
restricted to two percent of the characteristic length A4
to maintain the validity of the first-order approximation
in the derivation of the volumetric Green’s function in
equation (12). For finite-difference calculations, a grid
of 51x51 points, distributed over the first quadrant was
used. The finite-difference calculations were carried out
using a standard transformation from a curvilinear mesh
in physical space to a uniform mesh in computational
space, while maintaining second order accuracy. The
results are shown in Table 1 and Fig. 2. Excellent
agreement is observed between FRW and finite-
difference based results.

It can also be observed that the absolute errors are
consistently larger than the statistical errors, which can
be attributed to the truncation of the perturbation-based
Green’s function in equation (12), and also to the
truncation errors in the finite-difference based
approach.

The parallelized algorithm was implemented on an IBM
P4+ machine, running 1.7 GHz Power 4+ chips, with 2
Gigabytes RAM available per processor for as many as
64 processors. The timing results are shown in Fig. 3
for 100000 and 10000 random-walks per solution point.
It can be observed that for 100000 random-walks per
solution point the speed of computation increases
perfectly linearly with the number of processors,
particularly for a relatively smaller number of
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processors. This can be attributed to the fact that the 1
random-walks per processor needs to be high enough to

ensure that the time spent in actual computation is large 2 . §
compared to the communication time between the 08F x
various processors. For the same reason, the increase in
the speed of computation is only sixteen fold for 32 \
processors with only 10000 random-walks per solution o6 ‘\.
point. It should be borne in mind that the benchmark e ¥,
problems used for validation are relatively simple
problems, and for more complicated problems one can
expect to see even better scalability, stemming from the ’ S,
increased number of samples per processor. In 02k \,
comparison, the parallelization of the finite-difference N
algorithm (Fig. 4) for the same problem showed ,
markedly inferior performance (compared to the case 0= 4 >
where N =100000) with increase in the number of X,y

processors. With 32 processors, the speed of
computation is only 16 times higher than the speed with
a single processor. It can also be concluded that as the

0; finite difference
0; random walk
0; finite difference
0; random walk

0.4

Fig. 2. Normalized potential plotted against position in
normalized coordinates.

finite-difference method (like other deterministic B[
methods based on discretization) reduces the numerical i -
solution of a differential equation to the numerical SEf ® N= 100000
solution of a matrix equation, our newly-developed [ deal
algorithm will exhibit superior efficiency of er
parallelization compared to other discretization-based 2 Wk
deterministic methods as well. g 't
/2] 5
.. e 3F
Table 1. Statistical error and mean absolute error é [
between FRW and finite-difference based results. T o L
[ )
Benchmark Mean Absolute | Statistical i5f
Problem (20000 Error Error [ ©
Random Walks per ir
Solution Point) T T
Along the o 8 16 24 % 40 48 o6 o4
centerline positive 0.0033 0.0028 Number of Processors
X-axis Fig.3. Parallelization results for the FRW algorithm.
Along the
centerline positive 0.0067 0.0025 , , , ,
-axis - - ]
y 32| O Egglest\g:;ir:)ce Calculations _
St .
°
3 | ]
g | ]
(/') | 4
2 e S
8 r O 1
g | o 1
h=1 8 - -
$=0 I l
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0 8 16 24 32
Fig. 1. The solution of the NPB equation in the region Number of Processors
between a circle surrounded by a rectangular boundary.  Fig. 4. Parallelization results for the finite-difference

Problem dimension is 34 x2A. algorithm.



IV. CONCLUSION

In summary, we have parallelized a previously-
developed FRW algorithm for the solution of the NPB
equation in two dimensions. This algorithm is based on
an approximate volumetric Green’s function, derived
using perturbation theory. Excellent agreement was
found between the random walk and finite-difference
results, while the FRW algorithm exhibited vastly
superior (almost linear) efficiency of parallelization for
a statistically significant number of random-walks per
processor. The FRW algorithm also has the advantage
of not requiring any discretization of the volume or the
surface of problem domains. The approach is general,
and can be applied to the numerical solution of other
important nonlinear equations. Our work in the
immediate future will involve the extension of this new
FRW algorithm to Neumann and mixed boundary
condition problems. The ultimate objective of this work
is the extension of the perturbation-based approach to
flow problems.
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Abstract — This paper presents a hybrid integral
equation  formulation  for  computation of
electromagnetic scattering by composite conducting
and dielectric materials. In the hybrid formulation,
multiple material regions in a scatterer are classified
into two categories, one is the surface integral equation
(SIE) region, and the other is the volume integral
equation (VIE) region. For the SIE region, the
boundary conditions for tangential E-field and
tangential H-field are applied to formulate the surface
integral equation for the equivalent surface currents.
For the VIE region, the equivalent principle is applied
to formulate the volume integral equation for the
induced volume currents. The hybrid formulation takes
the advantageous of both the SIE and VIE. The
integral equations are cast into a set of linear equations
using the method of moments. For regions that are
electrically large, the multilevel fast multipole
algorithm is applied to accelerate the matrix-vector
multiplication needed by iterative solvers. Numerical
results are provided to verify the accuracy and the
application of the program developed from the hybrid
formulation.

Key words — Scattering/RCS, method of moments,
hybrid methods, and boundary integral equations.

I. INTRODUCTION

The integral equation approach has been used to
model electromagnetic scattering by perfectly electrical
conducting objects as well as dielectric materials.
When this approach is used to solve an electromagnetic
wave scattering problem involving piece-wise
homogeneous electric and magnetic materials, there are
two frequently used formulations: the surface integral
equation (SIE) formulation [1-10] and the volume
integral equation (VIE) formulation [11-16]. In SIE
formulation, unknown equivalent electric current and
magnetic current are assigned on the material surfaces,
as well as the perfectly electrical conducting (PEC)
surfaces. The boundary conditions of tangential E-field
and tangential H-field across material surfaces are
applied to formulate the SIE for the equivalent currents.
In the VIE formulation, equivalent electric and
magnetic volume currents are assigned to the volumes
occupied by the materials. The field equivalence
principle’ is applied to formulate the volume integral

1 A rigorous derivation of VIE can be found in a recent paper by M.
Sencer et al in [17].

equations for the volume currents. Both the SIE and
VIE formulations have their own advantageous
depending on the problem to be solved and on the way
the discretized linear equation is solved. In general, the
SIE formulation leads to less number of unknowns for
electrically large material volume regions compared to
that of the VIE formulation. If a problem consists of
materials of electrically thin cylinders and thin slabs, it
is expected that both SIE and VIE formulation will
have comparable numbers of unknowns. However, If
iterative solvers are used to solve the discretized linear
equations, the VIE formulation will have higher
converge rate (or need less number of iterations)
because it is of the second kind [18]. Based on the
above comparisons, we propose a hybrid SIE and VIE
formulation. In this way, the material volumes are
classified into two groups. The electrically large and
bulk material volumes belong to one group for which
the SIE formulation is applied (the SIE also applied to
the perfectly electric conducting surfaces). The other
group consists of material volumes that are electrically
thin or small (such as the thin slabs and cylinders) for
which the VIE formulation is applied. We call this
approach the “SIE+VIE” approach. The purpose is to
take the advantageous of the “SIE ONLY” and “VIE
ONLY” approaches, and avoid the drawbacks of the
two. It is difficult to draw a line on the use of VIE and
SIE for a given material region. As a general guideline,
large, thick, and homogeneous material regions are
modeled by SIE, and small, thin and inhomogeneous
material regions are modeled by VIE. In the following,
we will present the hybrid formulation of the
“SIE+VIE” approach, followed by numerical examples
to verify the implementation. For a composite scatterer
with piece-wise dielectric material, we can solve the
problem using any one of the three approaches, i.e., the
hybrid “SIE+VIE”, the “SIE ONLY”, and the “VIE
ONLY”. It must be emphasized that in all three
approaches, SIE is applied to PEC surfaces. The
distinction lies in the treatment of material. In the “SIE
ONLY” approach, SIE is applied to all material
surfaces (hence it can only deal with piece-wise
homogeneous scatterers); in the “VIE ONLY”
approach, VIE is applied to all material volumes; and in
the hybrid “SIE+VIE” approach, part of the material
region is modeled by SIE and the rest are modeled by
VIE. The formulation is in frequency domain, and the
time factor of exp{-iwt} is implied and suppressed in

all the equations.
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Il. FORMULATION

A general scatterer usually consists of PEC surfaces
and electric/magnetic materials regions, as shown in
Fig. 1. In the “SIE+VIE” formulation, the volume
integral equation is constructed for the small or
inhomogeneous material regions, and the surface
integral equation is constructed for PEC surfaces and
the surfaces of large homogeneous material regions.
Although pure SIE formulation (the “SIE ONLY™)
could be applied to all the piece-wise material regions,
it can be inefficient if there are small and thin material
volumes to which the VIE formulation is more efficient
and will lead to a better conditioned system equation
[18].

A. Integral Equations

To simplify the notation, we first define two
operators, L and K, such that,

= 3 .1 oo T
Lj-J=jQ(I+k—2VV)G(r,r,kj)-J(r)dQ, (1)
J

Kj-M=Vx[G(F.F"kj)M(F)dQ, 2)
where the integral domainQ could be either a surface
or a volume, G(r,Fkj)=exp(ikj|[F-F|) /(4z|r-r]) is
the 3-D scalar Green’s function for unbounded
homogeneous  material  space  with  constant

wavenumber kj:,”\/ng, and T isthe identity dyad.

Before  explaining the  general  scattering
configurations, we first consider a few simple cases.
The focus is on introducing the domains for a scattering
configuration. The details of the equivalence problem
and integral equation formulation will be discussed
afterwards. To illustrate the configuration in general,
we first consider several simple cases. (1) If a PEC
sphere is in a free-space, then the configuration consists
of one domain (the whole space) with one PEC body
embedded within it. The domain boundary is S, (a

spherical surface of infinite radius). This surface S, is

implied for all infinite regions, and is ignored in all
cases since no integral equation is formulated on it. In
this case, one SIE is constructed on the PEC surface for
the induced electric current. (2) If a dielectric body is in
free-space and it is to be modeled by VIE, then the
configuration has one domain, and the dielectric body
is said to be embedded within this domain. One VIE is
formulated for the dielectric volume (assuming non-
magnetic case). (3) If a homogeneous material sphere
resides in a free-space, and SIE is used to model the
scattering of the material, then the configuration
consists of two domains that are separated by a
spherical surface (the interior domain Ry and the

exterior domain Ry ). The spherical surface is named
S, forRy, and Sy forRy . Two SIEs are formulated on
S1, and two SIEs are formulated for So (equation
redundancy will be considered later). (4) Now we
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consider a two-layer dielectric sphere in free-space.
There are two concentric spherical surfaces with radii
a1 and ap ( aj<ap ), respectively. If the hybrid

“SIE+VIE” is applied to this problem, there are at least
two possibilities. In one case, the spherical core is
considered as embedded within a dielectric sphere of
radius ap, and it is modeled by VIE. In this case, the

overall configuration has two domains, one (Ry) is
interior to the larger sphere (r<ap, including the core
region), and the other (Ry) is the exterior one (r=ap ).

The two domains share the same spherical surface of
radius ap . This surface is named $; for Ry, and Sy for

Ry . Equivalent problem for Ry leads to two SIEs on
So, and the equivalent problem for R; leads to two
SIEs on S;, and one VIE for the embedded core

volume. In the other case, the scatterer is considered as
a thin layer of coating on a homogeneous sphere of
radius a; . The coating is modeled by VIE. In this case,

the overall configuration has two domains as well,
domain Ry is the spherical space of r<a;, and domain

Ry is the rest of the whole space (r>a;). The two
domains share the same spherical surface r=aj. This
surface is named S for Ry, and Sy for Ry . The
equivalent problem for Ry leads to two SIES on Sq,
and the equivalent problem for Ry leads to two SIEs on
So, and one VIE for the embedded dielectric shell

coating. Of the two cases, one is more efficient
sometimes than the other depending on the relative
sizes of each part. For example, case one will be more
efficient if the dielectric core has radius much less than
a wavelength, and case two is more efficient if the shell
thickness (ap—ayp ) is much smaller than a wavelength.

With the above discussions, we consider the sketch
of a general scatterer shown in Fig. 1. It consists of
PEC bodies (denoted by o= ), and a number of piece-
wise homogeneous material domains Rq,Ro,,Rp (with

complex material parameters of &, , i=1,2,~,n), and

a number of un-named material regions (shown by the
dot-shaded regions in the figure) embedded within the
existing domains. These embedded regions are not
numbered and will be modeled by VIE. For instance,

the region marked by Jy/» is embedded within R . Let
Sij be the surface shared by domain R; and Rj, and

Spj be the conducting surface that is exposed to
domain Rj . In addition, we define Sj to be the

boundary of domain R;, it may be a union of several
open surfaces. For example, S3 is the boundary of R3
and it is the union of S31,532,534 and Sgzp

(highlighted by thick solid lines in Fig. 1), i.e.,
S3=U{513,523,534,53n} . If there are PEC regions

embedded within R3, then the conducting surfaces
shall also be part of S3.



342

LUO AND LU: EM SCATTERING COMPUTATION USING HYBRID SURFACE AND VOLUME IE FORMULATION

Einc Hinc

S14

én-1,Hn-1

Fig. 1. A sketch of a general scatterer that is made of PEC bodies as well as multiple piece-wise homogeneous
dielectric materials within which inhomogeneous materials may be embedded.

same material as that of region Ry. The total electric
field and magnetic field are set to zeros for the region
exterior to Sq, and equivalent electric current J; and

The equivalent problems for the domains are formed
magnetic current M1 are introduced on surface S .

independently from each other. For example, the
equivalent problem for Ry is shown in Fig. 2. It is
obtained by removing all materials exterior to boundary
S (highlighted by thick dotted line), all PEC bodies
within S, and then filling the left over space with the
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Fig. 2. Equivalent problem for region Ry,
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Meanwhile, the material body embedded within Ry

is removed and the equivalent volume current Jy1 is

introduced for that volume. This is repeated for all such
embedded material bodies (for simplicity of derivation,
we will not consider embedded magnetic material in
this paper. If embedded magnetic material presents,
then additional volume integral equation for equivalent
magnetic volume current shall be formulated in the
same way).

Applying the boundary conditions of continuous
tangential field components for the portion of S; that is

originally the interface of materials, i.e.,
$1i (i=1,2,3....n) in Ry, electric field integral equation

(EFIE) and magnetic field integral equation (MFIE)
can be established as,

M X(Ejs_ca+E]i_nC):—l\7|1, 3)
i X(Hjs_ca +Hi“°):31 , )
where

Efca:iklmfl-jlfIzl-MlJrikl}ylEl-le ,

cha:E1-51+ik1m‘1f1~|\7|1+ﬁl-J\/l .

The unit vector fyj in equations (3) and (4) is the
normal direction on surface Sp; that points in to Ry,

and Eli”C is the primary field generated by sources in

Ry (Ei”c is calculated assuming that the sources in Ry
radiate into an unbounded homogeneous space of ki ).
The EFIE on the PEC surfacespl, is established using
the vanishing tangential field boundary condition as

ﬁplx(E]s_ca+E]i_nC)=O, (5)

where fipy is the normal direction of Sp; directed

outward of the conductor.

In the volume material portion, the total electric field
is the superposition of the incident and the scattered
field. Based on this fact, VIE in domain Ry is

constructed as

=sca_g=tot__=inc
EYCO-E% =——EC. (6)

The volume electric current Jy/q in equation (6) is
related to the total electric field intensity
by le:ia)(g—q)EJt_Ot , with & being the position
dependent permittivity for the material body embedded
in Vi, and E[P'=E5%ENC is the total electric field
within Vq . Thus, we have established a set of four
integral equations, (3) to (6), for domain R;. Moreover,
if the conducting surface Sp1 is a closed surface, the
MFIE (magnetic field integral equation) or CFIE
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(combined field integral equation) can be used to
replace equation (5). It should be pointed out that
equation (5) will not appear for Ry if Sq does not

contain any PEC surfaces, and equation (6) will not
appear for Ry if there are no embedded dielectric

volumes in Ry.
Similarly, the equivalent problem of R, can be
established as shown in Fig. 3.

Fig. 3. Equivalent problem of domain Ry for which the
whole space (both interior and exterior to Sy) is filled
with the same material of 9,0 .

The surface integral equations on the material
surface S (or USpj) are also based on the boundary

conditions of tangential E and H fields, i.e.,
figj x(égcaﬂéiznc):—l\]z , (7

fini x(l:lgcaﬂ:liznc):jz , (8)
where
Egca :ikznzfzjz—EZ'MZ‘*”‘ZUZEZJV2 J
I:Igca:Izz-j2+ik2772_1E2"\7|2+E2'jV2 :

The volume integral equation for Vo is constructed
in the same way as in equation (5). It is given by

Egca _Eéot :_Elznc ] 9)
As stated previously, the vector EX'is related to the

T o glot
volume current by Jy 2=iw(e-£2)E5" .

Now we have established a set of three integral
equations for domain Ry (if there are PEC bodies

within R, there would be one more surface integral

equation for the PEC surfaces). This process can be
repeated for all the remaining domains, R3,Rg.,Ry . It

is expected that for each domain, a set of two to four
integral equations are established depending on
whether PEC surfaces and embedded dielectric material
exist in that domain. We have an overall of n sets of
integral equations. It is observed that there are
redundant unknown vectors assigned in the integral



equations. The redundancy is removed by using the fact
that J and M on the two sides of any material
interface are equal in magnitude and opposite in
direction. For example, on interface Sjo shared by

domains Ry and Ry, we have,
fip= —fix1, J1=—J2 and M1=—M>. (10)

In this way, we have only two unknown functions on
each interface that is shared by two material domains.
By utilizing the above relationships for FeS1o, we can
add equations (7) to (3), and equations (8) to (4), to
reduce the number of equations from four to two (this
approach was proposed in a paper by Wu and Tsai [4]
based on the earlier work of Poggio, Miller, Chang,
Harrington, Wu, and Tsai, and hence the formulation is
called PMCHWT). In this paper, the SIE applied to
dielectric material surfaces refers to this PMCHWT
formulation. It shall be noted that there are other ways
to combine the integral equations leading to different
SIE formulations.

B. Discretization of the Integral Equations

When all the integral equations are established, we
apply the method of moments (MoM) to descritize the
integral equations into a set of N linear algebra
equations. Once again, the integral equations
formulated for each domain are discretized before they
are combined with those of the other domains to
remove redundancy. To this end, the surfaces are
modeled by a set of electrically small and nearly flat
quadrangles, and the volumes are modeled by a set of
electrically small hexahedron elements whose six faces
are also nearly flat quadrangles. Basic requirements on
the mesh are,

(@ AIll quadrangles are well connected (two
quadrangles can share no more than two nodes,
and if they share two nodes, then they must share
an edge).

(b) All hexahedrons are well connected (two
hexahedrons can share no more than four nodes,
and if they share four nodes, then they must share a
common face).

(c) AIll quadrangles and hexahedrons are also well
connected. If the number of shared nodes between
a quadrangle and a hexahedron is n, then (a) n
must be 0,1,2,4 only; (b) if n = 2, they must share a
common edge; (c) if n = 4, the quadrangle must
overlap with a face of the hexahedron.

(d) All mesh nodes must be vertices of quadrangles
and/or hexahedrons (no mesh nodes are allowed
inside a mesh element or interior to the boundary
of it.

Then surface roof-top basis functions are used to
expand the surface vectors (J and M ), and the
volume roof-top basis functions are used to expand the
volume vector Jy . A volume roof-top basis function is
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defined on two neighboring hexahedrons that share a
common face (if a face of a hexahedron is not shared, a
volume basis function is also assigned to this face [12],
and this basis function is called a half basis). A surface
roof-top basis function is defined on two or more
neighbor quadrangles that share a common edge. If an
edge is shared by more than two quadrangles, it is a
junction edge [5] (no half basis is defined for surface
mesh). There are several types of junctions that must be
treated differently. Here we consider two simple types
of junctions: (1) all quadrangles that share a common
edge are material interfaces. In this case, one basis
function is assigned to the junction; (2) Multiple
material quadrangles are connected to an edge shared
by two PEC quadrangles that on a PEC body of non-
zero thickness. In this case, one basis function is
assigned to the junction. Both the surface and volume
basis functions can be written in the following form
[18],

fiQ(f):i;luaj, reQ, Q=SjorVj, (11)

Jg au

where S; (or Vj ) is a surface (or volume) mesh

element, \/a is the Jacobian of the transformation that

maps a mesh element in (x,y,z) coordinate system into a
unit element in the (u,v,w) coordinate system. In the
(u,v,w) space, a unit quadrangle is a square defined by
0<u<i,, 0<v<l, and w=0, and a unit hexahedron is a
cube defined by 0O<u<i, 0<v<i, and 0<w<l. More
details on the discretization can be found in [12,18].
After discretization, we get a set of n matrix equations,
one set for each domain, as follows,

AX=hi, i=1,2.-n, (12)

where, A is the impedance matrix of size NjxN; for
the integral operators, X is a vector of length N;
whose components are the expansion coefficients for
the unknown vectors, and b; is the excitation vector of
length Nj that is determined by the sources, all
associated with domain R;j (if R; does not contain any
source, then bj=0). If the matrix equations are to be

solved by a direct solver, then the matrices 4 ,
i=1,2,-,n, must be combined to form the system matrix
A of dimension NxN using the relationships in
equation (10), where N is the total number of
independent unknowns. It shall be noted that N is not
a simple summation of Nj, for i=1,2,n. In general,

N<Y N;j . If fast solvers are utilized to speed-up the
i

solution, the linear equations are not combined until the
matrix-vector product for each domain, A% , is
completed. This is discussed in the next sub-section.
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C. Solution wusing Multilevel Fast Multipole
Algorithm

For many realistic scattering problems, the electrical
size of certain or all domains can be very large, and
direct solvers may not be feasible. In this case, fast
iterative solvers are needed to reduce the computational
complexity as well as memory requirement. In general,
different fast solvers can be applied to different
domains depending on the size and the shape of the
domains. In this paper, we apply the multilevel fast
multipole algorithm (MLFMA) for all domains that is
electrically large. MLFMA has been discussed in detail
in many publications such as [19, 20], we focus on the
implementation for multi-region problems here. To this
end, we first identify the regions for which fast solvers
will be applied. This is done by calculating the
maximum electrical dimension Dj/4; of each domain

Rj. If Dj/4>1.0, then fast solver is applied for this

region (this criteria depends on the implementation).
For the rest domains that do not need the fast solvers,
as well as the near-neighbor interaction of any fast-
solver domain, the matrices are combined and stored

into one sparse matrix Ay and direct method is applied
to perform Ay-x . For a domain R;j that MLFMA is

applied, then A -x; will be performed in the same way
as in a single domain problem, and NjlogN; floating

point operations are needed. The overall operation
count per iteration is then made of two parts, one part is
T1=O(Ng) (Ng is the number of non-zero entries in

Ao ), and the other part is

T2=XCiNj logNj (13)
i

where i runs over all the domains to which MLFMA
are applied, and C; is a constant determined by the

MLFMA implementation.

As a summary, the procedure to perform a matrix-
vector product y=A-X include the following steps:

(@) For a given trial vector X in any iteration,
formulate x; (using (10) for domain R;j to which

MLFMA is applied).
(b) Perform vj=A % using MLFMA in R;.

(c) Repeat steps (a) and (b) for all domains in which
MLFMA are applied.

(d) Formation of y'=U{¥;}. The union operation uses
i
the rule of equation (10).

(®) V=RoX+y'.
Using the above processes, a test program is written for
the case of n=2 and numerical results are generated

and shown in the next section to validate the method
and to demonstrate the applications.
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I1l. NUMERICAL RESULTS

This section provides numerical examples using the
program developed for the “SIE+VIE” method. The
examples are designed to consider several typical
application configurations that include,

(1) Spherical structure that can use Mie series to verify
the results (example 1).

(2) A large homogeneous material with small and thin
materials embedding (examples 1 and 3).

(3) Small or thin materials are outside a large
homogeneous material region (example 4).

(4) Structures with flat faces and edges (example 3).

(5) Structures with curved faces and edges (examples
1,2, and 4).

(6) Structures with bulk material for which VIE is
inefficient (example 2).

For example 1, we use the exact solution as a
comparison. For the rest of the examples, two
approaches, “SIE+VIE”, and “VIE ONLY”, are applied
to solve the problems and results are compared to each
other. In both approaches, CFIE is used for the closed
PEC surfaces. The difference of the two approaches
lies in the treatment of the material regions. In the
“SIE+VIE” approach that is introduced in this paper,
part of the material regions (normally small or thin
regions) are modeled by VIE, and the large and thick
material regions are modeled by SIE. The results from
this approach are labeled as “SIE+VIE” in the figures.
It should be noted that the VIE modeled material can be
inside (embedded in) or outside the SIE material
surfaces. The second approach uses VIE to model all
materials, and the results are labeled as “VIE ONLY”
(The terms of “VIE ONLY”, “VIE+SIE”, and “SIE
ONLY™”, are introduced to mark the results and they
refer to the ways materials are handled. In all cases, the
surface integral equation is applied to PEC surfaces,
including “VIE ONLY” approach). The “VIE ONLY”
modeling is used as a way of validating the numerical
results of “SIE+VIE” approach. Hence the examples
are designed so that both approaches can be applied.
Because of this, the run time parameters are provided
for reference only. They shall not be used to determine
which approach is more efficient for certain examples.
All calculations are performed on a HP Superdome
computer with 1.5 GHz processor and 2GB of memory.

The first example is a layered spherical structure. It
consists of a PEC core (radius 0.45 m) covered by two
layers of dielectric materials. The inner layer has
thickness 0.05 m with relative permittivity &0=4.0;

The outer layer has thickness 0.3 m with £1=2.0+0.1i .

In the “SIE+VIE” approach, the inner layer of the
coating is considered as embedded within a shell of
inner radius 0.45 m, and outer radius of 0.8 m. The
PEC surface and the outermost spherical surface are
modeled by a total of 5,592 quadrangles (1,536 for
PEC surface, and 4,056 for the outermost spherical
surface). The embedded material shell of thickness 0.05



m is modeled by 1,536 hexahedron element (VIE
mesh). The total number of independent unknowns for
the hybrid formulation of “SIE+VIE” is N = 25,440,
and the memory used is M = 469 MB. Computed bi-

static RCSs for 6'=0° incidence at 300MHz are plotted
in Fig. 4. The exact solutions from Mie series are also
plotted for comparison. If we use the RMS error
defined as

n
RMS ERROR = }% T (oj-0T¢)?
i—0

to measure the difference of our solution o; and

reference solution Giref , for i=1,2,..,n=181 (angles),

the errors are 0.5dB for V-V, and 0.23dB for H-H
polarizations, respectively.
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Fig. 4. Bi-static RCSs of a layered spherical scatterer
for two polarizations: V-V (left) and H-H (right). The

o

incident angle is 0'=0°.

The second example is taken from [8]. It is made of
two sections of circular cylinders, one PEC and one
dielectric. The side view of the structure as well as the
dimension parameters are shown in Fig. 5. The relative
permittivity of the dielectric is 2.6, and the incident
plane wave frequency is 3.0 GHz.

For the “SIE+VIE” modeling, SIE is applied to the
material surface (no part of material is modeled with
VIE for this example). The number of unknowns is
N=6,672, CPU time is T = 35.8 s per incident angle,
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and total memory used is M = 113 MB. For “VIE
ONLY” modeling, the run time parameters are
N=17,280, T=92.05s, and M = 1,171 MB. It is seen that
the “SIE+VIE” approach uses almost three times less
number of unknowns compared to the “VIE ONLY”
approach. The latter also uses more CPU time per
incident angle (this is an example for which “VIE
ONLY” approach is not efficient to apply). The
computed mono-static RCSs by both approaches are
shown in Fig. 6, from which, we can see good
agreement between the two results.

i mee | e |,

Fig. 5. The side view of a composite PEC and dielectric
cylindrical scatterer of circular cross section (a = 15.24
cm, b = 10.16 cm, d = 7.62 cm). The incident ¢'=0 is
on PEC side of the axis (shown by the arrow in the
figure).

The next example is a composite triangular plate that
is made by two material regions and a PEC surface, as
shown in Fig. 7. Material-2 (with permittivity &> ) is
considered as embedded within material-1 (with
permittivity £). For “SIE+VIE” modeling, N=17,959,
CPU time is T = 76.7 per incident angle, total memory
is 355 MB, and average iteration number per angle is
Nijtr = 41.9 (it equals the total iteration number for all

incident angles divided by number of incident angles).
For “VIE ONLY” modeling, the runtime parameters
are N = 24,219, T = 8.6s, M = 427 MB, and Ny =5.66.
The numbers of iterations explain why the CPU time
for the “SIE+VIE” approach is more than that of “VIE
ONLY” approach. Because the overall thickness of the

structure is thin (0.4/10 ), the “VIE ONLY” approach is

more efficient to apply for this example. The two
results are given in Fig. 8 and they agree well to each
other.

In the last example, we consider a composite cylinder
of finite length as shown in Fig. 9. The cross section of
this cylinder is an ogive, and the two edges (parallel to
z-axis) are coated by materials of &1=¢r2=2.5+0.5i .
The width of the coating with & (in the +x side) is
0.236m, and that with & (in —x side) is 0.115m. For
“SIE+VIE” modeling, N = 16,052, T = 110 s, and M =
196 MB. For “VIE ONLY” modeling, the runtime
parameters are N = 19,446, T = 43.7 s,and M = 172.8

MB. The calculated RCSs at 1.0 GHz incidence are
shown in Fig. 10.
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Fig. 6. Mono-static RCSs of a composite cylindrical
scatterer for V-V polarization (left) and H-H
polarization (the description of the cylinder is in Fig. 5).

0.25m

Fig. 7. The top view of a composite triangular plate that
is made by 3 parts, a conducting part (bottom), and two
dielectric regions. The middle dielectric (with &) is

considered as embedded within the material of 1. The
thickness of the plate is 0.04 m.
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Fig. 8. The mono-static RCSs of the composite plate of
Fig. 7. The incident wave frequency is 3.0 GHz, and the

results are for the ¢'=90° plane.

Fig. 9. A composite finite-length cylinder of ogive cross
section is made of two dielectric materials and a PEC
body. The sizes in X, y, and z-directions are 1.4 m, 0.36
m, and 1.44 m, respectively.



SIE+VIE
VIE ONLY

-}

o)

o

3

>

&

)

[a]

z

9]

O

@

_40 n n n
50 100 150
PHI (DEG)

SIE+VIE
VIE ONLY

RCS (dBsm) H-H POL

50 100 150
PHI (DEG)

Fig. 10. The calculated RCSs for the ogive cylinder of
Fig. 9 for V-V polarization (left) and H-H polarizations

(right).

IV. CONCLUSIONS

In this work, we implemented a hybrid “SIE+VIE”
formulation for computing the scattering by composite
scattereres that made of larger conducting and
dielectric materials. This formulation takes the
advantage of SIE for large homogeneous material
regions, and that of VIE for small and thin material
regions. It is applicable to scattering problems with
multiple material regions of different sizes and shapes.
When a material region is electrically large, the
MLFMA is applied to accelerate the matrix-vector
multiplication in the iterative solution process.
Numerical examples are presented that verified the
solution accuracy of the hybrid formulation, and
demonstrated its ability in solving large and complex
scattering problems. This work applied one type of fast
solver only (the MLFMA) which is not the best choice
for all domains or for all problem configurations. In
fact, based on domain shape and size, it is possible to
use different types of fast solvers for different domains
to achieve optimum performance. This remains to be a
future implementation.
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Impedance of Antennas of Arbitrarily Shaped Conducting
Surfaces
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Abstract — In the present work, a Galerkin’s electric
field integral equation (EFIE) solution is applied to get
the current flowing on a conducting surface of
arbitrary shape when excited by a gap generator as
well as when illuminated by an incident plane wave.
The main objective of this work is to get a fast,
accurate and efficient computer algorithm that
optimizes the use of computer resources and reduces
the computational time and to accurately evaluate the
input impedance of conducting surface antennas. The
singular integrals arising in such a Galerkin’s
formulation are accurately evaluated and obtained as
analytic expressions. An efficient method is described
for accurate evaluation of the input impedance for
antennas of arbitrarily-shaped conducting surface. The
efficiency of the applied Galerkin’s algorithm is
examined by calculating the input impedance of well
known antennas of conducting surfaces such as the
strip-dipole, bow-tie and planar equiangular spiral
antennas. To investigate the accuracy of the applied
technique the results concerning these antennas are
presented and compared with some published results.

I. INTRODUCTION

Among the electromagnetic techniques used for
treating the problems of scattering, antennas and
discontinuities in waveguides, the integral equation is
one of the most widely used techniques. In
electromagnetic integral equation methods, the original
boundary value problems for Maxwell equations are
reformulated as integral equations over the boundary
interfaces of homogeneous domains. If the object is
inhomogeneous, integral equation over the entire
volume of the object has to be considered.

One of the most powerful techniques used in the
electromagnetic modeling of conducting bodies is
based on the EFIE formulation of the Maxwell
equations [1 - 7]. The EFIE solution for scattering
from conducting surfaces of arbitrary shape was
developed by Rao, Wilton and Glisson (RWG) in [8].
In the same paper, triangular basis functions,
commonly known as RWG basis functions, were
introduced for current expansion on the conducting

surface. Since that time, this formulation of EFIE
together with the triangular-patch surface modeling
have become one of the most widely used techniques
for solving electromagnetic scattering and radiation
problems.

A point-matching method of moments (MoM)
solution was applied in [8] to get the current on an
arbitrary surface. This technique ensures the
satisfaction of the boundary conditions (that yield the
vanishing of the tangential electric field on the
conducting surface) at the centroids of the triangular
patches forming the conducting surface. However,
residual errors remain at the other points of the
surface.

In [9] and [10], the problems that arise when a
Galerkin technique is applied for the formulation and
solution of the EFIE for conducting surfaces are
treated. Their main purpose was to evaluate accurately
the singular integrals arising in such a Galerkin
formulation rather than the description of a
computational algorithm for the application of
Galerkin’s technique on an arbitrarily shaped
conducting surface.

In the present work, the Galerkin solution is
applied to the EFIE to get the current flowing on the
conducting body surface in a way to get a complete
description of a fast, accurate and efficient algorithm
that optimizes the use of computer resources and
reduces the computational time.

The singular integrals encountered when
Galerkin's formulation is used are classified and
evaluated analytically. The integrals involved are
carried out on planar triangular patches and, hence,
they can be evaluated by first transforming from the
3D Cartesian coordinates to the so-called simplex
coordinates. The analytic expressions for the singular
integrals provided in [11] are used here to accurately
evaluate the singular integrals.

Three types of singular integrals appear in
Galerkin’s formulation. The first type results when the
source and observation triangular patches are the same.
The second type results when the two patches share a
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common edge. The third type of such singular
integrals results when the source and observation
patches share a common vertex. These singular
integrals are reduced to a standard form, which is
evaluated analytically by the expressions provided in
[11].

An efficient method is described for accurate
evaluation of the input impedance for antennas of
arbitrarily-shaped conducting surface. The efficiency
of the applied Galerkin’s algorithm is examined by
calculating the input impedance of well known
antennas of conducting surfaces such as the strip-
dipole, bow-tie and planar equiangular spiral antennas.
To investigate the accuracy of the applied technique
the results concerning these antennas are presented and
compared with some published results.

It may be worth noting that the characteristics of
a conical equiangular spiral antenna were investigated
in [12] using the EFIE. However, the work of [12]
employs a point matching technique and not a
Galerkin’s one, which arrives at different singular
integrals. The method presented here (section 5) for
evaluating the input impedance was not included in
[12]. Furthermore, the present work uses a method of
calculating the singular integrals, which is more
accurate than that used in [12].

Il. FORMULATION OF GALERKIN’S EFIE

It is required to deduce the current flowing on a
conducting surface due to an exciting source, which
may be an incident wave or a generator attached to the
conducting surface. The formulation of the EFIE that
is to be solved for the current distribution on the
conducting surface requires, first, modeling the
scatterer or antenna surface by triangular patches.
Then, the linear density of the current on the surface is
expanded using the appropriate basis functions with
unknown amplitudes. A Galerkin’s testing procedure
is then applied to get the unknown amplitudes.

A. Modeling the Surface of the Scatterer

As shown in Fig. 1-a, the surface is divided into a
number of triangular patches. Each patch has three
edges; an edge which belongs to only one triangular
patch is called a boundary edge. Such an edge exists
only on the rim of an open surface and hence, it has no
electric current component flowing normal to it. As
shown in Fig. 1-b, an edge which belongs to two
adjacent triangular patches is called a non-boundary
edge. Only non-boundary edges can have electric
current components flowing normal to them.

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007
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(b) Two triangulglr patches sharing an edge.

Fig. 1. Triangular-patch model for surfaces of
arbitrarily-shaped scatterers and antennas.

Let the number of the triangular patches
constituting the surface model be Q and the number of
the non-boundary edges be N. Let P, denote the
triangular patch whose index (number) is q; q =
0,1,2,...... Q-1. Two adjacent triangular patches P.

and P sharing the edge number n are shown in Fig. 1-

b, where n* and n” are, respectively, the patch indices.
It should be noted that both the values of n* and n”
have no relation to the value of n. This notation is used
only to indicate that the triangular patches whose
indices are g=n" and g=n" are adjacent patches and
share the edge number n, with a plus or minus
designation determined by the choice of a positive
current reference direction for the shared edge number
n. This direction is assumed to be from p to p . That

is, n* is the number of the patch of which the current
component associating the edge number n is assumed
to be flowing out, whereas n” is the number of the
patch into which this current is flowing. This means
that n*=1,2,3,.....Q and n=1,23,...,.Q whereas
n=1,2,3,.....,N. A point in P can be specified by the

position vector r  defined with respect to the origin

O, or by the position vector p; defined with respect to
the free vertex, r?n , of the triangular facet p (i.e. the

vertex of P. which does not belong to p ). Similarly,



a point in p_can be specified by r_orp..It should

be noticed that the position vector p; is directed from
the free vertex, r{ , of p toward the point in the

patch whereas the position vector p; is directed from
the point to the free vertex, ry , of p . Thus one can
write,

po=t (r.—r7). 1)

B. Representation of the Current on the Scatterer

The current flowing on the conducting surface is
expressed as a summation of vector basis functions
with unknown amplitudes. The most suitable basis
function for describing the current flowing on the
triangular patches used for modeling the conducting
surface is the Rao-Wilton-Glisson basis function given
in [8]. For each non-boundary edge, a vector basis
function is defined as follows,

2Snn+ pl, re Pn+
|
f(rN=a——"p., reP._ 2
A () 5" : )
0, otherwise

where |, is the length of the non-boundary edge
number n, s and s are the areas of the triangular

patches P, and P respectively. It can be shown that

the normal component of f,(r) at the n edge is unity
[8]. Using the basis function f,(r), the linear current
density on the conducting surface can be expressed as,

N
3="1,f,(0) )
n=1

where I,; n = 1,2,3...N are unknown amplitudes of the
basis functions and to be determined by the following
procedure.

C. Application of the Galerkin’s Testing Procedure

The electric field radiated by a surface charge
density o and linear current density J flowing on a
conducting surface, S, can be obtained by the
following expression,

E*(r) =— joA(r) - Va(r) (4)
where A(r) is the vector magnetic potential defined as,
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U e—jk‘r—r" ,
Ar)=—|J——— dS", 5
®) 47[! |r-r’ ©)

and &®(r) is the scalar electric potential defined as,
1 e—jk\ r-r|
o(r)=— _[ o ——
dre J, | r-r
S

where r' is a point on S and r is a point in the near or
far zone of free space. The surface charge density o is
related to the surface divergence of the current J

flowing on S through the equation of continuity,

V.- Jd=-jwo . (7

ds’ (6)

On the conducting surface, the tangential electric field
must vanish yielding the following equation,

—Etan () == j@A, (r) = V®(r) . 8)

Define the product
<a,b>=J’a-b ds . 9)

S
This product can be applied to (8) to get

(E' (N, (D) = jo (A0, fr (1) + (VO (). (1)) (20)

where the surface S in equation (9) is the combined
area of the two patches sharing the non-boundary edge
m. The product in the first term on the right-hand side
of equation (10) can be expressed as,

(AWM, (1)) = J‘A(r)-fm(r) ds + IA(r)-fm(r) ds .
P P

m* m~

(11)

The vector magnetic potential A can be expressed

as the summation of its components which are

attributed to the currents associating the non-boundary
edges as follows,

N
A0=Y [arm+Ar )] (12)

n=1
where A:i is the vector magnetic potential due to the
current flowing through the patch P . and associated

with the non-boundary edge n. Substituting equation
(12) in equation (11), one gets
N
(AM.fn@) = (AT +A™ 4 A™ A )
n=1
(13)
where

A™, = j Al -f(r) dS. (14)
P,

mt
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According to equation (5), A:i can be expressed as

|
AL (r) =20 [£,(r) Fp dS’ (15)
n 4 5,
where
Sy
Fr=" (16)

R
Substituting equation (15) into equation (14), one gets

ul , ,
AL = 47[” | P_[fn(r)FR ds’-f. (ryds. (17)

Substituting f,(r") and f.(r) into equation (17), one
gets

N
AM = _Hlnimln Fop®-phdsds, (18-
m™n 167Z'Sm+sn+ PJ P‘[ Rpl’] pm ( )

m n

[
AM™M _ Hlalmln Feop--p dSdS, (18-b
mTn 167Z'Sm+Sn_ PJ PJi an pm ( )

m n

11
Am - Hlnimln F.opt.-podSdS, (18-c
mn 167Z'Sm_Sn+ PI Pj an pm ( )

m__Hlalnly S e
L= F -p, dSdS. (18-d
mn 167Z'Sm_sn_ PJ: PJi an pm ( )

The product in the second term on the right-hand
side of equation (10) can be expressed as follows [8],

(Vo(r),f, () =
jV(I)(r) fn(r)dS == [B(N) V,.f,(NdS. (19)
S S

Taking S in equation (19) as the combined area of the
triangular patches P and P equation (19) can be

written as
(Vo(r),f,, () =
- jqn(r)vs.fm(r) dS - [@(r) V., (r) dsS.
P P_

(20)

The scalar potential @ can be expressed as the

summation of its components which are attributed to

the currents associating the non-boundary edges as
follows,

o(r) = i[¢n+ N+ (1) 1)

where <I>2t is the scalar potential due to the current
flowing through the patch P . and associated with the
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non-boundary edge number n. Substituting equation
(21) into equation (20), one gets,

Vo(r),f_(r)= y O™+ D™ +O™  +O™
< m > Z m*n m*n m™n m™n

n=1

(22)
where
o, =[OV, f,(rds, (23)
P+

®" ! VoE () s, (24

(r)=- n s Ip r /1
" (r) MWP{ (r) = (24)

|

U p— v, f () V. f (r)F,dsds.

me 47Z'ja)€ii "

(25)
Substituting f, (r") in equation (25), one gets the
expressions,

cI)mn _ _Inlmln

mw__—j j FpdS’ dS, (26-a)
47rja)58m+8n+P+Pn+
mn Inlmln ’
N = _own Fr dS’ dS, (26-b
m'n 47rja)sS+S_-[~[ R (26-b)
m*"n P+Pn_
Ll
o™ = _nmn FedS’ dS, (26-c
mn 47zjwes_s+jj R (26-0)
mnt P _P,
“1
o™ - —nmn FpdS’ dS. (26-d
o 4ﬂja)sSm_Sn_P-[-[ ¢ (260

P
m

Equation (13) can be rewritten as,

N
(AO G )=Y 2l e, @)
n=1

A
where
a™=al o o o, (28)
mn - _ 1 + /o +
am+n+ = WPJ P_[pn FR dS “Pm dSv (29-a)
1 _
™ = Fr dS"-p,; dS, 29-b
"= ass Pjipn R 05" Py (29-b)
1 _
a™, = —— " FydS"-p, dS, 29-c
T pj, Jor Feds"n (29-¢)
1 _ _
a™m = —— Fgr dS"-p, dS . 29-d
" TS s pj, Pjipn R 05" py (29-d)
Equation (20) can be written as,
N
|
vo(r),f (r)= .l 30
(VO(r) f (1) Zﬂngmnﬂmn (30)

n=1



where,
B™ =B BT+ MM (3D)
g = ﬁpﬂ{ P{FR ds’ ds , (32-a)
gl = ﬁpﬂ{ PnjFR ds’ ds, (32-b)
g = ﬁp{ P{FR ds’ ds, (32-C)
g = ﬁp{ PnjFR ds'ds.  (32-d)

The product in the left-hand side of equation (10) can
be expressed as,

(E'(0.fn (D)=

. |
I jE'(r)-p:,; ds +
+ P,

S"‘ : jE‘(r)-p; ds .
m Pm,

2S_ 2
(33)

Equation (33) can be written as,
(E'(n.f, (1) =V, (34)

where
Vi =l (vl +VI), (35)
m _ 1 i ot

Vi = 5 jE (r)-p ds. (36)

+
m*p,

Making use of equations (27), (30) and (34), equation
(10) yield,

N-1
szn I, =Vn (37)
n=0
where
zZ -1 [W‘ am™ 4 ﬂm”J. (38)
dr T Jwe

Equation (37) can be written in a matrix form as,

[Z][1]=[V]. (39)

The last matrix equation constitutes a linear
system of N equations in N unknowns which are the
amplitudes of the basis functions in the current
expansion series of equation (3). It should be noticed
that due to the Galerkin’s formulation, the matrix [Z] is
symmetric. The evaluation of the elements of [Z]
requires the calculation of the integrals in equations
(29) and (32), which are singular when the observation
point coincides with the source point. The evaluation
of such integrals requires, first, their transformation
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from the Cartesian coordinates to the so-called simplex
coordinates.

I1l. TRANSFORMATION OF INTEGRALS TO
SIMPLEX COORDINATES

The integrals in equations (29) and (32) are
carried out on planar triangular patches, and hence,
they can be evaluated by, first, transforming from
ordinary 3-D Cartesian coordinates to the so-called
simplex coordinate system, which is a 2-D coordinate
system. Referring to Fig. 2, a point ry that lies in the
triangle whose vertices are described in the Cartesian
coordinates as Iy, Iy, Fsg can be mapped to the
simplex coordinate system to lie inside a standard
triangle, shown in Fig. 3, defined by

n,&): 0<p<l, 0<é<(1-n) (40)
where the new coordinates are determined by,
n=t, g2, (41)
Sq Sq
Define a third coordinate ¢ as,
S
F=== (42)
Sq
Since i+i+i =1, one gets,
q Sq g
n+é+{=1. 43)

0,0,1)
g

(b) The same triangle in simplex coordinate system.

Fig. 2. Transformation from Cartesian to simplex or
normalized-area coordinates.
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For this reason, the triplet (4, ¢ ,{) describes the so-
called normalized-area coordinate system shown in
Fig. 2-b, which is equivalent to the simplex coordinate
system (i, &) described by equations (40) and (41).
Thus, a point rq that lies in the triangular patch P, and
described in the simplex coordinate or normalized-area
coordinate system as (i, &) or (y, & ,{) respectively, can
be mapped to the 3D Cartesian coordinate system with
the vertices ryq, g, r'sq Of Pyusing the transformation.

g =& Mgt nry+@Q-n-2)rg (44)
or
Fq =7 g+ &g+ (45)
g
(0,1,0) — & plane
&=1-n
dfl dn dé
I
0,0,0) \

c _’d;?_ (1,0,0) 7

Fig. 3. Triangle transformed to simplex #-¢ plane.

It is required to express an infinitesimal element
of area dS in terms of dy and d&. Using #, & as 2D
Cartesian-like coordinate as shown in Fig. 3, the
triangular patch (of area S) is mapped to the right-
angle triangle shown in the figure. If we express the
area element in the #-¢ plane as dxd¢, then integrating
this element over the entire range of #, & results in the
area of this triangle. To get the surface integrals in the
n-¢ plane equivalent to the surface integrals in the
ordinary 3D-Cartesian coordinates, the element dyd¢

should be scaled; thus, we must have,
1 1-n
j jsf dédy =S (46)
0 0
where S; is unknown scale factor that can be
determined by carrying out the integration in
equation(46). This leads,

S =2S. (47)
Thus, the surface integrals over P, can be evaluated in

the simplex coordinates by replacing dS by 2Sdxd¢, as
follows,

[aryds =
Pq

1 1-n
28, [ [9lEry +7ry +A=E-n)r5g]dédn.  (48)
0 0
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Making use of equation (48), equations (29) and (32)
can be written as,

a::fni =1 lrlmi L I,';‘;,”i SELPNIR o Ié’,‘,”f
T 1 —rer |
LELAE I,;”é” L, Ig‘é”*
AL I’g“g”f —rfi - Ig‘ "
+ rlmt .r3nt I mln_ + r2mi 'r3ni Imt)nt
+r LT Ig‘;”1 _rfi .r3n Imini
LI 'rfi |7;nini ot Tey Igl "
LR I?i"i+rf:1-rfn | J (49)
B =1 (50)

where

T
3
I’

—_—

1
|pq J

jnn’ Fr d&dn’dédn,  (51)
0 0
-1

H

[
O'—u$ O —
Ot Ot—r 4

[n& Frd&dr’dédn,  (52)
0

[&'Fedgdn’|dgdn,  (56)

1-n 11-5
|5 = I Iff?’FR d&'dn’dédny,  (53)
fl—on 1?—;;’
18=[ [ &] [&Fedgdrdidy,  (59)
00 00
11-n11-7
12 =[ [ [ [n'Fedgdn’dédy,  (55)
00 0
1- 1
]
0

S o
O ey

[Fedg dn|dgdn, 67
0

[ Feagan jazan,  (s8)

115/ 1
| P :J’![{ ! Fq df’dn’]dgdn (59)

where P =m*, m; g = n", n". The remaining integrals
can be calculated from the above integrals as follows.

|pQ/:|PQ_|Pq | P9 (60)

ng
Ipq—lpq—lpq—l (61)

&



129 =109 -1 P9 109 (62)
12 =109 - 179 1 1, (63)
1B =12 —1P8 159, (64)
189 =PI P8 P (65)
129 = P P P (66)

Thus, only nine independent integrals from
equation (51) to equation (59) must be numerically
evaluated for each combination of pairs; p and g. The
nine integrals, in turn, contribute to up to nine
elements of [Z] in equation (39). For a closed surface
with N edges, the number of independent integrals

computed is 4N?. By contrast, the edge-by-edge

approach would require the evaluation of 36N’
integrals or nine times as many.

Due to the Galerkin’s EFIE procedure applied as
described above, and since the basis and testing
functions chosen are identical, the Z matrix would then
satisfy the symmetry property Z,,.=Z... Also, the
integrals in equation (51) to equation (66) are
symmetric; i.e. I™=I% and the same is true for the
other integrals. Thus the number of the independent
integrals that must be computed are reduced to
N(2N+3) instead of 4N?. Using the same coordinate
transformation, equation (36) can be expressed as

1 1-n )
vnr:‘i=i-_[ J'E'(r)
0 0

-[g“ Mo 00, +A-n=8r, . —rfideg dny.
(67)
Equation (67) can be written as,

t=i[r A ey +-I?t+r3mt~l?t—rfim-lmtJ
(68)

i

=/

t=] jfE[§r1p+nr2p+(1 E-n)r,] dEdn,

(70)

IP =.[ J Ei[frlp +nr, +(=-&-n)r,, 1 dSdn,
(71)
1E=1"=1-1e (72)
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IV. EVALUATION OF SINGULAR INTEGRALS

Integrals of equation (51) to equation (59) are
singular for p=q i.e., when the source and observation
patches are the same. In this case, each of these
integrals can be divided into two parts one of which is
non-singular and can be evaluated numerically
whereas the other is weakly singular and can be
evaluated analytically. The integral in equation (51)
can be rewritten as,

qu_J j j me, oz dndcanirs @9
0

where
|

Gg = F (74)
rqq_j] j fnn—dgdndgdn . (75

It should be noted that the first term on the right
hand side of equation (73) is a non-singular integral

and can be evaluated numerically whereas T, is

weakly singular and should be evaluated analytically.
The same can be repeated for equations (52) to (59),

where these singular integrals appear,
1-n 1 1-n

) ,

re=[ [ | jnn’%df’dn’dfdn !
0 0 0
11 1 17 1

=] [ [ [n& = ddn'dsdn . (17)
0 0 0 0
1 1 1 1-5 1

rg=] ][ [ &< dfdndsdy . (78)
0 0 0 0
1 17 1 19 1

rg=[ | | J& — dfdydidn ,  (79)
0 0 0 0
1 17 1 17 1

r;qzjj j jn’ﬁ d&dy’dédy . (80)
0 0 0 0
117 1 1% , 1 ’ ,

F§“=J;J; { 'gfﬁdfdndfdn . (8Y)
117 1 17 1

r;qzj j j jnﬁ d& dy’dédy (82)
0 0 0 0
117 1 17 1

rgujj j Jfﬁdf’dn’dfdn , (83)
0 0 0 0
1 1 1 15 1

rqqzjj j j —dfdndfdn. (84)
0

0 0 0
Closed form expressions for the singular integrals
in equations (76) to (84) are given in Appendix A.
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V. ANTENNA EXCITATION AND INPUT
IMPEDANCE

In this section, a method is described for accurate
computation of the input impedance of antennas
composed of conducting surfaces using the EFIE
technique.

For antennas composed of complex or curved
conducting surfaces, the EFIE technique is preferable
to the FDTD method [2]. The accuracy of the latter is
often limited by the computer memory requirement
and the “staircase” approximation of the antenna
geometry. In antenna problems, the staircase
approximation could become a major drawback for
accurate impedance calculation since in this case very
fine discretization of the antenna region near the feed
point is required, which may be difficult for curved or
complex surfaces. The EFIE technique employing
triangular-patch model does not suffer from the
staircase approximation and, moreover, the density of
the triangular patches can be simply increased near the
feeding point, as shown in Fig. 4, to get accurate
evaluation of the impedance [13].

]

=]

=
=
-
I
=]
=]

ANNNAAAN

Fig. 4. Increasing the density of triangular patches near
the feeding point of the antenna.

In scattering problems treated by the EFIE
technique applied on a triangular-patch model of the
scatterer, all the facets (triangular patches) are
illuminated by the incident field. To excite an antenna
by a delta-gap voltage generator, the delta gap is made
as a cut along one or more of the non-boundary edges
of the surface model. A voltage generator is then
applied across the excitation edge(s). In this case, only
the facets on the sides of each of the excitation edges
have voltage difference applied on them. However, the
method of evaluating the input impedance in the case
of a conducting surface antenna excited by
infinitesimal-gap voltage generator can be obtained
from the model of scattering problem as detailed in the
following analysis. Let m, be the edge at which a

delta-gap voltage source is applied and let m; and m,
be the numbers of triangular patches sharing this edge
(the current is assumed to flow from m; to m,).

Consider the element number my in the excitation
vector [V], which is expressed as,
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me 1 i +
= [E'-py,ds+

my my P

1 )
E'-p,dS. (85
5 Pj Py, S . (85)

X m;

For the purpose of physical interpretation of
equation (85), this expression can be approximated as,
Pem, i Pom,

cmy

Vi, /1

m !l (86)

~ Fl .
x~ECm;

where, E . and E; _ are the values of the incident
electric field at the centroids of the patches P. and

P, respectively, and pC;X and P, are the position
vectors of the centroids of the triangles P. and P_

relative to the vertices rf; and r; , respectively.
X X

Thus, by the aid of Fig. 5, the quantity between square
brackets in equation (86) can be interpreted as,
approximately, the voltage difference between the
centroids of the patches P. and P_ o in other

words, the voltage drop across the excitation edge (i.e.,
the voltage applied at the input port of the antenna). It
should be noted that the value of V, used in the

present analysis is the exact one that is given by
equation (85) and not equation (86). The purpose of
obtaining the approximate expression is, only, to get a
clear physical meaning of equation (85). According to
equation (86), the voltage applied at the antenna input
(i.e., the voltage across the excitation edge) is
expressed as,

Vio =V 1 (87)

As discussed before, the coefficient 1, in the

current expansion series is the normal component of
the linear current density flowing past the edge m,.
Since this current density component is constant along
the edge number m,, the input current can be expressed
as,

= (88)

Non-boundary P
edge number n

Fig. 5. The voltage drop across a nhon-boundary edge.



Using a triangular-patch model for the antenna,
the input impedance can be defined as the voltage drop
across the excitation edge, divided by the current
flowing past this edge. Employing equations (87) and
(88), one gets the following expression for the input
impedance of the antenna,

z,=Yo . LIm (89)
Iin ImX Imx

It has been found that for an accurate calculation
of input impedance, it is essential to use very fine
discretization in the antenna region near the feed point.
To reduce the number of unknowns, the region that is
further away from the feed point can be descritized by
less fine patches without essentially affecting
accuracy. The mesh of a bow-tie antenna descritized
with higher resolution in the region near the feeding
point to get accurate value of the input impedance is
shown in Fig. 4 [13].

VI. RESULTS AND DISCUSSION

The input impedance is one of the antenna
parameters whose accuracy is strongly dependent on
the efficiency of the computational technique through
which it is evaluated. Hence, the evaluation of the
antenna input impedance is one of the most stringent
tests of the efficiency of a computational technique.
Therefore the Galerkin’s EFIE algorithm described in
the present work is examined by its application to
compute the input impedance of well-known
conducting surface antennas such as the planar
strip-dipole, bow-tie dipole and planar equiangular
spiral antennas and comparing the obtained results
with other published results concerning the same
antennas.

A. Strip Dipole Antenna

The triangular-patch model for a straight strip-
dipole antenna of length L and width W is shown in
Fig. 6. A delta-gap generator of unity voltage is
applied at the cut A-A’. The applied voltage is
maintained constant along the feeding edge, which is
the non-boundary edge at the center of the dipole. In
this case, the input impedance can be obtained by
calculating the current crossing the non-boundary edge
A-A’, and then employing equation (89).

A Excitation edge

LAAAAAAA LV VA TW
A — |

[ L |

Fig. 6. Triangular patch model of a strip dipole
antenna.
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Figure 7 presents plots of the resistive and
reactive components of the input impedance of a strip-
dipole antenna against the operating frequency. The
dipole length is 27 cm and its width is 0.001 of its
length. The triangular-patch model of this antenna has
36 patches and 35 non-boundary edges. The results
show agreement with those of [14]. Figure 8 shows a
plot of the VSWR of the strip dipole with respect to 75
Q source impedance against the frequency. It is clear
in the Figure that the bandwidth of this antenna can be
considered as 10%, a feature which is well-known for
a half-wavelength straight dipole.

AZOOC — R(Point matching)
E 1500j— — - X(Point matching)
= —a— Ri(Galerkim
g 1000 _ . ~trGalerkim
'g S00
&
£ o
it
2.-500
ja iy
RS
-1000 f‘
-1500 f
2000 y : : : , y y
O 200 400 o000 200 1000 1200 1400 1600

Frequency

Fig. 7. Input Impedance of a planar strip dipole, L=27
cmand W= 2.7 mm.
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Fig. 8. VSWR of a planar strip dipole, L=27 cm, and
W= 2.7 mm.

B. Bow-Tie Antenna

The main advantages of the bow-tie antenna are
simple design and broad-band impedance. For this
reason, a planar bow-tie antenna is used in many
challenging recent applications such as ground
penetrating radar (GPR) and global position system
(GPS) applications and cellular-based mobile
communication services [13], [14 - 20]. Figure 9
shows a triangular-patch model for a bow-tie antenna.
The length of the antenna is 27 cm and the flare angle
is 90°. The neck width of the antenna (length of the
excitation edge) is 1.35 cm. The triangular-patch
model of this antenna has 96 patches and 125 non-
boundary edges. A delta-gap generator of unity voltage
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is applied across the cut A-A’, i.e. across the non-
boundary edge at the center of the antenna. The current
crossing this edge is calculated to get the input
impedance via equation (89).

\ N4
\ /
VAV

EFIare angle
(&)

/N

|
Neck Wid%h

AVAVAY

Fig. 9. Triangular patch model of a bow-tie antenna.

The dependence of the input impedance of a
bow-tie antenna with the frequency is shown in Fig.
10. The results show good agreement with those of
[16]. It should be noted that the antenna of the given
dimensions is resonant at about 800 MHz where the
input impedance is pure resistive. The VSWR of this
antenna is plotted against the frequency as shown in
Fig. 11, where the source impedance is assumed 300
Q. It is clear in the figure that the bandwidth of the
bow-tie antenna can be considered as about 400 MHz
around its resonant frequency, i.e., about 50%. Thus,
the bow-tie antenna exhibits a much wider bandwidth
than the dipole antenna, a feature which is well-
established and is attributed to the fact that the width
dimension of the bow-tie is described as an “angle”
rather than a “length” but, however the bow-tie length
is the dimensional parameter that limits the bandwidth
of such an antenna.

400
= 3007

3
<
(=

100r

o=
o o
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—
9\-..

R(point matching)

/ — — — X(point matching)
R{(Galerkin)

. — = — X{Galerkin) .

0 200 400 o000 800 1000 1200 1400 1600
Frequency (MHz)

Input impedance (ol
i
[=]

=300 /
-400

Fig. 10. Input Impedance of a bow-tie antenna, L=27
cm, and W= 1.35 cm, 6; = 90°.

C. Planar Equiangular Spiral Antenna

One of the ultra wideband (UWB) antennas used
in recent applications that require a well-suited
transient antenna response is the planar equiangular
spiral antenna. Due to its circular polarization, this
antenna finds important applications such as short-
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pulse GPR systems that detect the objects buried in
anisotropic ground. It also finds application in stepped-
frequency GPR (SF-GPR) to detect buried non-
metallic anti-personnel mines in humanitarian mine
detection system [22]. Due to their characteristics of
quite broad bandwidth and circular polarization, the
spiral antennas are widely wused in mobile-
communication, early-warning and direction-finding
systems [23]. The spiral antenna is also suitable as a
wideband illuminator for a parabolic reflector working
in ultra wideband of frequencies [24].

9

Point matching| |
—=— Galerkin

VSWR

L I ]
T T T T

700 400 600 800 1000 1200 1400 1600
Frequency (MHz)

Fig. 11. VSWR for a bow-tie antenna, L=27 cm, and
W=1.35cm, ¢; = 90°.

The radiation of spiral elements at the selected
operating frequency comes from the active region
where spiral circumference is approximately one
wavelength. This means that the active region moves
from the outermost circle to the innermost one as the
frequency increases. Low frequency cutoff f_ is equal
to c/zD (c is the speed of light and D is the outermost
diameter), but the upper frequency is determined by
the feed point separation [20], [23] and [25].A
triangular patch model for the equiangular spiral
antenna surface model and the EFIE technique
constitute the most efficient electromagnetic modeling
of such an antenna. The triangular-patch model for this
antenna is shown in Fig. 12.

Let us consider an equiangular spiral antenna of
the following dimensions: the innermost diameter of
the spiral (d) is 3 mm, the outermost diameter (D) is 29
cm, the wrapping angle () is 70° and the angular
width of the spiral arm (0) is 90°. The spiral arms are
wound to make 4 complete revolutions. Figure 12-b
shows the detailed triangular patch arrangement at the
location of the antenna excitation. The triangular-patch
model of this antenna has 138 patches and 177 non-
boundary edges. A delta-gap generator of unity voltage
slot generator is applied across the non-boundary edge
at the cut A-A’, where the voltage is maintained
constant along this edge.



Outermost
diameter (D)

(a) Complete antenna.

Innermost
~diameter (d)

(b) Part of the antenna at the excitation.

Fig. 12. Triangular-patch model of an equiangular
spiral antenna.

The input impedance is evaluated using equation
(89). The variations of the resistive and reactive parts
of the input impedance of the antenna described above
with the frequency are presented in Fig. 13. It is clear
that the input impedance is stable along a very wide
range of the frequency; a fact that is well-known for
such an antenna. The VSWR with respect to a source
impedance of 150 Q is plotted against the frequency as
shown in Fig. 14. It is evident that this antenna is ultra-
wideband; a feature which is attributed to the fact that
the dimensions of such a spiral are mainly described as
“angles” rather than “lengths”.

LUl —— R(Galerkin)
250 — — X(Galerkin)
— - — - R(point matching)
200900 o X(point matching)
150 =
100+
50
Frequency (GHz)
0 1 1.0 . 2.0 30 4.0 5.0 6.0 7.0 8.0
-504 Hflf 1 A T e et s e e e —— T T T
-100-"

Fig. 13. Input Impedance of an equiangular spiral
antenna, d =3 mm, D =29 cm, o= 70° and 6 = 90°.
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Fig. 14. VSWR of an equiangular spiral antenna, d = 3
mm, D =29 cm, o= 70° and &= 90°.

VII. CONCLUSION

A robust and efficient Galerkin's EFIE algorithm
is developed to get the current distribution on
arbitrarily-shaped conducting surface that act as
scatterers or antennas. A new method is applied for
accurate evaluation of the input impedance of antennas
composed of conducting surfaces which are modeled
by triangular patches when the antenna is excited by
delta-gap voltage generator. The singular integrals
arising when the source and observation points
coincide are accurately evaluated. The efficiency of
the algorithm is examined by calculating the input
impedance and the VSWR of well-known types of
antennas, where the results show good agreement with
the already well-known characteristics of these
antennas and are also in good agreement with some
published results concerning the same antennas. The
antennas examined in the present work are the strip-
dipole, bow-tie and planar equiangular spiral antennas.

Appendix A: Analytic Evaluation of Singular
Integrals

The following expressions for the singular
integrals are given in [11] after making the corrections
in [26],

1 1 1
M= ——(y,+v ) +—=W +7s )+ —=s +74),
6«/5(2 6) 6\/5(1 5) 6«/6(3 4)

(A1)
2a+b 1
= W(h +76)+40JE(71+75)
2a-5b+3c e—f e—g
— —(y + ., (A-2)
120432 (ra+72) 60a%2  60d%?
w_ 1 yi+ 1 v +2a—3b+cy
1004 12042 P 12002 P
a-3b+2c v 3b+2c v 2a+3b v
120d%2 """ 120¢%2 7° " 120a%2 7°
e—f g-f
40a%'2 4032 (A-3)

360



361

= L nt L Vot L 73
T2ac T 244a 24/d
a—3b+20y N 1 ye + a+b v
240%2 " T12Jc 7° T 240%2 7°
e—f e—g
Y et 24077 A
where
¥, =In(f +b)—In(g +i), (A-5)
¥, =In(e+h)-In(f -b), (A-6)
¥, =In(e+h)-In(g+i), (A7)
Y. =In(g—i)-In(e-h), (A-8)
75 =In(g—i)-In(f -b), (A-9)
¥s =In(f +b)-In(e-h), (A-10)
a= (I‘3 - rl) : (I"3 r1) ) (A'll)
b= (I’3 - rl) : (I’3 - rz) ) (A'12)
c= (I"3 - rz) ~(I"3 - rz) ) (A'13)
d=a-2b+c, (A-14)
e=.,ad, (A-15)
f = fac, (A-16)
g=,cd, (A-17)
h=a-b, (A-18)
i=b-c (A-19)
It can be shown that
Iy =re, (A-20)
e =re (A-21)
rP=rf=rf=r". (A-22)
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Abstract — A new Moment Method (MM) scheme to
solve the Electric Field Integral Equation (EFIE) for
some ill-conditioned problems is presented. The
approach is an alternative to the Combined-Field
Integral Equation (CFIE). The proposed formulation
employs the Impedance Boundary Condition (IBC) to
compute the scattering from conducting bodies
uncoated or coated by dielectric materials. The
scheme uses dual meshes to represent the currents:
one mesh for the electric current and another mesh for
the magnetic current. Each mesh is defined by a grid
of quadrangles that can be conformed to arbitrarily
curved surfaces. The quadrangle grids are interlocked;
the corners of the quadrangles of one mesh are the
centers of the quadrangles of the other mesh and vice
versa. Several examples showing the potential of the
approach to solve ill-conditioned problems are
included.

I. INTRODUCTION

It is well known that many -electromagnetic
radiation or scattering problems can be too ill-
conditioned to be solved using MM. This happens,
particularly, when we analyze electrically large bodies
using formulations based on either the EFIE or the
Magnetic-Field Integral Equation (MFIE). In these
cases, the MM equation systems are ill-conditioned at
the resonance frequencies of the internal cavity
defined by the volume of the body under analysis [1].
In these situations it is difficult to find reliable
solutions, and thus these problems suffer from poor
convergence and present spurious solutions.

To reduce the difficulty of these ill-conditioned
problems, several formulations have been proposed to
improve the condition number of the corresponding
MM matrix that may help solve these problems. One
of the most powerful formulations to avoid in these
ill-conditioned problems is the CFIE, which is based
on a linear combination of the EFIE and the MFIE,
[1], [2]. Like the MFIE, the CFIE is only applicable to
closed bodies. The practice has shown that the CFIE
is able to treat most problems, however there are still
cases where difficulties remain because the accuracy
of CFIE results depend on a correct choice in the
weights of the EFIE and MFIE linear combination,
and on the sampling density (number of MM

subdomains per wavelength) [3]. In these cases,
convergence studies on the relative weights of the
CFIE and on the sampling density are performed in
order to obtain “stable” solutions. These difficulties
can be due to the MFIE component of the CFIE which
gives poor results for sharp wedges and tips, [4].

More recently formulations based on Dual-
Surface Field Integral Equations (DSFIE), [5], [6]
have been investigated because they appear to be free
of spurious problems and offer better solutions for
bodies with sharp wedges or tips. The DSFIE forces
boundary conditions on the body surface and also in a
dual surface located inside the body. The separation
between the surfaces is usually less than half a
wavelength, and on the dual surface the boundary
conditions are multiplied by a constant with an
imaginary part. The DSFIE reduces spurious
resonances and can treat geometries with sharp parts
like cone-spheres with narrow vertices where the
CFIE does not yield reliable results. However, a
suitable definition of the dual surface in the DSFIE
application for a particular problem needs to be
adjusted in order to obtain accurate results [6]. For
electrically small objects, the approach in [7], [8],
which uses an accurate computation of the MM
matrix terms of the MFIE and monopolar basis
functions, gives reliable computations for problems
with sharp wedges and tips.

Here, a numerical scheme based on a
combination of the EFIE and the IBC approach, [9-
11] is presented as an alternative formulation to solve
these difficult problems.

The scheme, outlined in [12], uses dual
quadrangular meshes. One mesh is used to represent
the discretized electric current and the other to
represent the discretized magnetic current. The
corners of the quadrangles of one mesh are in the
centers of the quadrangles of the other mesh and vice
versa. The scheme combines the operator which
generates the electric field due to an electric current
with the operator which generates an electric field due
to a magnetic current. Both currents are expanded in
terms of rooftop basis functions [13]. The testing
functions are blade functions, [13], defined in the
mesh used to represent the electric current. With this
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choice of testing and basis functions we have found a
simple and accurate way to descritize the electric field
due to electric and magnetic currents. The meshes are
defined over the iso-parametric lines of a NURBS's
(Non Uniform Rational Bi-Spline Surface) [14].
Using the discretization procedure shown in [15-17]
we can work with curved quadrangles and we do not
need any re-meshing in terms of flat patches.

One objective of our approach is to analyze real
conducting bodies. It can be noticed that at microwave
frequencies the surface impedance of a good
conductor is a hundredth or a thousandth of the free
space wave impedance and the solution for a good
conductor at such frequencies is very similar to the
case of a perfect electric conducting (PEC) body.
Therefore, the proposed approach can give good
results for PEC if we model PEC with a surface
impedance of about a thousandth of the free space
wave impedance. One of the advantages of the present
approach is that it permits the analysis of open or
closed surfaces or a combination of them. The
proposed approach can be considered as a
regularization method, [18-19], because it diminishes
the Q factor of the internal cavities of closed bodies
and in this way the formulation reduces the problems
of spurious responses at resonances frequencies. In
addition, the approach is able to treat accurately
problems with sharp wedges and tips using a reduced
number of samples per wavelength. It is also useful in
analyzing the scattering from lossy dielectric or
conducting bodies that can be totally or partially
coated by thin materials using the IBC approach.

Dual meshes of quadrangles over curved surfaces
are also considered in [20] to solve a CFIE in
problems with dielectric bodies. In this reference,
divergence-conforming basis functions are defined
over one mesh and curl-conforming basis functions
over the other mesh. Either current (electric or
magnetic) is represented by both types of basis
functions: divergence-conforming functions when the
electric(magnetic) field of an electric(magnetic)
current is computed, and curl-conforming basis
functions when the magnetic(electric) field of an
electric(magnetic) current is evaluated. Our approach
is different from that of [20] because we solve the
EFIE for metallic or body governed by the IBC and
therefore, we can consider open and closed surfaces.
Furthermore, we only use divergence-conforming
functions in such a way that each mesh is reserved to
only one kind of current, one mesh for the electric
current and the other one for the magnetic current.

The paper is organized as follows; section 2
presents the theoretical formulation of the EFIE
considered. The dual meshes and the numerical details
of the method are shown in section 3. Some results
that probe the capability of the approach to solve
coated bodies, and ill-conditioned problems are
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presented in section 4, finally, the conclusion section.
II. FORMULATION

We formulated the integral equation to be solved
based on the equivalence principle, [21]. Figure 1
shows the application of the equivalence principe to
obtain the fields in the region external to volume V.
On the surface S that encloses volume V the
equivalent currents are given by

Js(r)=n(r)xHy (r), (1.a)
M ¢(r) =-n(r)x E1 () (1.b)

where I'=rX+1Yy+I,2 is the observation

point on S and (ET , HT ) are the total fields that are
in the region external to V and can be expressed as,

Er () =E™r+ESr), (2.2)
Hr(r) =A™ @)+ HS(r) 2.b)

where (Eimp, Himp) are the fields due to the

impressed currents (J imp ,M imp ) located outside V
and (ES,HS) are the scattered fields due to the

equivalent currents (Jg, Mg )

E =E. _
Y 1

- s

o

//'(" E,=0

. _U,_ 4

£, o Jgmnx Hy

e ¥ ;_\i:- fie By

5 €0 Mo

§ 77 s

Fig. 1. The equivalence principle states that the field
external to volume V in the problem shown in the left
part of the figure can be computed considering the
equivalent problem shown to the right.

Writing the scattered fields as a function of the
electric and magnetic equivalent density currents for
the external region, we get,

s Mo -
E =—jo— || J.(F"G ds'
() Jw4ﬂjsj S(F)G(F, T )ds

1

drwe

VUIV'J‘S(F')G(F,F')ds'] (.a)

—Vx[igMSG')G(r,r')ds'],

364



365

T (O T
H (r)—VX(4ﬁ£JJS(r )G(r,r)dsj
& —_
_' R M _'IG _’_’ldl
JwMISf J(F)G(F.F)ds
1 ;
iy "M (F)G(F,F')ds' |.
JMWV(ISIV ((F)G(F.F) SJ
(3.b)

These expressions can be written in a more compact
form using the following linear operator notation,

ES(r)=Lg[Js ]+ Lew M ], (4.2)

AS () =Ly [Js ]+ Lum M5 ]- (4.b)

We can combine equations (2) and (4) to obtain
the EFIE and MFIE formulations,

E, () = E™(F)+E*(F)

eyl [3 ] [M]

H, (F)=H"™ (1) +H®(r)

AL [ ] L [ ] O

For the case of a non-PEC body, like a real
conducting body, a lossy dielectric body or a
conducting body coated by a dielectric, the EFIE can
be written as,

M (F) =—A(F)x E™ (F) - A(F)x Ly, [ T, |

—A(F)x Ly, [ M - ©

By reordering the EFIE we have
E™(F)=—AxM (F)-Lg, [ J; |- Lg, [ M, |-
O

Taking advantage of the duality between operators,
we can write

- 1 & -
L., | M, [==Vx| — || -M (F)G(F,F"ds'
W)= o £ ],
= L?—lijjl I:_Ms:l
®)
where L(|j_|UJaI is obtained from L; substituting the

permeability p by the permittivity €.
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Using the IBC relation between the electric and
magnetic currents,

js(r)znxm, (9.2)
sup
M s(n= _(n x JS (r)) Zsup 4 (9.b)

we obtain the following expression of the EFIE,
where we only have the current J ¢ as the unknown

function

E™ () =-L, [J; |-
+L5, [(AxJ.(M)Z,, ]

where Zg,, stands for the surface impedance of the

body and L%y is the resulting operator —after

extracting the singular value of L), .

111. COMPUTATIONAL METHOD

The continuous operators in equation (10) can be
discretized using the Moment Method. The scheme
described in [15-17] has been followed to descritize

the operator Lgj [Jg]. Using this scheme the body

surface is modelled by means of NURBS's [14].
Considering u- and v-isoparameter lines, [17], each
NURBS can be split into a mesh of small curved
quadrangles. The solid lines of Fig. 2 are an example
of a rectangular mesh over a NURBS, which has been
represented to be flat to simplify the drawing. The
same figure shows a second mesh that is dual of the
first one. The electric current is expanded in terms of
rooftops defined over pairs of contiguous rectangles in
the mesh defined by the solid lines. This expansion
can be written as,

Nju Njv
Is(n) =Y 1D FEO+D 10D M (La)

j=1 =l

where fgj(r) and fgj(r) are rooftop functions for the

u and v-components, respectively, of the electric
current (see Fig. 3). In a similar way, the magnetic
current can be expressed in terms of the rooftop

functions f,\ij(r) and f—,\\ﬁj(r), defined over the

magnetic mesh (see Fig. 3). For the magnetic current
we have,

Nmu - Nmv -
Mg (r)= > Ty (DT 0+ D Ty () (1) -
j=I j=1
(11.b)



We can notice that for each u-rooftop/v-rooftop
of the electric current a v-rooftop/u-rooftop of the
magnetic current can be found such that the two
rooftops have the same centre, they are perpendicular
and they have a “dual” shape (the length of one is the
width of the other and vice versa). Using this duality
between couples of rooftops and the IBC of equations
(9) the following relations between the weights of the
current expansion of equation (11) can be found,

|

A
Iy (D == J@x0[Zgup Lo (D), (12)
AJv
Al
Iy (§) =~ N T Zgpl@x Ol (i), (12.b)
Ju

where it is assumed that the parameter coordinates
have been chosen so that (UxV)en>0,

A{\Au ,AJ.JV,AJ;V'V and AjJu are the widths of rooftops
Fhl;Ij (r, ﬂ\g/j n, ﬂ\‘j,j(r) and ng (r), respectively,
and H(l:l ><\7)H is the amplitude of the vector product

(UxV) . It is noticed that eventually 0 and V can

not be orthogonal in real 3D space. However,
following the IBC in equation (9) 1y, (j) will never

depend on 15,(j) because both currents are parallel
(neither 1y, (j) will depend on 5, (j)). Moreover,

the following relations between the total numbers of
rooftops are satisfied,

Nmv = Nju, (13.a)

Nmu = Njv. (13.b)
The descritized operators can be expressed as,
LEE)J |:‘Js:| =V, (i)

Niu Niv (14.a)

:Zzifllu(j)+zzi;|3v(j)a

LEE)M [MSJ =Vey (1)
Nmu Nmv (14b)

=Y ZM (D+ 220, (D),
j=I j=1

where the total number of rooftops used to represent
the electric or the magnetic currents is given by

N = Nju + Njv (15)

Zi]'] and Zi'JyI represent the coupling between
subdomains i and j of the electric and magnetic

meshes, respectively. The terms Vg, (i)and
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Vg () stand for the impressed voltage due to the

electric and magnetic current, respectively, computed
in the electrical subdomain i, using as testing function
a razor-blade function [15-17]. Other testing
procedures can be used such as a Galerkin testing
function. However, we have chosen a test by the
razor-blade function because it is very simple and it
needs fewer computations than other approaches,
[13].

- r e

g e
| : i
N O T 0
; & | 4 % =
N SR 1 DU SR S
Subdomain
center
v
A
r71
1 1
1'= 1
| [ ]
. - . | J
r
i - i
"I I
i
u

Fig. 2. A mesh of solid lines covers completely a
NURBS. A second mesh is drawn using dashed lines.
Both meshes are dual in the sense that the nodes of
one mesh are the centres of the rectangles of the other
mesh and vice versa.

The descritized operator LEJ of equation (14.a) can

be obtained from the continuous operator Lg;of
equation (7) following the numerical scheme shown
in [13], [15-17]. The term LEM of equation (14.b) is
obtained by descritizing the operator,
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Lem =—W—L°EM Ms@]. a6

Considering the testing-function corresponding to an
electric rooftop completely cuts its dual rooftop of
magnetic current by a transversal line (see Fig. 4).

sign(i)(A%)+Zﬁ fori=j

7ZM _
M
) Zi‘]? elsewhere

17)
where
.. [=1 if subdomainiis au — rooftop
sign(i) = ) . (18)
1 if subdomainiis av — rooftop

and Ai is the length of the razor-blade function of
subdomain i of the electrical mesh. The term Zﬁ

accounts for the coupling between the magnetic
rooftop j and the electrical subdomain i considering

the operator Ly that gives the electric field of a
magnetic current but excluding the singular value of
the integral operator. The computation of the term Zﬁ

does not have serious numerical difficulties and it can
be calculated following a numerical approach similar
to that indicated in [15-17] for the computation of

J
Defining the total induced voltage V (i) as,
V(i)=Vgy () +Vgy () (19)

the following systems of linear equations can be
obtained considering equations (12), (14) and (17)

) Nju Aj o )
V()= (Z] -z [[@x )|z, () +
j=1 AJu
Njv Ai o ]
+D(Z; + i@ Z,Z",()):
j=1

v
for i=12,.N.
(20)

Solving this system of linear equations the electric
current is obtained. The magnetic current is obtained
from the electric current using equation (12).

The approach is valid for problems defined by
closed or open surfaces. When dealing with open
surfaces the meshes near the aperture edges of the
surfaces need to be defined in such a way so as to
preserve the duality. Figures 5 and 6 show a way to
define the meshes for a squared flat plate saving the
duality between the electric and magnetic meshes. In
both cases the rooftops of the two meshes cover
completely the plate surface (the same domain), or in
other words, the boundary of the meshes is the actual
plate boundary. It can be noticed that the rooftops for
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representing the electric and magnetic currents are
spatially shifted but additionally they are defined near
the edges of the plate in different ways: we have
parallel and perpendicular rooftops for representing
the electric current and these rooftops are defined over
couple of patches of the same size, however we have
not rooftops for representing the magnetic current
parallel to the edges and the rooftops for representing
the magnetic current perpendicular to the edges are
defined over pairs of patches of different sizes (the
patches bounded by the edges have a size that is the
half of the size of the other patches).

W
F 3

‘Electic’
mesh \ o

L

Tulagnetic’
mesh

Fig. 3. (a) shows an example of rooftops for the u-

component, fg;(r), and for the v-component of the

electric current, f—|\5/j (r). (b) shows an example of the

dual rooftops Fl\ljlj'(r) and Fh\;li'(r) used to represent

the u and v-components, respectively, of the magnetic
current. It can be noticed that the rooftops for the
electric and magnetic components are defined in dual
meshes and that the rooftop for the u-component/v-
component of the electric current and the rooftop for
the v-component/u-component of the magnetic current
have the same centre.

IV. RESULTS

Figure 7 shows the condition number, [18],
versus frequency for a sphere with a radius of 1.m for
the single and the dual mesh schemes. Ten
subdomains per wavelength were considered in both
approaches. The meshes for the electric current were
the same in both approaches. The results for the single
and the dual mesh schemes were obtained considering
PEC and a surface impedance of 1 Ohm, respectively.



A step of 10 MHz was used in the frequency sweep.
In the frequency range considered we have two
interior resonances at frequencies very close to the
two large peaks. It can be appreciated that the dual
mesh approach has a better behavior because the
condition number for this approach is quite less than
for the simple EFIE. As shown in [18] a reduction in
the condition number means better convergence and
more accurate results. Figure 8 presents the Bi-static
RCS results for the co-polar plane cut obtained using
the dual approach for the sphere at a frequency of 200
MHz, which is very close to the first internal
resonance. A number of 20 divisions per wavelength
and a surface impedance of 1 Ohms were considered.
The results were obtained with a residual error of 107,
which was reached after 965 iterations of the
BICGSTAB (L) method, [22], with L=5, which has
been used to solve all the MM system of equations in
this work. The total number of unknowns was 4836.
The numerical results obtained using the dual mesh
approach are compared with analytical results derived
from the Mie series. A very good accuracy of the
numerical results for a frequency very close to an
internal resonance was obtained.

Testing
function .J.i
(a)
rTTTTYTTTTTTITTTTTIITTTTTTTTTS
S
P |
e L
Pl i
P
ARRL AREEN
Testing
function

(b)

Fig. 4. a) The areas covered by the electric rooftops i
and j are indicated by solid lines. The MM impedance
term ZUJ that gives the coupling between rooftop j
(active) and i (passive) is computed considering a
blade-function as a testing function that extends along
the segment indicated in the center of rooftop i. B)
The dual magnetic rooftops are represented by dashed
lines. The testing function of the electric rooftop i is a
segment that cuts transversally the dual magnetic
rooftop.
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Fig. 5. Mesh used to represent the electric current in a
plate. Each arrow corresponds to an electric rooftop.
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Fig. 6. Mesh used to represent the magnetic current in
a plate. Each arrow corresponds to a magnetic
rooftop.

In order to show the capacity of the proposed
approach to treat coated conducting bodies the case
indicated in Fig. 9 was chosen. Numerical and
analytical values of the Bi-static RCS are compared in
Fig. 9 for the E-plane cut. The surface impedance of
the coat is Zs=j72.75 and the current is represented by
20 subdomains per wavelength. The numerical results
for the coated sphere are obtained after 780 iterations
with an error of 107,

The second structure considered is a very sharp
metallic wedge. This geometry gives a very ill-
conditioned problem when a plane wave is incident in
a direction perpendicular to the edge of the wedge,
with the E-field normal to that edge, as indicated in
the sketch of Figure 10. The geometry of the problem
is defined by two plates of size 1 m x 1 m. In the back
part of the wedge the plates are separated by 1.0 cm.
The working frequency is 300 MHz. The Bi-static
RCS results obtained using the EFIE with a single
mesh and with the proposed dual mesh are shown in
Figs. 11and 12, respectively. The plates were treated
as PEC with the simple mesh approach and witha 1 Q
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surface impedance with the dual mesh approach. A
slow convergence of the results is apparent when the
number of subdomains per wavelength is changed for
the single mesh case in contrast with the fast
convergence of the dual mesh case. The results of
both formulations converge to nearly the same values
for the higher values of divisions per wavelength as
shown in Fig. 12. However, the efficiency of the
formulations is quite different. As shown in Table 1,
the single mesh formulation needs a number of
iterations greater than the dual approach for obtaining
a residual error of 107

12000
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6000 A

4000

Condition Number
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Fig. 7. Condition number versus frequency for a
conducting sphere of radius 1 m.
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Fig. 8. Bi-static RCS results for a conducting sphere
of radius 1 m, frequency 200 MHz.
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Scattering direction
S
H
Incident plane wave

Fig. 10. Wedge geometry considered to compute the
Bi-static RCS for a phi-cut = 0°, theta varying from 0°
to 180° for an incident plane wave in the direction

shown and perpendicularly polarized to the edge of
the wedge.

RCS (dBsm)

Theta (°)

6DV, ————10Div. —-— -~ 20Div. -+~ 30 Div |

Fig. 11. Bi-static RCS results of the wedge shown in
Fig. 10 obtained using the EFIE with a simple mesh
for different number of subdomains per wavelength.
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Fig. 12. Bi-static RCS results of the wedge shown in
Fig. 10 obtained using the dual mesh approach for
different number of subdomains per wavelength.

Table 1. Comparison between the numbers of

ig— iterations required for the single and dual mesh
P N approaches for obtaining a residual error of 10~ for
5 ™ different sampling densities for the wedge case.
£ o \\
g 5 .
g 10 \/ Subdomains per Single Mesh | Dual Mesh
154 wavelength
z: 6 2.061 1.310
- ‘ - ‘ ‘ ‘ 10 19.189 2.495
0 30 60 90 120 150 180 20 19.304 3.388
Theta () 30 20.684 4.460
Me ------ Dual Mesh

Fig. 9. Bi-static RCS results at a frequency of 300
MHz for a coated PEC sphere with an external radius
0.6 m. The coat is 0.03 m thick and has a relative
permittivity of 2.0.

The following case considered is of a rotor

structure shown in Fig. 13. This structure is the
bottom part of the CHANNEL cavity from ONERA.
The height of the structure is 13.7 cm and the external
cylinder has a diameter of 18.8 cm. This cylinder has



been modelled as a volumetric structure with a 2 mm
of thickness. The blades have a thickness of about 4
mm. The coordinates system has been fixed
considering the z axis in the rotor axis. As can be
noticed the rotor is a structure with lots of electrically
thin plates oriented in many directions, and is quite a
difficult problem for the EFIE because it presents lots
of thin wedges and therefore it is an interesting
problem for testing the efficiency of the dual mesh
approach. Figures 14 and 15 show results of the Bi-
static RCS of the rotor structure for a frequency of 3.0
GHz and for a 6=0° incidence. Again, the plates were
treated as PEC with the simple mesh approach and
with 1.Q of surface impedance with the dual mesh
approach. Results were obtained from different values
of the sampling density. Table 2 shows the
convergence rate for both approaches. It is evident
that the dual approach convergence rate always is
better than the simple mesh
approach.

7 = ; LE{’ I
A '* i A

Eae = aaa 2 g

=X
Profile view

Fig. 13. Isometric and profile views of the rotor
located at the end of the engine cavity “CHANEL”
from ONERA.
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Fig. 14. Bi-static RCS results of the CHANEL rotor
obtained using the EFIE approach for different
subdomain densities.
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Fig. 15. Bi-static RCS results of the CHANEL rotor
obtained using the dual mesh approach for different
subdomain densities.

Table 2. Comparison between the numbers of
iterations required for the single and dual mesh
approach for obtaining a residual error of 107 for
different sampling densities for the CHANEL rotor
case.

Subdomains per Single Mesh Dual Mesh
wavelength
10 465 399
20 4.233 3.950
30 9.325 8.127

V. CONCLUSIONS

A new approach to solve the EFIE using a MM
formulation based on dual meshes and on the IBC has
been presented. Each mesh is defined by a grid of
quadrangles. The meshes are dual because the
quadrangle corners of one mesh are the centers of the
quadrangles of the other mesh and vice versa. One of
the meshes is used to represent the electric current and
the other the magnetic current. In both meshes rooftop
and razor-blade functions are used as basis and testing
functions, respectively. This choice of the basis and
testing functions enforces the duality of the
formulation: the segment on which the testing
function of one mesh extends is perpendicular and
completely crosses the basis function of the other
mesh. This fact is important because it makes the
computation of the electric field due to a magnetic
current more easy and accurate.

Any body over which the IBC applies can be
treated with the dual mesh formulation including
realistic conducting bodies and lossy dielectric bodies.
PEC bodies can be analyzed with a very small error
by assuming they present small surface impedances,
for example a thousandth of the free space wave
impedance. All these bodies can be analyzed very
efficiently using this method because it requires a
lower number of subdomains per wavelength and it
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presents better convergence when the MM system of
equations is solved by an iterative method. Using the
IBC approach we only shall consider the electric
current unknowns. The approach is useful to solve
structures with open or closed surfaces and it does not
suffer a loss of convergence at the frequencies of the
internal resonances or other classes of problems, for
instance ill-conditioning due to very narrow wedges.
In the future the potentiality of the dual mesh
approach will be extended to solve the CFIE.
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Abstract — The optimum planar antenna design utilizing
a simulation tool based an integration of IE3D
commercial code as an electromagnetic computational
engine and an add-on optimization algorithm is
proposed in this paper. The work is motivated by the
popularity of planar antennas and the need of customized
designs in industrial applications, which can be
effectively achieved by using simulation tools. Currently
available commercial codes are reliable and relatively
accurate in the analysis with more efforts tending to
enhance the efficiency. The quality of the antenna design
will mainly rely on an effective optimization algorithm
that can be and should be developed independently
according to engineers’ own need since the variables and
cost functions for optimization can be flexibly selected.
The integration of existing analysis codes, as mentioned
above, and self-developed algorithms will be most
effective for an engineer in the customized antenna
design. The concepts and strategies are addressed with
numerical examples to validate.

I. INTRODUCTION

The fast growing of wireless communications has
spurred an increasing need for customized antenna
designs. Microstrip (or planar) antennas, which are
conformal and can be integrated within devices’ profiles,
provide a very flexible design. In realistic applications, it
however appears more constraints on the antenna design
since portable devices usually have limited PCB space in
irregular shapes. Thus a reliable computer-aided tool is
very essential to less experienced engineers and capable
of designing antennas in an effective fashion without
ending up with tuning antenna parameters in an ad hoc
manner, which is time consuming and inefficient.

Considering the development of design tools, currently
available commercial codes such as IE3D and HFSS are
very reliable and relatively accurate in the analysis with
currently more efforts tending to enhance the efficiency.
The quality of the antenna design will mainly rely on an
effective optimization algorithm that can be and should
be developed independently according to engineers’
own need since the variables and cost functions for
optimization can be flexibly selected. Thus it can be

foreseen that more efforts of the engineers will be spent
on developing a design procedure and algorithms to
optimize their antenna designs. This work demonstrates
the idea that an external design optimizer can work with
a commercial EAD tool. An algorithm developer can
choose either genetic algorithm or other optimizers for
design optimization. The integration of existing analysis
codes, as mentioned above, and self-developed
algorithms will be most effective for an engineer in the
customized antenna design.

This code integration concept is demonstrated in this
work by using IE3D as the electromagnetic (EM)
computation engine. A program is designed to automate
the optimization process. The program monitors the
optimization process and interacts with the computation
engine. The process begins with an initial design. The
computation engine returns prescribed performance
parameters. The program next adjusts the stepping size
of the adjustable parameters according to its built-in
optimization algorithm. Above process is performed
iteratively until the desired performance or the specified
iteration number is met. Several optimization schemes
have been implemented including classical Euler
method, predictor correlator method and other nonlinear
optimization methods. In this paper, generic algorithm
(GA) [1-4] is employed to demonstrate the concept
because it can be effectively employed to optimize
discrete variables.

As to the application potential, such an add-on
optimization program could be made more capable than
the optimization functions provided by commercial
simulation packages. Comparing to the existing
GeneticEM optimizer of IE3D, which can tune multiple
geometric parameters that is already defined in the initial
design, an external add-on optimizer provides more
degree of freedom in modifying the problem geometry.
Though not demonstrated in the following design
example, it is possible to have the optimizer choosing
from a variety of antenna structures to meet specified
performance needs. For example, the optimizer may be
allowed to choose from either corner truncated patch or
diagonally-fed square patch to produce circular
polarization. Furthermore, an external add-on optimizer
enables the developer to directly access the optimizing
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algorithm. GA related parameters such as the population
size and gene number can be adjusted to achieve an
efficient optimization according to the application
characteristics. Design packages from different venders
could also be coordinated using this intermediate
program, and thus create most values in the antenna
design.

This paper is formatted in the following order. Section 2
addresses the implementation strategies of this code
integration as well as the interface to interact with the
IE3D. Section 3 demonstrates the concepts by
considering a dual-band antenna design for the
applications of Wi-Fi [5] and dedicated short range
communication systems (DSRC) [6]. Finally a short
discussion is presented in section 4 for a conclusion.

II. IMPLEMENTATION STRATEGIES
A. General Concepts and the Program Structure

The general concept of this work is composed by a
general procedure of an antenna design optimization as
illustrated in Fig. 1(a). It starts with an initial guess of the
antenna structure and parameter inputs to classify the
antenna performance expectations through an EM
analysis, where the analysis is performed by IE3D. The
antenna performance is justified by a comparison with
the expectation through an evaluation of a cost function
or fitness function. If the expectation is reached, then the
design procedure stops. Otherwise, a new design with
improved performances is created based on the values of
the fitness function, where the new antenna structure is
produced by a genetic algorithm procedure. This new
antenna structure is used in the next iteration (or next
generation) for EM analysis to justify the performance
with respect to the expectation. This procedure continues
until the expectation is reached. To realize the concepts
with respect to the utilization of IE3D as an EM analysis
engine with an add-on procedure of generic algorithm to
adjust the antenna’s parameters, the implementation of
the program structure is illustrated in Fig. 1(b). It begins
with the establishment of an automation control program
that first sets up the program control parameters such as
the desired antenna performance and the maximum
number of iteration, and then establishes the procedure
of code control and optimization algorithm. The initial
antenna design is performed by IE3D program to yield
the analysis of antenna performance parameters, which
is used to generate the fitness value. Thus the parameters
with respect to the antenna operation such as the
operational frequency bands are input through IE3D
GUI. The main body of the automation program is
composed by four blocks as illustrated in Fig. 1(b). The
“geometry controller” specifies the parameters and
variables of the antenna structure to be optimize such as
the dimensions and coordinates of particular geometries
in the structure, which are used in the “GA operator
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block” to produce new values for creating new antenna
structure with superior performances. The “GA
operator” implements the GA algorithm. Also the
antenna performance with respect to the design
anticipation is evaluated in the “fitness function” block
to justify whether the expectation has been reached
based on the analysis of “simulation” block which uses
the IE3D as the EM analysis tool. If the fitness value
meets the prescribed conditions of requirement, we can
declare that a satisfying design is found. Otherwise, the
GA operator will sort designs according to the fitness
values, then generate new designs as well as new values
of the parameters for the next generation from superior
designs.

Sel program parameter
| R ing IE3D

‘ Read geometry of

antenna and 5
parameter

geometry of

| Evaluate fitness value

¥

= Fitness value = 1=

Yes
Optimization result

GA operator

Sorting fliness value

(a) Optimization Procedure.

Optimizer

Performance
Requirement
(S11,gain...)

Geometry Fitness
Controller Function

=

Initial Design
Parameters
(for IE3D)

Simulation

2

Optimization
Design
Parameters

GA operator

(b) Automation Control Program Structure.

Fig. 1. The demonstration of the antenna design
optimization procedure as well as the program structure
of the proposed strategies to integrate IE3D commercial
analysis code with an optimization algorithm based on
genetic algorithm.
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B. Generic  Algorithm  for Antenna  Design

Optimization (“GA operator” block)

GA is employed to optimize the antenna structure to
meet the prior requirement of the antenna operation. It
sorts the design according to computed values of the
fitness function, and creates a better design according to
the superior designs in the previous generations as
illustrated in Fig. 2 (a), where eight genes (n = 8, each
gene corresponds to a set of parameter’s values for an
individual antenna structure) were assumed to generate
superior new antenna designs. The fitness function is
computed for each gene, and compared to justify the
superiority of the antenna performance. In Fig. 2 (a) a
larger fitness value indicates a superior performance of
the antenna associated with this gene. The superior
genes are retained while the rest is abandoned in the next
generation, where new offspring genes are produced
from the superior parent genes (i.e., the superior genes
retained in the previous generation) to form the same
number of genes in the competition based on a roulette
wheel parent selection. The creation of the new offspring
genes uses either crossover or mutation methods as
illustrated in Fig. 2 (b). The crossover method means
that design parameters are swapped between two parent
designs, while the mutation method implies that a
parameter of the parent design is replaced with a
randomly generated number. The decision of using
either crossover or mutation method is also random. The
selection of parent designs is done via the roulette wheel
method, that is, a superior design is assigned to a larger
piece in the wheel, which is equivalent to a larger
probability density value. Therefore, stronger parents are
more likely to produce more children.

In this work, the following formulations are found to
work well for the crossover method [7] to produce an
offspring gene X,

Xo = O'SXp,l -i-0.5)(p’2 €))
XO = 1.5‘X'p,1 —().S‘XM2 , )

and
Xo = —O.SXP’l +1 'SXp,Z 3)

where X, ; and X, are the superior parent genes. Also
mutation can use the following formulation,

X, =X, +AX “

where X, is the superior gene and AX is an random
number.

After the number of the iteration has been reached, the
gene with largest fitness value (or best performance) is
employed to determine the optimized antenna structure.
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(a) The general concept of GA.

Parent | | [ ][] [,
Genes F : Fy Fy Fy

F,
Mating Pool
Crossover t Fi h
Mutation

Random Selection
between Crossover

and Mutation I

F.

()ffsp ring —‘ ) - . Roulette wheel parent selection
, F's F'y F' F'y
Genes | | | |

(b) Methods to produce superior offspring genes.

Fig. 2. Tllustrations of genetic algorithm to generate new
antenna structures with superior performance.

C. Interface to Interact with IE3D Code

(1) Initial parameter setup

An initial antenna design is first performed within the
framework of IE3D. The fundamental parameters such
as the sampled frequencies, radiation patterns and
geometry of antenna structure should be assigned
tentatively. Figure 3 shows the input for a demonstration
example of a simple microstrip antenna design for
WLAN applications, where the antenna geometry is
shown in Fig. 3 (a) with the return loss of antenna
obtained in Fig. 3 (b). The parameter setup page of IE3D
is shown in Fig. 3 (c), where the parameters designated
will be used throughout the procedure of the antenna
design within the proposed work of this paper. Three
important parameters on this setup pages are the sampled
frequencies, cell sizes and the “After setup” operation
selection. In this case, 31 sampled frequencies between
2.3 GHz and 2.6 GHz are selected for IE3D analysis,
which will be used in the later optimization of return
loss. The cell size should be properly selected to assure
accurate analysis at the sampled frequencies. The “After
Setup” should select “Invoke IE3D” so that the required
data files of antenna geometry (filename.geo file) and
return loss data (filename.sp file) will be created, which



can be used later as an interface to interact with IE3D
and the GA algorithm for antenna design optimization.
Note that if “Create .sim file only” is selected, then only
the file to record the simulation procedure (filename.sim
file) is created.

The selection of the initial antenna design plays a
significant role for the success of the optimization
procedure. It should provide the essential possibility to
achieve the design goal since the optimization procedure
tends to minor tune of the antenna structure. For
example, if a dual band antenna design is of interest, the
initial antenna design should provide a dual band
operation, and the GA will tune the antenna structure to
adjust the operational bands to the designated bands of
interest.

(2) Interaction via the IE3D’s input and output files

Once the initial antenna geometry as well as the run
parameters are designated, they are recorded in data files
as the inputs to control the IE3D analysis in each
iteration without any changes throughout the entire
antenna design procedure except the antenna geometry
file (i.e., filename.geo) that records the coordinates of
the initial antenna geometry as shown in Figure 4 and
will be changed at each iteration by the GA procedure to
obtain new antenna design with superior performance.
Note that a new design will be created if any of the
coordinates is changed, and re-running IE3D will result
in the performance analysis of the new antenna. The
antenna performance such as the return loss of the
example demonstrated in this paper will be recorded in a
data file (i.e., filename.sp) as shown in Figure 5, which
will be used to compute the fitness functions for the use
in the GA to create the coordinates of a new antenna
structure.

(3) Execution of IE3D program based on DOS
command

The execution of the entire antenna design procedure is
performed within the controls of the automation
program. The program shall know when to call the IE3D
for the EM analysis, when the IE3D has completed the
analysis, and where to pass the parameters of [E3D to the
GA operator. The access of the IE3D is performed
through the DOS command by setting the common paths
in “C:\autoexec.bat” so that the paths can be linked as
the computer starts. The commands are shown in Figure
6 where the first line shows the path to find the IE3D
program and the second line shows the path of the
automation program. The IE3D execution is performed
through a run-time function. In Virtual Fortran, the
command is “AA=RUNQQ (“IE3D”,”filename.sim”)”,
where the “filename.sim” passes the IE3D parameters to
the IE3D for execution. The RUNQQ function
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(c) Return loss of the antenna.

Fig. 3. An example of an initial antenna design using
IE3D for WLAN applications. In (a) the dimensions of
the geometry are W1 =75 mm, W2 =30 mm, L1 =75
mm and L2 =20 mm with a thickness 1.6 mm for an Fr4
substrate (&,=44).

executes a new process for the operating system using
the same path, environment, and resources as the process
that launched it. The launching process is suspended
until execution of the launched process is complete.
“AA” is dummy variable to record the status of the
function execution. If the program executed with
RUNQQ terminates normally, the exit code of that
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program is returned to “AA”. If the program fails, -1 is
returned to “AA”.

This usually involves identification of numerical
accuracy or other limitations, solution convergence,
numerical and physical modeling error, and parameter
tradeoffs. However, it is also permissible to address
issues such as ease-of-use, set-up time, run time, special
outputs, or other special features.

To obtain the x,y,z
coordinates

(a) IE3D GUI window for the coordinates of the
polygon’s vertex.

To refer 1o figla), we
can find the crunode’s
location in .geo file.

(b) Geometry file records the coordinates of the
polygon’s vertex.

Fig. 4. The IE3D GUI and *.geo file to record the
coordinates of the antenna structures.
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Fig. 5. The IE3D *.sp file to record the return loss at
sampled frequencies.
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Fig. 6. The setting of the “C:\autoexec.bat” for the
common paths setup.

ITII. DEMONSTRATION EXAMPLES: DUAL
BAND PATCH DESIGNS

The proposed strategies are demonstrated by considering
a dual band microstrip patch antenna design for the
applications of Wi-Fi [5] and dedicated short range
communications (DSRC) [6] where the operational
frequency bands of 2.45 GHz and 5.8 GHz are pursued.
Thus the GA operator uses a fitness function based on
the return loss spectra to evaluate the performance of a
design. The fitness function for n” gene is defined by

1

F =
>C, |+1
m=1

n

©)

where

C = S]](fm)_Sl*](fm) if Su(fm)>S;1(fm), (6)
" 0 it S,(f,)<SH(f,)

and M sampled frequency points are selected in the
designated frequency bands with f,, being the sampled
frequency so that we can handle dual band or multiple
band designs. For each frequency point, if the simulated
S;; (in dB) is lower than the prescribed S5, Com is
assigned as 0. Otherwise, the difference in simulated and
desired values in dB is assigned to C,,. The summation
of C,,, contributes to the denominator of F,. A proper
design, which meets the S;; specifications in all bands,
will yield a fitness value of one (£, =1) that is the largest
value to occur in the optimization procedure. Also the
larger value of F, implies a superior performance as
required in the GA procedure.

Figure 7 shows the geometry of the proposed dual band
antenna design, which is basically a patch printed on a
substrate which is placed by Z; beyond a ground plane.
The patch is fed slightly off center. There are several
slots cut into the patch, which perturb the fields to yield
multiple resonant modes. Those geometric parameters



such as the slot position, slot length, slot width and patch
dimensions can be altered to yield different designs, and
thus can be used as parameters in the GA operator to
create new design by changing their values according to
the algorithm. The initial design with the dimensions
shown in Table 1 is capable of creating two resonance
frequencies as shown in the return loss of Fig. 8. The GA
procedure tends to adjust the resonant frequencies to the
designated frequencies of interest. In the procedure, each
subsequently created design by GA is fed to the IE3D
program for performance analysis, where the return
losses at sampled frequencies are simulated and used to
compute the fitness function as defined in equation (5).
If the fitness value has not met the prior designated
requirement, it is fed back to the GA operator to produce
a new design of the next generation.

suhstrate

E_-‘:'_—:% S0L2 SMA FEED

Fig. 7. Geometry of the initial patch antenna design.
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Fig. 8. Comparison of simulated reflection spectra of the
patch before and after optimization.

In this case, the optimization goal is to obtain the first
resonance at 2.45 GHz with a return loss smaller than -7
dB, which is equivalent to a VSWR of 2.5, and the
second resonance should be broad enough to cover the
5.2 GHz to 6 GHz band. An optimized design was
derived by altering eight geometric parameters
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sequentially as shown in Table 1. For each parameter,
four iterations were executed. The optimization process
took on a Pentium IV machine of 2.4 GHz with 512 GB
RAM, approximately 36 hours to complete. In each
IE3D simulation, antenna performance was examined
from 2 GHz to 6.8 GHz with a 0.1 GHz frequency step.
The cell size is one fifteenth of a wavelength. Most of
the time was spent on the IE3D program, which is
proportional to the complexity of the simulated
structure, and the time spent on the GA operator is
negligible. Figure 8 shows the comparison of return loss
spectra of the initial and optimized designs. According
to this figure, both resonant bands are shifted up and the
higher band fits the 5.2 GHz to 5.8 GHz range. The
optimized values of the antenna dimensions are also
shown in Table 1.

Table 1. The initial and optimized values of the antenna
dimensions as illustrated in Fig. 7.

Parameter| Initial Optimized Values(mm)
Values(mm)

X1 4 8

X2 2 8.5
X3 2 0.5
X4 2 1

Y1 16 18
Y2 18 5.2
Y3 4 4.5
Y4 4 2.9
Z1 4 3.2

To validate the optimization scheme, we manufactured
the initial and optimized patch designs and measured
their reflection coefficients. Figure 9 shows the two
return loss spectra. The null levels are slightly different
from simulation results. However, the curves exhibit a
similar trend in the movement of resonant ban locations.
The difference can be attributed to the error in selecting
material parameters. Nevertheless, the result indicates
the proposed approach can effectively predict the
performance changes due to geometric variation, which
in turn validate the optimization scheme.

20 25 29 34 39 44 48 53 58 63 67
0.0 , , , , , , , ,

| e
30 (M7 -
g 60 ,’ ’
W T T T T T
o ) \
£-120 1y I/
@50 |0 \\ |
I T
210

Frequency (GHz) — — Optimized parameters
—— Initial parameters

Fig. 9. Comparison of measured reflection spectral of
initial and optimized designs.
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The radiation patterns of the antenna were measured and
shown in Fig. 10 at 2.47 GHz and 5.6 GHz, where the
patterns as well as the beamwidths meet the general
behaviors of a general planar microstrip antenna. Also
gains of these two bands are 0.23 dBi and 2.5 dBi,
respectively.

7 =N

. 980
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X
, 120

5 210 150
180
(a) 2.47 GHz
]
8 | 330 N 30
0 .
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40| 300 60
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=20 -
-25 -{ 270 90
-20 -
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=10 | 240 120
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0- -
5 210 150
180
(b) 5.6 GHz

Fig. 10. The radiation patterns of the dual band patch
antenna at 2.47 GHz and 5.6 GHz.

IV. CONCLUSION

In this work, we integrated the GA-based design
optimizer and IE3D simulation tools within the
automation control program. The validness of this
optimizer is verified via the optimization of the dual
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band patch design for the applications of Wi-Fi and
DSRC applications. Both the simulation and
measurement results confirm improvement in antenna
bandwidth performance and demonstrate that the

optimizer developed can contribute to design
automation.
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Abstract — The design of four-section transmission line
matching transformer, operating at four arbitrary
frequencies, is presented. Standard transmission line
theory is used to obtain a closed form expression that is
solved using particle swarm optimization technique to
find the required transformer parameters (lengths, and
characteristic impedances). Different examples are
presented which validate the design approach. To further
validate the analysis and design approach, a microstrip
line four-section quad-band transmission line transformer
is designed, analyzed, fabricated and measured.

I. INTRODUCTION

With the advent of multi-band operation in wireless
communication systems, it becomes essential to have
matching transformers that operate at several frequencies.
Recently, several papers have been published in which
different techniques were proposed to design dual-
frequency matching transformers [1-4]. In [1], a A/4 -
shorted stub was added to a conventional single-shunt-
stub matching network that enabled impedance matching
at two separate frequencies simultaneously. In [2], a novel
dual-band two-section transmission line transformer
(TLT) was proposed and simple design equations for the
impedances and lengths of the two sections were derived
in [3]. In [4], an extension of this dual-band TLT to match
complex impedances was presented and applied to
wideband high-frequency amplifiers. Very recently, a
triple-band three-section TLT, extended from the two-
section TLT concept, was designed and analyzed in [5].
Using simple transmission line theory, design expressions
for the three-section TLT for three arbitrary operating
frequencies were derived. Two non-linear equations were
solved simultaneously via an optimization process to
obtain the parameters of the transformer. As an
application of these TLTs, dual-band two-section TLT
and triple-band three-section TLT have been successfully
used to design dual-band and triple-band Wilkinson
power dividers, respectively, [6-8].

In this paper, the quad-band four-section TLT, which
is matched at four arbitrary frequencies (f;, f,, f; and fy)
for any transforming ratio (Z./Z;) is designed and
analyzed. Four non-linear equations are derived using
standard transmission line theory, which are then solved
simultaneously using the particle swarm optimization

(PSO) technique. The PSO technique is used to find the
characteristic impedances and lengths of the first two
sections, from which the impedances and lengths of the
other sections are obtained using the antimetry conditions
[9]. The PSO algorithm is a multiple-agents optimization
algorithm that was introduced by Kennedy and Eberhart
[10] in 1995 while studying the social behavior of groups
of animals and insects such as flocks of birds, schools of
fish, and swarms of bees. Recently, this technique found
many successful applications in Electromagnetics [11-13].
PSO is similar in some ways to genetic algorithms, but
requires less computational bookkeeping and generally
fewer lines of code, including the fact that the basic
algorithm is very easy to understand and implement. It
should be mentioned that other optimization techniques
could be used too, but recently, we have been interested in
the application of PSO method in the design of different
microwave passive elements [14, 15], and antennas [16].
The interested reader can refer to [10-16], and the
references therein, for details of the PSO algorithm.

Il. ANALYSIS AND DESIGN

Figure 1 shows a four-section transmission line
transformer (TLT) that will be used to match a purely
resistive load Z; to a lossless transmission line with
characteristic =~ impedance Z,. The characteristic
impedances of the transmission-line sections are denoted
as 7y, Z,, 73, and Z,4, with physical lengths I, I,, I3, and |,
respectively. The problem is to find the lengths and
impedances of the four sections such that a perfect match
is obtained at four arbitrary frequencies f;, f,, f3, and f,.

—h— = =L

A N

TR

Zin
Fig. 1. Four-section quad-band TLT.

1054-4887 © 2007 ACES



Using standard transmission line theory, the input
impedance of the four-section TLT is given by,

7 _g Lt iZ () "
Z + jZ,tan(B4))

where
Z.+ jZ, tan(B/¢
ZA: 2ZB J 2 (ﬂ 2), (2)
, + JZg tan(fBY,)
Zy =2, Zc + _JZ3 tan(f(;) , 3)
Z,+ JZ. tan(BL,)
z, - Z +JZ,tan(fBL,) @)

YZ,+ iz tan(Bel,)

For perfect matching at specific frequencies, the lengths
and impedances should be chosen such that Z;, = Z, at
those frequencies. Imposing this condition on equation (1)
and solving for Z, gives,

7 - Z,— jZ tan(p!,)
ATz -z, tan(Be)

©)

Solving equation (2) for Zg gives,
z,-2, ZA—-jZ2 tan(f5/,) . ©)
Z,— jZ,tan(BL,)

Substituting equation (5) in equation (6), gives,
2, 27 L 8PL) 7 anipr,)
Zl — Jzo tan(ﬁfl)
) —
22 _ JZl ZO JZI tan(ﬂél)
Zl - JZo tan(ﬂél)

Z,=2

™)

tan(fr,)

Another equation for Zg can be obtained by substituting
equation (4) in equation (3), which gives,

Z +jZ,tan(pl,)
YZ,+JZ, tan(Bl,)
Z +jZ,tan(pl,)
Z,+ JZ tan(pl,)

+ jZ, tan(p(,)
Z,=27,

®)

Z,+jZ, tan(5/¢,)

Equating the complex equations (7) and (8), we get the
following two expressions,
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Z—Z—%k tan(f/¢,) tan(S1,)
zZ, Z
+| =2 —ZLk |tan(B0,) tan(SC,)
z, 2z, 3
zZ, Z
+| =4 - 2Lk |tan(B¢,)tan(BL,)
z, z, 1 ‘
z, z,
+| =2 —Z2k |tan(B0, ) tan(BL,)
z, z, ’ 3
+ %—%k tan(p/(,)tan(5¢,)
2 4
N i__i_ tan(B¢,) tan(31,)
3 4
NEZAE 2 AN tan( B¢, ) tan( () —(1-k)
2,2, 2.Z,) |xtan(pt;)tan(BL,) |
©)
zZ Z Z Z
(?L—Z—lJtan(ﬂfl)J{z—L—Z—z}an(ﬂfz)
| 0 2 0
Z|_ Z3J [ZL 24]
+ 222 Jtan(BL,) +| == —=* |tan(BL,)
Z, Z, ’ Z, Z,
42 L4
22, 22 e R L)
+ 777 tan(3¢, ) tan( 3¢, ) tan(3,)
27, 7.z
n i_i tan(/3(, ) tan(B(5) tan( 3/ ,)
2,2, 7.7, -
H 77 7z AL, an(p) =0
(10)

where k is the impedance transforming ratio (or the
normalized load impedance) defined as k=2, /Z,,.

For a compact size, the characteristics impedances
must be monotonically increasing or monotonically
decreasing, i.e., they should satisfy one of the following
conditions [5],

For k<1: ZL<Z4<Z3<ZQ<ZI<ZO
For k>1: Z()< Z|<Zz<Z3<Z4< ZL

Moreover, since an optimized transformer, in the sense of
achieving global minima of the reflection coefficient at
the design frequencies, is being designed, it should satisfy
the antimetry conditions given as, [9],
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|1=|4and|2=|3, (lla)
2\2y=7y15=70Zy. (11b)

It is worth mentioning that the dual-band TLT [3] and
the tri-band TLT [5] were found to satisfy these conditions
too. Enforcing the above antimetry conditions on the left
side of equation (10) gives a zero; that is equation (10) is
satisfied if the lengths and the impedances satisfy the
antimetry conditions. This validates, to some extent, that
indeed the antimetry conditions have to be satisfied. On
the other hand, enforcing the antimetry conditions in
equation (9), and after some simplification, the following
expression is obtained,

ra+h tan(f5Y¢,) ‘e tan(S/,)

tan(fBl,)  tan(B(,)
- (12)
Aty (At
where
o=(B-Buu X )
Z, zZ, 2,2,
k
b L le’ (13b)
Z1
k 2
c=— 22, (13¢)
Z;
2l 7,
ol B (13d)
z;  z)

In equation (13), normalized impedances are used where
2:=2,/Zy, and 2,=Z,/Z,. 1t is clear that there are four
unknowns in equation (12); namely: z;, z, |;, and |,. Now,
equation (12) should be satisfied at the four design
frequencies f;, f,, f;, and f, which can be written as
follows: f2:U1 fl, f3:U2 f], and f4:U3 f], where U, U, and
Uz are any positive real numbers.

At f;, we get,
2a+hb tan(Bl,) +cC tan(A ;)
n(fl,)  an(Al) o (14
+dtan(S /¢, )tan(B1,) + tan(B,(,)tan(B(,) )
At f2, we get’
2a+pBUAL) | anUAL)
tan(u,40,)  tan(u A1)
o (15)
A A ) AL
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At f;, we get,
Al aAL) 1
(k-1) ) (16)
+dtan(u2ﬁ€l)tan(u2ﬁ€2) | tan(UZﬂfl)tan(UZAEZ) e
At f,;, we get,
il A 1
(k-1 (1n
d LAY LA, =u
et el Hﬁﬂ(“;ﬁ&)'ﬂﬁﬂ(%ﬁ@)

Finally, given k, u, U, and us, the previous four non-
linear equations (14) to (17), need to be solved
simultaneously for the four unknowns z;, z,, l;/A, and l,/A,
via an optimization process, where A, is the wavelength at
fl.

As mentioned in the introduction, the particle swarm
optimization (PSO) technique is used here to solve these
four equations. The fitness function is chosen to be the
sum of the absolute values of the left sides of equations
(14) to (17). Once the four unknowns (z;, Z,, I, and |,) are
obtained, the other four unknowns z3, z4, |5, and |, can be
calculated using the antimetry conditions. In all the results
presented in the next section, 20 particles are used in the
PSO code, and the search is stopped once the value of the
fitness function becomes less than 10™'°. Depending on the
initial swarm positions, 1500-2000 iterations were usually
needed to reach an acceptable solution. Typically, this
took around 15-30 seconds using Pentium-3 PC. The
algorithm was run more than once to make sure that it
converges to the same solution each time.

I11. RESULTS

Using the approach described in the previous section,
several designs have been performed to achieve matching
at four arbitrary frequencies. Table 1 shows the obtained
results for the case with u; = 2, U, = 3, and u; = 4, while
the impedance ratio K is changed from 0.5 to 10. Figure 2
shows the return loss versus frequency for different values
of k. It can be noticed that there is a perfect match at the
four design frequencies. From the figure, as expected, one
can observe that the response for k and its inverse 1/K are
the same. Moreover, from the results in Table 1, we notice
that changing the impedance ratio k changes the
characteristic impedances, while the lengths of the
sections are not affected.

Another case that has been considered is to fix U, Us
and k, while changing u,. Table 2 includes some results in
which u; is changed between 1.4 and 2.6, with u, =3, u; =
4, k = 2. It can be noticed that as u, increases, the
impedance and length of the first section decrease, while
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the impedance and length of the second section increase.
Figure 3 shows the frequency response for some of these

cases.

Table 1. Impedances and normalized lengths of a quad-
band four-section TLT with Z, =50 Q, u; =2, u,= 3, and

u;=4.
k Z, Z, Z; Zy L/ | L/,
0.5 | 4347 | 37.87 | 33.01 | 2876 | 0.1 | 0.1
2 57.51 | 66.02 | 75.74 | 86.94 | 0.1 | 0.1
4 66.68 | 87.51 | 114.27 ] 149.95| 0.1 | 0.1
6 73.22 | 103.54 | 144.86 | 204.87 | 0.1 | 0.1
8 78.56 | 116.89 | 171.09 | 254.56 | 0.1 | 0.1
10 | 83.21 | 128.58 | 194.42 | 30044 | 0.1 | 0.1

Return loss (dB)

-70 I I 1 I 1 I
0 0.5 1 1.5 2 25 3 3.5

Frequency (GHz)

Fig. 2. Return loss of the four-section
presented in Table 1 with f;=1 GHz.

Table 2. Impedances and normalized lengths of a four-

transformer

section TLT with u,=3, u3;=4,k=2,Z,=50 Q.

Uy Z, Z, Z;3 Z,

1.4 | 59.09 | 63.78 | 78.39 | 84.60
1.8 | 57.98 65.2 76.68 | 86.24
22 | 57.17 | 66.69 | 7497 | 87.45
2.6 | 56.81 | 67.71 | 73.85 | 88.02

u; I]/}\.l |2/7\.|

1.4 | 0.1493 0.0660
1.8 ] 0.1079 0.0964
2.2 0.0943 0.1019
2.6 | 0.0858 0.1035

4.5 5

Similarly, one can fix u, u; and k, while changing u,.
Table 3 includes some results in which u, is changed
between 2.4 and 3.6, with U; = 2, U3 = 4, and kK = 2. In this
case, as U, increases, Z, and |, increase, while Z, and |,
decrease. Figure 4 shows the frequency response for some

of these cases.

0

Return loss (dB)

ul=18,2226

Fig. 3. Return loss of the four-section transformer
presented in Table 2 with f;=1 GHz.

Table 3. Impedances and normalized lengths of a four-

2.5

Frequency (GHz)

section TLT with u; =2, u3=4,k =2, Z,=50 Q.

u2 Z1 22 Z3 Z4
24| 56.77 | 67.84 | 73.70 | 88.07
2.8 | 57.25 | 66.55 | 75.13 | 87.33
32 | 5778 | 65.56 | 76.53 | 86.53
3.6 | 5836 | 64.81 | 77.14 | 85.67
Uy /A /A,
24| 0.1221 0.0921
2.8 | 0.1068 0.0974
3.2 0.0937 0.1025
3.6 | 0.0822 0.1074
0
u2=28,3.2 36
-10+
-20 p
g 30}
€ 4|
&
50
60
-70 L L I I I 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 4. Return loss of the four-section transformer
presented in Table 3 with f;=1 GHz.

Frequency (GHz)
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Finally, K, u; and u, are fixed, and u; is changed to
different arbitrary values. Table 4 shows some cases in
which u; is changed between 3.4 and 4.6, with u; =2, U, =
3, and k = 2. Figure 5 shows the frequency response for
these cases.

Table 4. Impedancesand normalized lengths of a four-
section TLT withu; =2, u,=3,k=2, Zo =50 Q.

Tz Z Z: Zs
34| 56.01 | 65.29 | 76.58 | 89.24
3.8 ] 5695 | 65.69 | 76.11 | 87.77
42 | 58.06 | 66.49 | 75.19 | 86.11
4.6 | 59.00 | 68.13 | 73.38 | 84.74
Us |1/}\,1 |2/7\41
3.4 | 0.0987 0.1145
3.8 | 0.0982 0.1059
4.2 ] 0.1033 0.0928
4.6 | 0.1140 0.0765

-10F u3=3.8,42 46

20+

-30

40

Return loss (dB)

50+

-60

70+

-80 L
0

.
2 2.5
Frequency (GHz)

Fig. 5. Return loss of the four-section transformer
presented in Table 4 with f;=1 GHz.

To further validate our analysis, a quad-band four-
section microstrip line transformer is designed, fabricated
and measured. This transformer is designed to match a
load impedance Z; = 100 Q to a 50 Q microstrip
transmission line at f, = 0.3 GHz, f, = 0.6 GHz, f; = 0.95
GHz, and f;, = 1.25 GHz. The ideal transmission line
sections impedances and lengths are found to be as
follows: Z; = 56.8519 Q, Z, = 66.8843 Q, Z; = 74.7559
Q, 7y = 879478 Q, |, = I, = 69.677 degrees, |, = I3 =
34.839 degrees, where the electrical lengths refer to f;.

Using the software Ansoft Designer SV [17], and
assuming a 1.6 mm thick FR-4 substrate, the physical
lengths and microstrip widths are found to be as follows:
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¢,=107.225 mm, {,= 542794 mm, /= 54.7366 mm,

0 4=110.761 mm. W, = 2.312 mm, W, = 1.697 mm, W

=1.343 mm, and W, = 0.9157 mm. It should be noted that
although the electrical lengths of opposite sections are
equal, their physical lengths differ slightly due to the
difference in the effective dielectric constant of each
section, which depends on the microstrip line width.
Figure 6 presents the simulation results obtained using
Designer SV, which shows a very good match at the four
design frequencies. Using the available PCB facility, this
quad-band microstrip line TLT was fabricated, in which a
surface mount resistor was used as the load. The overall
size of the practical circuit seen in Fig. 7 is 25X 7 cm.
Figure 8 presents the measured return loss, which clearly
shows the quad-band impedance matching. Some of the
design frequencies are slightly shifted which could be due
to losses of the connectors, and the inaccuracies in the
widths and lengths of the microstrip line sections.

0.00

-20.00.

i
S

£0.00.
0.00

VLV

dB(s11)

0.7 0.50 0.75 1.0 1.5 1.
F [GHz]

Fig. 6. Simulation results for a quad-band microstrip TLT
with a 1.6 mm thick FR-4 substrate ( &, = 4.6).

Fig. 7. Photograph of the fabricated quad-band microstrip
line TLT. The first and last sections are bent to reduce the
total length of the TLT.
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Fig. 8. Measured return loss for the fabricated quad-band
microstrip line TLT.

IV. CONCLUSIONS

The contributions presented in this paper can be
summarized as follows:
(a) A simple configuration for a quad-band transmission
line transformer (TLT) has been proposed which uses four
transmission line sections. Using ideal transmission line
theory, a single equation, that needs to be satisfied
simultaneously at the four design frequencies, has been
derived. This equation involved only four unknowns (z,,
25, Ii/A,, and 1,/L) to be solved for.

(b) The particle swarm optimization (PSO) technique,
which is drawing much attention at the present time, has
been used to design the quad-band TLT by searching for
the four parameters z,, z,, 1)/A, and lIy/A,. The other four
variables 73, z, l3/A,, and ly/A, were obtained using the
antimetry conditions. In effect, the obtained impedances
and lengths minimize the reflection coefficient at the four
design frequencies.

(c) Finally, to validate the analysis, several quad-band
four-section TLTs have been designed. The results were
as expected; perfect match at the four frequencies. It has
been found that the lengths of the sections do not depend
on the transforming ratio K for fixed design frequencies.
Moreover, a microstrip line quad-band TLT has been
designed, simulated using Ansoft Designer SV, fabricated
and measured. At the present time, we are investigating
the possibility of building a quad-band Wilkinson divider
based on the quad-band TLT studied here. Moreover, the
design a quad-band transformer that is able to match
complex impedances, similar to that presented in [4], will
be investigated.
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Abstract — The dielectric loaded horn radiators are
commonly used in various applications due to their
distinguished features, such as low cross-polarization,
pattern symmetry and simple production. The
analysis of this kind of horn, mode matching (MM)
and integral equation methods have been preferred in
the literature. In the present study, the radiation of
plane harmonic scalar waves from a dielectric loaded
circular horn radiator is treated by using the mode
matching method in conjunction with theWiener-
Hopf technique. The solution is exact but formal
since infinite series of unknowns and some branch-
cut integrals with unknown integrands are involved.
Approximation procedures based on rigorous
asymptotic are used and the approximate solution to
the Wiener-Hopf equations are derived in terms of
infinite series of unknowns, which are determined
from infinite systems of linear algebraic equations.
Numerical solution of these systems is obtained for
various values of the parameters, of the problem.
Their effect is presented on the directivity of the
circular feed horn.

Key words — Dielectric loaded wide angle scalar horn
radiator, Wiener-Hopf Technique, integral equations,
circular waveguide, step discontinuity.

I. INTRODUCTION

In the recent years, scalar feed horns are
commonly used widespread applications such as
feeds in reflector radiator systems used in microwave
and acoustics, because of their well-known properties
of pattern symmetry and zero or low cross-
polarization. To analyze the performance of such
feeds, one needs to know accurately their near- and
far-field patterns. The aperture fields of a pure-mode
horn are generated by a single mode, which is the
dominant mode in the waveguide. These horns use
"hybrid" modes where there is a single mode, which
is composed of hybrid combination of two other
modes. The scalar feed is circular horn antenna with
grooves, perpendicular to the wall of the horn. The
grooves change the fields so as to provide desirable
properties of axial beam symmetry, low side lobes
and cross-polarization. This means that the horn
produces an aperture field in which the field’s
distributions are approximately linear. The very low
cross-polarization means that the field in the aperture
are essentially scalar and for this reason, the

corrugated horn is sometimes referred as scalar horn
[1]. The radiation characteristics of circular
waveguides and horns have been the subject to
several previous investigations [2 - 5]. Some of the
approximate and computational methods such as
surface integral methods; hybird MM/ finite element
(FE)/ method of moment (MoM)/ finite difference
(FD) methods have been presented for the analysis of
horns [6]. The analysis reported in [7] is recently
generalized [8] to the case where the aperture's inner
surface and the intersection area with the flange of
the waveguide horn are treated as different
impedance materials. The aim of the present work is
to produce an analysis of the case where the aperture
of the waveguide horn is loaded as different dielectric
materials, as shown in Fig. 1.

a. Dielectric loaded circular horn radiator.

oP

b. Geometry of the problem.

Fig. 1. a. Dielectric loaded circular horn radiator, b.
geometry of the problem.

The aperture region of the scalar horn is loaded
by a simple dielectric material (non-magnetic and
non-conducting-dielectric rod) having the permitivity

1054-4887 © 2007 ACES
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& . The variables 7, and 7, are the complex

admittance of the aperture's inner surface of the horn
and the intersection area with the flange of the
waveguide, respectively. To this end we consider the
problem of dominant modes in the circular
waveguides propagating out of semi-infinite duct, via
another coaxial cylindrical duct of finite length and
bigger radius, and the issuing into free space.

In the progress of the radiation pattern analysis
of dielectric loaded scalar feed horn, attention has
been given to consider the propagation of plane
waves by circular structures, because the complexity
of these structures is not always possible to obtain
rigorous analytical solutions to radiation problems.
The Wiener-Hopf Technique is applicable to open
and closed structures.

The method adopted here is similar to the one
employed in [8] and consists of expressing the total
field in the waveguide region in terms of normal
waveguide modes and using the Fourier transform
elsewhere. To this end, by introducing the Fourier
transform for the scattered field and applying the
boundary conditions in the transform domain, the
problem is reduced into a modified Wiener-Hopf
equation. Using the mode matching method in
conjunction with the Wiener-Hopf technique the
radiation of plane harmonic scalar waves from a
scalar feed horn were treated. The solution is exact
but formal since infinite series of unknowns and
some branch-cut integrals with unknown integrands
are involved. Approximated procedures based on
rigorous asymptotic are used, and the approximate
solution to the Wiener-Hopf equations are derived in
terms of infinite series of unknowns, which are
determined from infinite systems of linear algebraic
equations. Numerical solution of these systems is
obtained for various values of the parameters of the
problem and their effect on the directivity of the
scalar feed horn is presented. The time dependence is

assumed to be exp(—iwt), with @ being the angular
frequency, and is suppressed throughout the paper.

Il. ANALYSIS

Consider the radiation of a time harmonic plane
wave propagating along the positive z direction from
a rigid cylindrical horn is defined by,

{p:a,Ze(—oo,O)} v {pe(a,b),Z:O} U
{p=b,z€(0,1)} where (p,¢,2) denotes the usual

cylindrical polar coordinates (Fig. 1). From the
symmetry of the geometry of the problem, and of the
incident field, the scalar field everywhere will be
independent of ¢.

Assuming the incident field is given by

u' =exp(ikz) 1)
where k = w/c denotes the wave number. For the
sake of analytical convenience we will assume that
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the surrounding medium is slightly lossy and k has a
small positive imaginary part. The lossless case can
be obtained by letting Imk — 0 at the end of the
analysis.

The total field u” (p,z) can be written as,

u' (p,2)=

u(p.2) ;p>b,  ze(-0,0)

U, (p,2) ipe(ab), z<0 v
U (p.z)+u'(pz) ;pe(0,a),2<0

u(p.2) ; p<(0,b), ze(0,1)

U (p,2) ; pe(0,b), z>1

By considering k, as the wave number of dielectric
region, u;(p,z), j=1-5 denote the scattered fields
u;(p,2), j=1-5, which satisfy the Helmholtz
equation,
10 0 o’ .
——| p=— |[+=—=+Kk*|u.(p,2)=0, j=1,2,3,5,
Lap(pap] o } i(p.2) i
(3a)
10 0 o .
| p— |[+=—=+kZ |u.(p,2)=0, j=4 (3b
Lap(papj P 1} i(p:2) J (3b)

is the expression to be determined with the help of
well known boundary, edge, and radiation conditions
for the perfectly conducting structures. The boundary
condition on the internal surfaces of the horn yield

2—u+ik77u:0 , where n is the normal pointing
n

outward the lining, and # is the complex specific
admittance of the surfaces,

u,(b,z)=u,(b,z), z<0, (4a)

ou, _0u,

S BD=720.2), 250, (4b)

iuz(a,z):O ,2<0, (4c)
op

iu3(a,z):0 , 2<0, (4d)

op

u(b,z) =uy(b,z) , z>1, (4e)
ou, _ Oug

E(b,z) = o (b,2) z>1, (41)

%ul(b,z):o, 2¢(0.1), (49)
. ) B

(|k1n1—$)u4(b,z) =0 ze(01), (4h)
Uy(p,0)+u' , pe(0,a), (4i)
%%(p,o)%““pema), (4)
u(p.l)=us(p.1), pe(0,b) , (4k)
2 (o) =25 (p0) pe 1), (@)

Z oz
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ou, _
— (PO =0.pe(ab), (4m)

(ik,n, +%)(p,0) =0, pe(ab). (4n)

To ensure the uniqueness of the mixed boundary-
value problem, one has to take into account the
following radiation and edge conditions,

ikr
=\pi+7%, (40)

Us—o,

u'(b+0,2)=0, z— -0, (4p)
iuT (b+0,2)=0(z ™), z— -0, (49)
op

u'(b,2)=0,z—>1+0, (4r)

2T (0,2)=0((z=1)"), 2> 1+0.  (4s)
op

By taking the Fourier transform of u(p,z) with
respect to the variable z and considering also above
mentioned boundary and continuity conditions in the
transform domain «, the problem is reduced into the
following modified Wiener-Hopf equation of the

third kind, which is wvalid in the strip
Im(—k) < Im(e) < Im(k) ,
b H (ba) e H (b a)
B e e G verm =T
2 LZa)f, 1 (5a)

la
_;ZMJl(zmb)z 32—
i Do Jo(Sn)
+e IEZm 00!2 [gm*lah ]

where
H.(p.a)= [ u(p.2)edz, (50)
H.(p,@) = [ "u(p,2)e“  dz, (5¢)
H,(p.a) = [u(p,2)e"dz, (5d)
K(a) =vk*-a?, (5e)
R(a) =izd,(Kb)H! (5f)
Q@)=
HY (Ka) (50)
7H{® (Kb)[J,(Ka)Y, (Kb) - J,(Kb)Y, (Ka)]
z,=K(s,), m=012,., (5h)
3.(j,)=0, m=0,1,2,..., (5i)
a, = kz—(jm/b)z, m=012..., (5
 _r bz
"2 JA(Z,2) - IE(Z,b) (5K)
j:f(t)[al(zma)vo(zmo—Y1<zma)Jo<zmt)]tdt
2
On =757 7 )j a(t)d, ( dtm=0, (5l
and

j h(t)J( dt,m=0.  (5m)

hy=— it
b3 (J) 70

Using the factorization and the decomposition
procedures together with the Liouville theorem, the
modified Wiener-Hopf equation in (5a) can be
reduced to the following system of Fredholm integral
equations of the second kind,
H.ba)
(k+a)R, (a)

H (©,79)R (1)Q(z)e™
k+7)(r—a)
+72m_0%(§m)[9m+10tmhm](|<+01m)R+(06m) , (69)

" 2a, (a+a,)
i ,(Z,8) 1, k6, R (5, )e.)ml
C2r &m0 (Z,0) Z,, 6, +a

2z J"f dz

H (0.2)Q (a)
k-a)
1 H (b, 7)e" dr
27 C(k-7)R(7)Q, (r)(r— )
2 Jo(E)[On —ianh, | (k+ )e'“mI (6b)
255 2a,(a-a,)Q,(ay)
i &0, (Z,) f ks, 1
27 e0d,(Z2,b) Z,, 6,,—a Q,(5,)
where the paths of integration L" and L are depicted
in [7]. Here, R, (2),Q,(a) and R (a)=R,(-a),
Q_(a) =Q, (—«a) are the split functions [8] regular

and free of zeros in the upper (Ima >Im(-k)) and

lower (Ima <Imk) halves of the complex -
plane, respectively, resulting from the Wiener-Hopf
factorization of R(«r) and Q(«), which are given by
(5f) and (59), in the following form,

R(@) =R, ()R (a), (7a)

Q@) =Q.(2)Q_(a) . (7b)
The explicit expressions for R, () and Q,(«) can
be obtained by using the results of [9], [10]. For
kl>>1 , the coupled system of Fredholm integral

equations of the second kind in (6a) and (6b), are
susceptible to a treatment by iterations

H.ba_=H" 0o+ b+ (82)
H b.o)_=H"b.a)+H“ba)+ (8b)

I11. MODAL MATCHING TECHNIQUE:
DETERMINATION OF THE EXPANSION
COEFFICIENTS

Modal matching technique (MMT) is a powerful
numeric method of analyzing horn radiators in which
the actual profile of the horn is replaced by a series of
uniform waveguide sections. The MMT can be
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considered as a method of obtaining the overall
transmission and reflection properties of a horn. The
horn is represented as a box as shown in Fig. 2, where
[A] and [B] are column matrices containing the
forward and reflection coefficients of all the modes
looking into the horn from source side. Similarly, [C]
and [D] represent column matrices containing the
forward and reflection coefficients of all the modes
looking into the aperture of the horn from outside [11
-13].

[A] [
| <+
S matrix
r for Horn I
! o

[B] (Al 8] [s:.]
{[DJ [S][[C]} 15]= {[521][5221}

Fig. 2. Horn represented as a scattering matrix [S].

The field in the cavity can be expressed in terms of
the waveguide normal modes as follow,

-ip.Z .
U(p. )= 3, e 303, 2) (%)
with
B, = ; n=012.... (9b)
Here &, 's are the roots of the characteristic equation
J,(J,)=0, n=0,12.... (9c)

Similarly, in the region O0<p<b, O0<z<lI,
u,(p,z) can be expressed in terms of the following
normal waveguide modes,

u(p2)= 3 (e +ae %) 305, 2), (102)
ikb77,30(&,) +&,9,(&,) =0, n=0,1,2.., (10b)

65;2
Vv, = kf—b—”z, n=0,1,2.. (10c)
Now, from the continuity relations we get
0 .
0 —Uy(p,0) +ik, 0,a
5“4(;0,0): oz (0.0) pea) (11a)

pe(a,b)
pe(0,a), (11b)

—iky,u,(p,0),
u,(p,0) =Uy(p,0)+1;
2 ()= 9(0) = X1 8ude(6a )i p £ 0D) (110)
and
U ) =h(0) = 3 Mdo(én )0 < (O0) . (11)

Inserting the series expansions of g(p) and h(p)

[14] given in equations (51) and (5m) into equations
(11c) and (11d), respectively, and using equations
(9a) and (10a) we get,
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_Zn 0 n[pn_qn]‘lo(gn%):

3 il (i 2) -1k, p < (0.2) (2
ik,n,u,(p,0), pe(ab),
PIREETA MEESE
(12b)
> cndolin p)+1 pe(0,a),
> v, [pe g, 36, )=
”j (12¢)
ngJo(ém f) :
and
v Ziv | P\ _
> P +g.e 3,85 =
| Je g -
> (&, ”)

Multiplying both S|des of equations (12a) and (12b)
by pJ,(&%) and by J,(&%2), respectively, and
integrating from 0 to b and from 0 to a,

respectively, we obtain the following system of linear
algebraic equations (13a)-(13f),

A J (Jm)
b Zneohn o)~ (g
56D - %Jl(r:. %)-0
nzl,
klﬂzzm o(Pn +qn)§ §|
a a a
06 DUED-aLE DD |-
(13a)
Vn(pn qn)?\] g(fn) |:§r12_(k1b771)2}
E ‘]O(Jm) x
b 24 () (i
kab a
GGG
- b? I3(E) =l
7
=k, (Pn + ) [ _(k1b771)2}_
2aad 16 )
(13b)
o= T+ A - Lm=0. (139
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Sh

MAREDEIG

, m=1,2..,

(13d)
pmeiwmI —qmeiiaMI :ll m=0,1,2,.., (138)

h, = pe v m=0L2... (130

This system of equations can be rearranged as,

= i g.e ™, m=01,2,...,

| m=0,1,2,....,

On — iam hm (139)

g, +ia,h, = 2ia, p, e (13h)

? 35(&)

2 (kbn,)? | =
2 [ —(kbm)? ]

v (p, - Q)—

£, %)
(&,/b)’ = (j,/a)’

2 <) o0
bTZﬂm z(pn+qn)
m=0 n=0
( ENHED kb
(infa)* ~ (é”r/b) ff,
b? 33(5)
952
a’ a a ]l
—?{35(& E)Jr IS, E)}
(13i)
To obtain an approximate value for H (a.«) and

H @a
equation (6a) and «=-6,,-9d,,...,—5, in equation
(6b). These equations together with equations (13g)
to (13i) result in 3(N +1) equations for 3(N +1)

unknowns. The solution of these simultaneous
equations yields approximate solutions for |_| (b.K),

H ®.a). H 6.-5)

H ‘(b,-3,),... Using equations (5k) to (5m) we obtain
equations (14a) and (14b) together with equations
(14c) to (14h),
b 3,(j)(g, —iesh)
2 2(k+a,)R, («,)
(9, +ia,h,)R, (o)
a, +a,

i (& )

|:§r2 - (k1b771)2:|
=k, (p, +9,)

, We substitute o=k, a,,..,a, in

H ®.).. and

b J,(j ) k+a,)
— N 20 Im AR D P/ (14a)
22) 2a,, (g, —iayhy )e"’m' .
Q. (ay) B
_ZLiSm(k+5m)><{—R*(5m) ei‘smI ——T'zm }

T m=0 5m + a, Q+ (5m)

06, IZ(Z,b)-I7(Z,2) Q.(5)F, _
7z, 3(Z,a)3,(Zb) (k+5)
(9, +ia,h )R, (a,)T2,

b i)k +a) e
24 2a,, +(gm—|amh em

(o, +6,)Q, (ay)
= R, (5,)e"" T —
——ZSm(k+5m)>< 1 s
Q.(6,)(5, +6,)
(14b)

lZed) Ty (14c)
"o(zb)Z,

JR(K) ¥ .
Q.(K) (ki M)
_ ), 2k’ R, (k)" s
" @) Q Wk + o)k + a)
(k+6,)R,(5,)
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The function W_,(&) is related to the Whittaker
function W_, ,(£) [15] by the relation (14h),

W_y, (&) = exp(&/2) & W_y0(£) - (14h)
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By substituting equations (13g) and (13h) into
equations (14a) and (14b) and also considering
equation (13i), one can easily obtain the three infinite
systems of linear algebraic equations with
coefficients p, , g, and f, .

IV. THE RADIATED FAR-FIELD AND
COMPUTATIONAL RESULTS

The radiated field in the region p>b can be
obtained using,
1. HOK
w(p.2) = [ L
7 | K(a)H (Kb) (152)
[H_(b.)+e' 1y, (b.0)le 2 da
where L is a straight line parallel to the real « -axis,
lying in the strip Im(—k) < Im(a) < Im(k) . Utilizing
the asymptotic expansion of H{” «,) as kp — o

HSY (<p) = /—2 glter= . (15b)
7Kp

The asymptotic evaluation of the integral in equation
(15a) using the saddle point technique yields for the

diffracted field for k+/p?+ 2% >>KI,

et H .(b,—kcos6)
i | kr, singH® (kbsing)
w(pz)=— T 1
z L® 2 H _(b,—kcosé,)
kr, sin @,H" (kbsin 6,)
where H (b,a) and H (b)) are given by
equations (6a) and (6b), respectively. r,,6,, and r,,6,
are the spherical coordinates defined by
p=rsing ,z=rcosé (17a)

(16)

and
p=rsing,, z—l=r,cos6,. (17b)
In the far field region equation (16) reduces to
u(p.2) ~

i | H (b—kcosd,)+e
singH® (kbsin )

—ikl cos &,

‘H (b,—kcosd)) | ¢"
kr, '

(18)
We can see that f, and g, decay exponentially with
m so that the infinite algebraic systems converge
very rapidly. Thus, they can be solved by truncating
the infinite matrix and numerically inverting the
resulting finite system. The value of the truncation
number N is increased until the final physical
quantities such as the amplitude of the radiated field
or the reflection coefficients become insensitive up to
desired digit after the decimal point.

The reflection coefficient is calculated by using
hybrid mode-matching (hMM)/ method-of-moment
(MoM) technique presented in the waveguide
synthesis program for waveguide networks WASP-

T

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

Net [16]. The reflection coefficient calculating by
WH is very close to hMM-MoM. The discrepancy
between WH and hMM-MoM is %0.23 at the
dominant mode propagation of the waveguide. The
amplitude of the reflection coefficient is reduced by
increasing the radius of the waveguide (ka) and the
length of the aperture (kI) while kb is fixed. It is
observed that the relative errors are reduced for
higher frequencies by increasing number truncation
number N.

Showing numerically can make another effective
check of the analysis that the continuity relation in
equation (12b) is satisfied. The absolute error is less
than %1.02 for N >14.

1.0, — ¢, =, NO loading

""" E =6E

T ' 3 g2t

@ @l | Kka=0E A & =les,

= ;
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Fig. 3. Normalized radiated field versus the
observation angle for different values of the k;
(=X, =1X,, X, X, >0).

Figure 3 shows the variation of the normalized
diffracted field amplitude |u, (r,,6,)/u,(r;,0)| versus

the observation angle 4, for different values of k;
when ka, kb and kl is fixed. Note that the directivity

of the horn increases with increasing values of the
dielectric material. Also it has been noted side lobe
level is decrease explicitly with increasing values of
the dielectric material.
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Fig. 4. 3dB beam-width to aperture diameter (2b/4) (
X, =X,=01a/4=06,1=152).

Figure 4 shows the variation of the -3dB
beamwidth versus the observation angle for different
values of normalized aperture diameter. The 3-dB



beamwidth decrease with the increasing values of
2b/A. Also note that the 3-dB beamwidth of the horn
decreases with increasing values of the dielectric
material.

Finally, Fig. 5 display the amplitude of the
relative power level obtained in the present work for
a/A=0.0875, b/2=05, 1/A=1.6, the numerical
results calculated by using MoM programmed by
[17]. We can see that the results obtained in this work
approach the numerical solution for m=n, and fit

quite well along the observation angle.

m 5] MoM
= —— present solution
= -104 - !
>
& .54
=
% 204 7

.25 g
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Fig. 5. Relative power level versus the observation
angle (comparison with the MoM solution).

V. CONCLUSION

The radiation of plane harmonic scalar waves
from a dielectric loaded using the mode matching
method in conjunction with the Wiener-Hopf
technique treats scalar feed horn. The solution is
exact but formal since infinite series of unknowns
and some branch-cut integrals with unknown
integrands are involved. Approximation procedures
based on rigorous asymptotic are used and the
approximate solution to the Wiener-Hopf equations
are derived in terms of infinite series of unknowns,
which are determined from infinite systems of linear
algebraic equations. The advantage of the WH
Technique over other methods is that it is rigorous in
the sense that the edge condition is explicitly
incorporated in the analysis and that it has the
potential of providing accurate and reliable results
over broad frequency ranges. Furthermore, contrary
to some numerical techniques, which are efficient
only when the problem involves finite boundaries of
limited length, the WH method does not suffer from
restrictions. Numerical solution of these systems is
obtained for various values of the dielectric materials
of the problem and their effect on the directivity of
the circular feed horn is presented in the scope of this
work. By dielectric loading, it is possible to
narrowing of the beamwidth and can provide low
levels of the side lobes.
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Abstract - Finite-element discretization of the vec-
tor wave equation is a common method of analyzing
the electromagnetic field scattered by an object. One
of the most challenging aspects of this research con-
cerns the solution of the system of equations resulting
from the finite-element analysis. Advanced solution al-
gorithms have enabled researchers to generate more re-
alistic computational models for scattering problems.
The work presented here represents what is believed
to be a unique parallel algorithm offering researchers
a method of solving large, sparse systems of equations
with advantages that are not found in previously pub-
lished works.

This research uses a parallel sparse matrix decom-
position algorithm to solve very large algebraic sys-
tems arising from the finite-element solution of elec-
tromagnetic scattering problems. This article provides
an overview of the scattering problem and how the di-
rect, parallel algorithm offers an efficient method of
solution.

I. INTRODUCTION

The solution of large, sparse, irregular systems
of equations is an important part of many computa-
tional tasks in science and engineering. In general,
such a system can be solved iteratively or directly.
The former path typically utilizes a Krylov-based
method with preconditioning while the latter is some
variation of Gaussian elimination. The convergence
of the iteration procedure depends not only on the
spectral content of the coefficient matrix but also on
the right-hand-side excitation as well. Convergence
difficulties have been reported in electromagnetics
scattering problems similar to those discussed in
this research [16]. In the case of problems with
many excitation vectors, Krylov methods lose their
advantage over Gaussian elimination methods since
the iterative procedure typically has to be repeated
for each right-hand side. The majority of the par-
allel, sparse matrix solvers are implemented with
an iterative algorithm. They have been easier to
code and they work well for many applications.
A number of public domain codes using iterative

techniques are available for download. For more
information on iterative solvers that are available
for public use, see references [2-5] or see the URL
http://www.netlib.org/utk/papers/iterative-
survey.

There are a number of parallel, direct solver algo-
rithms available for sparse irregular systems. One that
is currently being distributed is the PSPASES code
from the University of Minnesota [7]. PSPASES uses
a Cholesky algorithm for factorization of the coeflicient
matrix. A similar code is also available from the IBM
Watson Research Center [8]. The discussion of their
algorithm and a list of results were published in [9].

SUPERLU is a sparse matrix code that is avail-
able via the Gnu Public License. SUPERLU was ini-
tially a sequential code but was recently released to
run on distributed-memory computers. While results
are not available for problems with multiple excita-
tion vectors, runtimes have been published in a num-
ber of papers and conference proceedings including
[10, 11]. More information can be found at the URL
http://www.nersc.gov/ xiaoye/SuperLU/.

References [13, 14] discuss the algorithm used as a
basis for the numerical linear algebra in this paper. In
[13, 14] , timing results are shown for solution of elec-
trostatic problems. These papers summarize how the
original parallel Cholesky factorization algorithm was
modified to allow for indefinite and numerically non-
symmetric coefficient matrices. The solution domains
for these problems were quite simple. The one-way
dissection graph partitioning and the parallel LU fac-
torization algorithm used at the time were sufficient to
solve these problems. When more complex geometries
were discretized with tetrahedral elements however, it
was apparent that these methods of solution were not
adequate. One fundamental problem was the one-way
dissection algorithm used to subdivide the solution do-
main. The algorithm was not sophisticated enough for
the finite-element problem of interest and resulted in
poor load balancing. In addition, the early versions
of the present algorithm were only able to solve a sys-
tem with a single excitation vector which defeated the
purpose for using the direct solution method.

1054-4887 © 2007 ACES



II. COMPUTATIONAL
OLOGY

A parallel, computational algorithm for the direct
solution of large, sparse, irregular systems of equa-
tions generated by the finite-element method as ap-
plied to partial differential equations has been devel-
oped. The resulting linear systems may be definite
or indefinite but are structurally symmetric and may
contain many excitation vectors. The computer code
is called mp_solve. The mp_solve code is currently
used as a tool by researchers in science and engineer-
ing to solve these algebraic systems resulting from
finite-element discretizations of field equations in ar-
eas including bioelectromagnetics, semiconductor de-
vice modeling, fluid flow, remote sensing, electromag-
netic radiation, microwave circuit simulation and scat-
tering problems. The current implementation of the
mp_solve algorithm has the capability to solve a lin-
ear system for many excitation vectors as is commonly
done for electromagnetic scattering problems. The fo-
cus of the research presented here is the utilization of
the mp_solve software as a tool for solving large sys-
tems resulting from the finite-element discretization of
the vector wave equation. In the following section, the
computational techniques used in the mp_solve appli-
cation are described in detail.

METHOD-

A. Block LU Factorization of the System of
Equations

The goal of the mp_solve software is to solve the
linear system of equations,

Ax=Db (1)
where A is the coefficient matrix, b is the excitation
vector and x is the solution vector.

A reordering scheme can be applied to matrix A to
obtain the border-block diagonal matrix shown in Fig.
2. The border-block diagonal system is represented by
four submatrices,

B V

A= _
ZzT C

(2)

where B represents the diagonal blocks, V represents
the upper-right border block, ZT represents the lower-
left border block and C is the lower-right block.

The coefficient matrix A can be factored into upper
and lower triangular matrices,

A=1LU (3)
where,
Lg O
L= 4
[ WT Lc ] @
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and,
U= Us G
0 Uc

The submatrices Lg and Ug and L¢ and Ug are the
factors of the submatrices B and C, respectively. The
upper and lower factors of the diagonal blocks are com-
puted,

: ()

i—1
Wij = bij— Y lijtn,j (6)

k=1

and, ,
bij — S0y Lijug,
l. — sJ k=1 "%J sJ A 7
= ™)
The submatrix C is found by computing,

C=C-Z"Uz'Lg'V. (8)

With a few algebraic manipulations, the modification
to submatrix C becomes,

ZTUR'L5'V = ZTUZ'L3'LsG = ZTG.  (9)
To find the columns in the matrix G, solve the system
UG = G for each column g; of the matrix G and
finally write the modifications to submatrix C as,

C=C-17"G. (10)

Each column of ZT and G can be computed as they
are needed and no two-dimensional arrays need to be
stored thus cutting down significantly on memory re-
quirements. When the modifications are complete, the
subdomain-boundary block is factored using a block-
column wrapped, dense LU factorization algorithm.

B. Partitioning the Solution Domain

Prior to solving the system of equations on the par-
allel computer, the computational domain must be par-
titioned. The mesh connectivity data produced by the
mesh generator is used to produce a graph. Graph
partitioning software is then employed to subdivide
the graph of the elements into a specified number of
subdomains. The cuts (or subdomain boundaries) are
made through the graph so that approximately the
same number of elements are assigned to each subdo-
main while trying to minimize the number of elements
which fall on the subdomain boundaries. The process
of cutting the graph is repeated until the desired num-
ber of subdomains is obtained.

The graph formed by the elemental graph however
is not a representation of the nonzero structure of the
coefficient matrix. The unknowns in the problem are
associated with the edges (and faces) of the mesh. Fur-
ther work is needed to determine which edges (and
faces) from each element reside on each subdomain.
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Once this is known, another graph is produced repre-
senting the edge (and face) connectivity for each sub-
domain. The adjacency data in these new graphs indi-
cate the locations of the nonzero entries in the coeffi-
cient matrix. This process results in a nested dissection
of the coefficient matrix.

Figure 1 illustrates a mesh of rectangular elements
partitioned into four subdomains. The edges which fall
on the subdomain boundaries are shown with thick
lines. The algorithm described in this research de-
pends on the coefficient matrix being stored in the
border-block diagonal form illustrated in Fig. 2. To
obtain this matrix ordering, the edges that reside on
the interior of each subdomain are numbered first and
those residing on the subdomain boundaries are num-
bered last. The interactions between edges on the inte-
rior of each subdomain form the four diagonal blocks
shown in Fig. 2. The interactions between interior
edges and subdomain-boundary edges form the border-
blocks on the upper-right and lower-left and the inter-
actions between subdomain-boundary edges form the
darkest block on the lower-right of Fig. 2. Note that
this ordering results in a matrix of the form shown in
equation (2) of the previous section. Details regard-
ing this border-block diagonal matrix ordering can be
found in George and Liu [2].

L

Subdomain Boundary

Fig. 1. Graph of solution domain partitioned into four
subdomains.

C. Implementation of the Solution Domain
Partitioner

The pre-processing phase of this application con-
sists of subdividing the finite-element mesh into the
number of subdomains desired by the user. The Chaco
(http://www.cs.sandia.gov/CRF /chac.html)  graph
partitioner obtained from Sandia National Laboratory
is used to perform a partitioning into a specified
number of subdomains. Because of the recursive
partitioning of the graph that is performed by Chaco,
the number of processors required will be 2P where
p is the number of bisections performed by Chaco.
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Fig. 2. Border-block diagonal system.

Alternative graph partitionings could be considered to
remove the power-of-two restriction although that has
not been explored in this research. Figure 1 shows the
graph of a matrix partitioned into four subdomains.

The order in which the unknowns are numbered is
of crucial interest for our application. One goal of
the nested dissection is to obtain a border-block di-
agonal system (see Fig. 2) which can be distributed
to the processors with the number of processors used
equal to the number of diagonal blocks. Each diagonal
block is mapped to a different processor. The data on
the off-diagonal borders is mapped to the same set of
processors depending on which processor the interior
unknowns reside on. The subdomain boundary block
is distributed among the same processors in a block-
column wrapped format. Figure 3 illustrates the distri-
bution of the block-columns of the subdomain bound-
ary block to all of the processors.

T TP T|T XTI PT TP TNT| @B
glalglala|g|glalalalalalalg|g
21218 2121212181218 2(8[2|2 8
Zz|Zz|Zz|Zz|lZ2|z2z|Z2|Z2|1Z2|2|2|1Z2|12|Z2 |2
c || |c]JE | |E |Sc]E |€|E |€]cE |€ |S
3131332121212 1212(12(213212(321|3
oc|o|o|O|Jo ||| |T |0 |O)JT|T|T
R RRRIR|R|RRR R (RR|IR|R|R
0|4|8|12|J1 |5 |9 |13]2 |6 |10{14]3 |7 |11
~<~— CPUO i CPU1 i CPU 2—=1<CPU 3—=

Fig. 3. Block-column distribution for the subdomain-
boundary block.



D. Implementation of the Parallel, Direct

Solver Application

The primary goal of this research was to develop
and implement a parallel, sparse solver for linear al-
gebraic systems. Figure 4 shows the program flow for
mp_solve. The grey-shaded boxes indicate operations
requiring interprocessor communications. The boxes
without shading indicate computations done in paral-
lel with no interprocessor communications necessary.

Read Mesh Data

Reorder Graph on
Diagonal Blocks

i

Assemble
Linear System

i

mp_solve
Parallel Solver

Print Output

Operations Requiring
Inter processor Communications

]

Fig. 4. Flowchart of the parallel application including
mp_solve.

One-Way Dissection Reordering The first op-
eration in this parallel application is a one-way dissec-
tion reordering of the graph representing the nonzero
structure of the diagonal blocks [2]. This is the sec-
ond reordering performed in the solution process; the
first being a global reordering for the purpose of ob-
taining a border-block diagonal system. The reason
for this second, local reordering on the diagonal blocks
is to minimize the number of nonzeros that have to
be stored in the global system. An example of the
border-block diagonal system produced by the graph
partitioning software prior to reordering the diagonal
blocks is shown in Fig. 5. This mesh was subdivided
into four subdomains hence the four diagonal blocks.
Using a one-way dissection reordering, the rows in each
diagonal block are permuted in such a way to move the
first nonzero closer to the diagonal. This reordering
minimizes the memory usage and computation time.
Figure 6 illustrates the results of reordering the rows
of the matrix shown in Fig. 5. The differing shades
of grey shown in both figures indicate nonzero matrix
entries assigned to different processors.

The graph of each diagonal block is cut into several
subgraphs as determined by the reordering algorithm.
The edges within each subgraph are numbered first and
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Columns

Fig. 5. Nonzero pattern of a four-subdomain border-
block diagonal system.

0 \@\

1000 I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Columns

Fig. 6. Nonzero pattern of matrix shown in Fig. 5
after one-way dissection reordering for each subdomain
block.

those edges forming the cuts are numbered last. This
numbering scheme is analogous to the global reorder-
ing by the code which uses the Chaco graph partition-
ing software. This results in a border-block diagonal
pattern on each diagonal block. In the small exam-
ple matrix shown in Figs. 5 and 6, the total memory
needed to store all of entries in the global system was
reduced from 1,878,912 bytes to 710, 720 bytes due to
the one-way dissection reordering.

System Assembly The next function in the par-
allel application is the global system assembly. The
matrix assembly process inserts the coefficient matrix
and excitation vector(s) values in the locations speci-
fied by the one-way dissection reordering performed in
the previous step. Each processor fills only the part of
the global system assigned to it and no interprocessor
communication is necessary.

Different parts of the global coefficient matrix are
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stored differently depending on the density of a partic-
ular portion of the system. First, consider the nonzero
entries in each reordered diagonal block. The edges
which fell on the interior of the subgraph during the
one-way dissection are numbered first so they form the
“diagonal” portion of each diagonal block. For each
row along this diagonal, all numbers are stored start-
ing with the first nonzero through up to the diagonal
including any intervening zeros. An accompanying ar-
ray of indices is used to access specific entries in the
envelope. The same index array is used to locate en-
tries in the coefficient matrix above the main diagonal
since it is assumed that the matrix is structurally sym-
metric. More information on this storage scheme can
be found in George and Liu [2].

The off-diagonal nonzeros in both the upper and
lower borders of each diagonal block are stored in a
compressed row-column format. These values repre-
sent interactions between edges on the interior of the
subgraph and on the boundaries between adjacent sub-
graphs. An index array is used to keep track of the
number of nonzeros in a row of the off-diagonal block
and an accompanying array indicates which columns
of the off-diagonal block contains the nonzero values.
No zeros are stored in the border block portions of the
coeflicient matrix since this part of the system is very
sparse. This method of storage closely follows that
found in [2].

The subdomain-boundary block is shown in black
in Fig. 2. This portion of the coefficient matrix is
stored in a dense, block-column wrapped format. The
number of the columns comprising a block is speci-
fied by the code accompanying the graph partitioning
software. Since this part of the coefficient matrix is
assumed to be dense, no special indexing arrays are
needed to keep track of nonzeros. The only information
needed for retrieving a particular block of the matrix
is a global-to-local mapping to determine which pro-
cessor is storing a particular block of columns. This
mapping can be computed easily on each processor
since it is known how many processors are in the job,
the number of columns per block and the number of
subdomain-boundary unknowns in the problem. Each
block of columns of the subdomain-boundary matrix
are distributed among all of the processors in the job
in a “round-robin” ordering as shown in Fig. 3.

mp_solve Software When the linear system is as-
sembled, the parallel solver mp_solve is called. The
solver software is passed the coefficient matrix and the
excitation vector(s) from the calling program. The
mp_solve function returns a matrix of solutions; one
column for each excitation vector. A flowchart show-
ing the sequence of steps is shown in Fig. 7 and a
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detailed description of mp_solve is presented in the fol-
lowing section.

Linear System

Factor Diagonal
Blocks

|

Calculate and Distribute Subdomain-Boundary
Block Modification Vectors

|

‘ Factor Subdomain—-Boundary Block ‘

i

‘ Solve System (possibly multiple times) ‘

¢

Solution(s)

"1 Operations Requiring

-~ Interprocessor Communications

Fig. 7. Flowchart of the mp_solve algorithm.

The mp_solve function called after the global sys-
tem has been filled. It accepts the linear system as in-
put and returns the solution vector(s). The first com-
putation executed by mp_solve is the diagonal block
factorization. This factorization is shown mathemati-
cally in equations (6) and (7). This step is performed
in parallel with no interprocessor communications nec-
essary.

The next operation in the mp_solve code is deter-
mined by the number of processors used to solve the
problem. If a serial job was specified, i.e., one proces-
sor is used, then the forward and backward solves are
performed and the solution is returned to the calling
program. While the solution phase of the serial job
takes advantage of the sparsity of the system, the op-
erations are relatively simple and can be found in most
linear algebra texts.

If multiple processors are used to solve the problem,
then the solution process is more complicated. First,
modifications have to be performed on the subdomain-
boundary block prior to its factorization. The mod-
ification computations are outlined in equations (8)
through (10). To increase the efficiency of the modifi-
cation communications, a mapping of the modification
vectors to their destination processors is made prior
to beginning the computations. Once the communica-
tion pattern is known for each modification vector, the
computations take place and the data can be sent to
other processors as needed.

The next step in a multiple-processor job is to factor
the subdomain-boundary block into upper and lower
factors. The first part of the factorization function per-
forms some “bookkeeping” operations so that a map-
ping is made of which processor stores each column
and each block of columns The subdomain-boundary



block factorization algorithm utilizes the BLAS-3 func-
tions to enhance the computational performance. The
blocks typically contained 32 columns apiece which was
shown to run most efficiently on a Hewlett-Packard
parallel server in earlier timing tests. During the fac-
torization computations, local pivoting is performed to
ensure numerical stability.

When the factorization is complete, a parallel solu-
tion function is called to perform a forward and back-
ward solve for each excitation vector. One advantage
of the direct solver is the ability to solve for many ex-
citation vectors efficiently. The parts of the solution
computations involving the diagonal blocks are per-
formed completely in parallel but the portion of the
solution involving the subdomain-boundary block re-
quires a number of communication function calls. This
is due to the fact that the dense block is stored on all
of the processors in the job. Each processor performs
solution operations on the diagonal blocks for one ex-
citation vector, repeating the steps for each excitation
vector. The solution operations which take place on
the subdomain-boundary block handle as many exci-
tation vectors simultaneously as there are processors
in the job. Figure 8 illustrates the sequence of steps
taken to perform the solve on the subdomain-boundary
block for four excitation vectors.

Processor Number

o 1, 2, 3

First Step Lw—i 1 1
Seco e [ |
nd Step L,,,,Lffff !
I I I
————f -
mase

S, -

Fourth Step _:”JL,,,J

rnse NN

Final Step

|| First Right-Hand Sice B8 mhird Right-Hand Side

Second Right-Hand Side B o RightHand side

Fig. 8. Subdomain-boundary block solve.
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The first step in the parallel solution on the
subdomain-boundary matrix is that processor 0 starts
with the solve on the portion of the matrix in its mem-
ory. When CPU 0 has done all of the computations
it can on one row of the matrix, the data is passed to
CPU 1 and CPU 0 starts working with the next exci-
tation vector. When CPU 1 is done with its computa-
tions on the first right-hand side, that data is passed
to processor 2, processor 1 receives the data concern-
ing the second right-hand side and processor 0 begins
working on data associated with the third right-hand
side. These operations continue on the subdomain-
boundary block for all four excitation vectors until this
phase of the solve is complete. If there are more exci-
tation vectors than there are processors in the job, the
solution functions are called until all solutions have
been computed.

III. MATHEMATICAL DEVELOP-
MENT OF THE ELECTRO-
MAGNETIC SCATTERING
PROBLEM

The primary reason for the development of the
mp_solve algorithm is for solving large systems of
equations resulting from the finite-element analysis of
the vector wave equation. Electromagnetic scattering
problems arise when analyzing radar signature of air-
craft or missiles as well as when searching for buried
objects such as land mines or industrial waste. The fol-
lowing sections give an overview of the mathematical
derivations behind the scattering problem of interest
in this research.

A. Overview of the Finite-Element Derivation

Finite-element discretization of the vector wave
equation has been covered in a number of publica-
tions, therefore only a brief derivation will be shown
here [3, 17]. Begin with the vector wave equation,

VxptxE-pB%EE=0 (11)
and substitute £°+ E’ for E in equation (11) to obtain
the scattered field formulation,

V x 4, 'V x (E* + E*) — B2 (E' + E*) = 0. (12)
Collect the unknown scattered field on the left and

the known incident field on the right, equation (12)
becomes,

V x 7'V x B* — B26,E° = 826, B =V x i, 'V x E'.
(13)
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Now apply the Method of Weighted Residuals using a
vector weighting function T to equation (13),

/ T (V x im\V x B* — B26,E)dV =
14
/ T-(B%&.E' =V x i 'V x EV)dV. (14)
14
The final governing equation is,
—%Tx (i'V x E%) -ds +
S
/ (a;'V x E®) - (V x T)dV
14
—,35/ T & E*dV = ﬁg/ T-&E'dV —
14 14
/ T (V x (A'V x B))dV,
14

(15)

A mesh generator is used to discretize the solution do-
main into finite elements,

v=> V. (16)
N.

where NN, is the number of elements. On each element,
the FEM approximation for the scattered field is,

N
E* =) N¢(E))F (17)
Jj=1

where N¢ is the number of unknowns on this par-
ticular element and Ny is the shape function. The
Galerkin Method stipulates that the weighting func-
tions are equal to the shape functions,

T, = N.. (18)

Substitute these summations into the volume integral
terms on the left side of equation (15) to obtain,

NG
Sy ([ (Y %) (7 x Rp)ave-

N, j=1

g [ N -ETdeVe> ,
Ve
i=1,.,NC.

(19)

The excitation vectors are computed by summing the
contribution of each element in the solution domain.
Using the right-hand side of equation (15),

2 Ne. =,.Ei dVe,—
;(ﬂ/v ¢ (6, )

/ Nf-(V x i, 'V x Ei)dl/;> yi=1,...,N¢  (20)
Ve
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Substituting equations (19) and (20) into equation (15)
yields a linear system of equations of the form,

Ax =b. (21)

where A is the coefficient or stiffness matrix, b is the
vector representing the discretization of the forcing
function and x is the vector of unknowns.

The software developed for this research utilizes
first- and second-order tetrahedral finite elements. The
first-order tetrahedrons have one vector basis function
(and hence one unknown) lying along each edge. The
second-order tetrahedrons have two vector basis func-
tions along each edge and two vector basis functions on
each face for a total of twenty unknowns per element.
Detailed development of the elemental matrix entries
can be found in the computational electromagnetics
text by Peterson [17].

B. Mesh Termination

There are a number of methods available for ter-
minating computational domains for electromagnetic
scattering problems. Commonly-used techniques in-
clude radiation boundary conditions and integral equa-
tions terminations. In the past several years, attention
has been given to ficticious materials surrounding the
scatterer that causes the scattered wave to be attenu-
ated. These are often referred to as “Perfectly Matched
Layers” or PML for short. A PML layer is simple to
implement and when the material parameters are cho-
sen correctly, the PML is an effective mesh termination
technique. The material parameters for each element
in the PML are stored as diagonal tensors of the form,

a 0 O
[ = € = 0 b 0 (22)
0 0 ¢

where a, b, and ¢ are complex. The outer surface of
the PML is terminated by a perfect electric conductor.
Further information and derivations can be found in a
number of publications including [16, 18, 19].

mp_fem Software The mp_fem application is a
parallel electromagnetic scattering code which utilizes
the mp_solve software. The sequence of steps in the
mp_fem code is shown in Fig. 4 with the only difference
being in how the entries in the linear system are filled.

The system assembly for mp_fem is done on an
element-by-element basis with the boundary condi-
tions and material properties accounted for as each el-
emental matrix is filled. When the elemental matrix
entries have been computed, the elemental matrix data
is assembled into the global system. Since mp_fem uses
the mp_solve software, the system storage scheme is
the same as described earlier with the diagonal blocks



stored in an envelope format, the off-diagonal blocks
stored in a compressed row-column format and the
subdomain-boundary block stored as a dense matrix.
No interprocessor communication is needed during ma-
trix assembly because the preprocessing software pro-
vides all of the elemental data needed for each pro-
cessor to completely build it’s portion of the global
System.

Currently, the mp_fem software contains code for
1st- and 2nd-order, vector-based tetrahedral elements
though other element types could be added. The finite-
element computations for the elemental matrix entries
closely follow those found in [17].

IV. RESULTS

This section outlines the results gathered from a
variety of electromagnetics problems using the mp_fem
software. The results serve two purposes: (1) to test
the efficiency of the parallel solver as a tool for solving
this class of problems and (2) to verify that this soft-
ware models the electromagnetic scattering problems
accurately. The efficiency of the parallel algorithm is
checked by running scaled and unscaled speedups. The
accuracy of the electromagnetics modeling is verified
by comparing the solution that mp_fem returns to the
solution of a problem with a known result.

A. Parallel Computer Architecture

A 256-CPU linux cluster housed at the University of
Michigan was used to obtain the results shown in this
section. Each node on the computer has two AMD
processors with a clock speed of 2 gigahertz. Each
CPU has access to one gigabyte of memory. The nodes
are interconnected with 2 gigabit/second Myrinet used
for interprocessor communication. The CPUs are al-
located to each user during a run so that only one job
runs on each CPU at a time. This eliminates the prob-
lems associated with swapping jobs among users while
attempting to get reliable parallel speedup results.

B. Parallel-Plate Waveguide

Three geometries were used to verify correct elec-
tromagnetic solutions. The first geometry of interest
is a parallel-plate waveguide with one end containing
PML. While this is not an electromagnetic scattering
problem, this simple geometry is convenient for veri-
fying the that the finite element operations are being
done correctly and for testing the parallel performance
of the code. Figure 9 illustrates the geometry for this
problem.

The top and bottom plates of the waveguide, at z =
0 and z = .2 m, are perfect electric conductor (PEC).
The right end of the waveguide (z > 1.2 m) is filled
with PML material which is backed by PEC at the

DEARHOLT AND CASTILLO: EM SCATTERING PROBLEMS UTILIZING DIRECT PARALLEL SOLVER

PML Material

Fig. 9. Parallel-plate waveguide.

z = 1.5 m plane. The diagonal terms for the material
tensor of the PML was chosen to be 1.5 — j1.5. The
natural boundary condition
H'" =0 (23)

is employed on the sides of the waveguide in the planes
y = 0and y = .2 m. For all of the results shown in this
section, the waveguide was excited at the plane z =0
by an incident field,

Ei = 3E,eP=® (24)
with a frequency of 300 MHz.

Several meshes of different densities were run to ver-
ify the results for first- and second-order tetrahedrons.
Figure 10 shows the magnitude and phase for the wave
propagating down the parallel plate waveguide. This
particular mesh has 360 first-order tetrahedrons and
682 edges. The edge length is specified in the mesh
generator to be 0.083333333 m or approximately 12
edges per wavelength.
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Fig. 10. Magnitude and phase plots for the first-order
mesh, parallel-plate waveguide.

Figure 11 illustrates the magnitude and phase results
using second-order tetrahedrons in the parallel-plate
waveguide. The edge length was again specified to be
0.083333333 m and, like the first-order mesh, there are
360 elements. However, due to the fact that there are
two basis functions for each edge and face in the mesh,
this problem has 3108 unknowns.
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Fig. 11. Magnitude and phase plots for the second-
order mesh, parallel-plate waveguide.

Several mesh densities were tested for both first-
and second-order meshes on the parallel-plate waveg-
uide in order to draw conclusions on accuracy. For
both element orders, mesh densities from six through
twenty edges per wavelength were run. The average
magnitude and phase error was computed from each
of a 1000 points longitudinally along the center of the
waveguide. For first-order elements at a mesh density
of six edges per wavelength, the magnitude error was
approximately 1.5% and the phase error was approx-
imately 40%. These numbers decreased, respectively,
to .28% and 2% at a mesh density of twenty edges
per wavelength. The second-order elements performed
considerably better as expected. At a mesh density of
six edges per wavelength, the error in both the mag-
nitude and phase was approximately 1%. At a mesh
density of twenty edges per wavelength, the error de-
creases to about 0.05% for the magnitude and to 0.1%
for the phase.

Unscaled Speedup The first test of the scalabil-
ity of the mp_fem algorithm is the unscaled speedup. In
this test, a problem of a fixed size is run on an increas-
ing number of processors. However, as the number
of subdomains is increased, the amount of time spent
on operations involving the subdomain-boundary block
increases so dramatically that there is no longer a ben-
efit to using more CPUs.

The first-order mesh using the parallel-plate waveg-
uide geometry was run using a fixed problem size of
72,330 tetrahedral elements containing 81,249 edges.
The first test was run with one processor and increased
by a power-of-two until 32 CPUs were used to solve the
problem. The runtimes for the 32-CPU job indicate
that partitioning this mesh into more subdomains did
not decrease the runtime so no further tests were con-
ducted. Figure 12 illustrates the runtimes in seconds
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for all of the jobs in this test.
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Fig. 12. Wall-clock times for fixed problem size, 1st-
order mesh, parallel-plate waveguide.

A similar unscaled timing test was run on the waveg-
uide geometry using second-order tetrahedrons. This
mesh is constructed of 10,422 elements which are com-
posed of 74,322 edges and faces. Similar to the first-
order unscaled test, this problem was run on one CPU
and then the problem was decomposed by a power of
two until 32 processors were used. Because the total
runtime was increasing when 32 processors were used,
no further unscaled tests were done. Figure 13 illus-
trates the runtimes in seconds for all of the jobs in the
test.
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Fig. 13. Wall-clock times for fixed problem size, 2nd-
order mesh, parallel-plate waveguide.

The scaling problems appear when modifying and
factoring the subdomain-boundary block on multi-
processor runs. Both of these operations require exten-
sive interprocessor communications. The modification
portion of the solver executes as many forward and
backward solves as there are subdomain-boundary un-
knowns. In addition, interprocessor communications



are necessary to send the modification vector to the
appropriate processor to execute the subtraction in
equation (10). For both orders of finite elements, the
modifications performed worst on four processors and
then proceeded to have a shorter runtime as more pro-
cessors were added. As the size of the diagonal blocks
decreased, the execution time for the forward and back-
ward solves decreased substantially. While the number
of interprocessor communications increased, the time
required to perform the communications did not offset
the gains made by the faster solve times. This results
in a net improvement in the modification time as the
number of processors in the job increases.

The subdomain-boundary block factorization time
increases for both first- and second-order elements.
This is a result of having a larger subdomain-boundary
block as the solution domain is subdivided more times.
In addition, increasing the number of CPUs increases
the interprocessor communication needed to carry out
the factorization. For jobs running on 16 or fewer pro-
cessors, the subdomain-boundary block factorization
time remains under 15% of the total runtime. How-
ever, on jobs distributed over 32 CPUs, the factoriza-
tion time increase to over 50% of the total runtime.

Additional unscaled speedups were performed on
larger waveguide problems to confirm performance
data. Tests were done so that there were approxi-
mately the same number of unknowns for both 1st- and
2nd-order tetrahedral meshes. The 1st-order mesh had
477,274 edges requiring a minimum of 16 processors.
Tests were also run on this mesh for 32 and 64 sub-
domains. Because the runtime increased on 64 proces-
sors, no further tests were run. The results are shown
in Fig. 14.
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Fig. 14. Wall-clock times for fixed problem size,
1st-order mesh, parallel-plate waveguide (477,274 un-
knowns).

A similar test was done on a large parallel-plate
waveguide geometry using 2nd-order elements. This
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mesh resulted in 469,192 edges and faces. Due to mem-
ory limitations, the problem could not be run on fewer
than eight processors. This mesh was not successfully
run on 64 processors because the subdomain-boundary
block became too large and the computers operating
system started to swap memory with disk space. Fig-
ure 15 illustrates the timings for the 2nd-order waveg-
uide runs.
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Fig. 15. Wall-clock times for fixed problem size,
2nd-order mesh, parallel-plate waveguide (469,192 un-
knowns).

Another way to examine the unscaled speedup is to
consider the decrease in the runtime as the number of
processors increase. Ideally, using two processors on a
job should result in a runtime of half of that needed for
solving the same problem on one processor. Likewise,
running a problem on four processors should result in
a runtime of one quarter of that required if the same
problem was assigned to only one CPU. Figure 16 il-
lustrates the unscaled speedup for the small first- and
second-order parallel-plate waveguide results shown in
Fig. 12 and 13.

Note that the plots in Fig. 16 for both 1st- and
2nd-order elements, the speedup obtained from the
mp_fem software differs greatly from the optimal un-
scaled speedup. For instance, in the 1st-order mesh, as
the number of processors is increased from 1 CPU to
2 CPUs, ideally, the CPU time should divide in half.
The speedup obtained through from the parallel soft-
ware is only 0.66. The gain for 2nd-order problems is
even worse with a speedup of only about 0.71 when
spreading the problem over two processors.

There are a couple of likely causes in this lack of
efficiency. The first problem is load imbalance (dis-
cussed below). The other problem is a lack of scal-
ability in the portions of the code dealing with the
subdomain-boundary block. In both unscaled speedup
tests of the waveguide problem, the factorization of
the subdomain-boundary block increases as the num-
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Fig. 16. Unscaled speedup for the 1st- and 2nd-order
meshes, parallel-plate waveguide.

ber of subdomains increase. While the other opera-
tions such as the diagonal-block factorization and the
modification of the subdomain-boundary block do not
scale optimally, their decreasing runtimes do not have
the impact on the overall runtime that the factoriza-
tion of the subdomain-boundary block has. A torus-
wrapped ordering for the subdomain-boundary block
shows promise for improving scalability in this part of
the code [20].

Scaled Speedup Another measure of parallel ef-
ficiency is the scaled speedup. In this series of runs, the
problem size is increased proportionally to the num-
ber of processors in a job; i.e. if the problem size is
doubled, then the number of processors is also dou-
bled. Ideally, the execution time for each problem in
the series of runs should remain constant no matter
how large the problem. Due to increased communica-
tion costs as more CPUs are added to each run, the
execution time is rarely ever constant.

The first scaled tests that were run involved the
parallel-plate waveguide geometry meshed with first-
order tetrahedrons. Figure 17 shows the scaled
speedup for the first-order tetrahedrons. Each proces-
sor in each step in the test sequence was loaded with
approximately 20,000 edges. Table 1 shows the prob-
lem sizes for each of the runs used for the first-order
scaled speedup tests.

The second scaled speedup tests involved the same
geometry but used the second-order elements. Figure
18 shows the scaling that was achieved in this sequence
of runs. Table 2 shows the size of the problem for each
run.

The diagonal-block factorization is a parallel oper-
ation that requires no inter-processor communication.
For the scaled speedups, there were approximately the
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Fig. 17. Wall-clock times for scaled problem size, 1st-
order mesh, parallel-plate waveguide.

Table 1. Problem sizes for the first-order scaled
speedup tests.
Number of | Number of | Number of
Processors Elements Unknowns
1 15,000 21,500
2 30,000 39,980
4 60,000 79,640
8 120,000 158,960
16 240,000 317,600
32 480,000 634,880
64 960,000 1,269,440
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Fig. 18. Wall-clock times for scaled problem size, 2nd-
order mesh, parallel-plate waveguide.

same number of edges on each CPU so the factoriza-
tion time was kept relatively constant as shown in both
Figs. 17 and 18.

The modification of the subdomain-boundary block
requires considerable communication as well as many



Table 2. Problem sizes for the second-order scaled
speedup tests.
Number of | Number of | Number of
Processors FElements Unknowns
1 2,880 20,768
2 5,940 42,426
4 11,880 84,468
8 23,760 168,552
16 47,520 336,720
32 95,040 673,056
64 190,080 1,345,728

forward and backward solves. The size of the diago-
nal blocks are kept nearly constant so the forward and
backward solve times increase only slightly. This in-
crease is due to that fact that with more processors
in the job, more interprocessor communication is nec-
essary to perform the forward and backward solves in
the subdomain-boundary block.

The subdomain-boundary block factorization time
increases as the number of unknowns in that part of
the matrix increases. As the number of CPUs and
the size of the subdomain-boundary block increases,
the computation time and the communication time in-
crease. This results in the rising curve shown in the
subdomain-boundary block factorization time in both
Figs. 17 and 18.

Another way of analyzing the scaled speedup data
is to consider parallel efficiency. Hennigan defines the
scaled speedup as,

5 px TAN)
T(p,pN)
where N is the number of unknowns in the system and
p is the number of processors in the job [3]. Hennigan
then goes on to define the parallel efficiency as,
p— SS
p P

Figure 19 illustrates the parallel efficiency of the
mp_fem algorithm for both 1st- and 2nd-order elements
in the parallel-plate waveguide geometry. The run-
times shown in Figs. 17 and 18 were used to calculate
the efficiency.

For a perfect scaled speedup, the efficiency is 1.0 for
any number of processors and the corresponding prob-
lem size. Due to load imbalances and interprocessor
communications however, the efficiency is rarely ever
optimal. These problems along with the poor scalabil-
ity of the subdomain-boundary block modification and
factorization result in efficiencies that are less than one
and continue to get worse as more processors are added
to the job.

(25)

(26)
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Fig. 19. Parallel efficiency for the 1st- and 2nd-order
tetrahedral meshes.

Load Balance Obtaining a good load balance
across all of the processors in a job is a primary concern
of the graph partitioning software. Good load balanc-
ing means that each CPU will have the same number of
computations so that no processor is sitting idle while
other processors continue to work. Poor load balanc-
ing has a direct effect on parallel performance and can
cause the parallel efficiency of an algorithm to be re-
duced considerably. While it is not possible to show
here the load balance for every problem, a few decom-
positions are given.

The four-subdomain decomposition used in the un-
scaled speedup for the first-order element waveguide
simulations is a matter of interest. Table 3 shows the
load balancing results and diagonal-block factorization
times for this decomposition.

Table 3. Load balance for four-subdomain decomposi-
tion of parallel-plate waveguide.

Processor | Number of | Envelope Memory
Number Equations Size Usage (MB)
1 19,764 2,978,154 93.3
2 20,030 2,868,948 95.5
3 20,292 3,675,486 121.3
4 20,489 3,026,150 100.5

It is evident from the table that while the number of
equations on each processor vary by less than 3%, the
envelope size varies by almost 22%. Since the speed of
the factorization of the diagonal blocks depend on the
size of the envelope, the processor with the largest en-
velope size in this problem requires 1.6 times the execu-
tion time to factor the matrix on its memory than the
processor with the smallest envelope. For this prob-
lem, processor 2 sat idle for 135 seconds while pro-
cessor 3 finished factoring its portion of the matrix.
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This idle time accounts for approximately 18% of the
total runtime for this problem. While only the dis-
crepancies in the diagonal-block factorization times are
shown here, modification of the subdomain-boundary
block is also negatively effected by poor load balancing.
The modification to the subdomain-boundary block re-
quires many calls to a linear solve function that is de-
pendent on the envelope size (see equations (9) and
(10)). When the size of the envelope differs greatly
among the processors, the time to perform these solves
differs resulting in some processors sitting idle. The
factorization of the subdomain-boundary block is not
affected by load imbalance since the columns are dis-
tributed in a block-column wrapped manner to all of
the processors in the job. Any differences in the num-
ber of columns assigned a processor has a negligible
impact on the factorization time.

The load imbalance illustrated here points to the
need for more thorough investigation into graph par-
titioning software issues as well as the need to explore
alternatives to using the one-way dissection reordering
on the diagonal blocks.

C. Perfectly Conducting Cylinder

The first electromagnetic scattering problem of in-
terest is an infinite perfectly conducting cylinder. This
is a standard “textbook” problem with a well-known
series solution composed of Bessel and Hankel func-
tions.

<

Cylinder Radius=0.25m

0.9m R - - - oX
K 1 |
0.3m »‘ ! 3.0m ! ‘** 0.3m

D PML Material

Fig. 20. Perfectly conducting cylinder.

The geometry consists of a box containing a cylinder
with a diameter of 0.5 m. The center of the cylinder
lies at the origin (see Fig. 20). The interior of the box
is 3.0 m long so as to capture the standing wave in the
incident (—z direction) and the shadow (+z direction)
regions of the solution domain. A layer of artificial
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absorber (PML) 0.3 m thick is placed at the edges of
the box surrounding the cylinder. The PML regions
are shown in grey. The top and bottom planes of the
box, at z = —0.45 m and z = +0.45 m, are covered in
PEC.

For the tests run in this section, the cylinder was
illuminated by an incident plane wave of the form,

Ei = 3E,eP=® (27)

at a frequency of 300 MHz.

Two initial tests were done with first- and second-
order tetrahedral elements to ascertain that the physics
is being modeled accurately. The first-order test was
run with 66,213 first-order elements and 86,824 edges.
The electric field was sampled in two directions shown
by the heavy dashed lines in Fig. 21. The scale in Fig.
21 is the same as that shown in Fig. 20.
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Fig. 21. Field sampling lines on the PEC cylinder.

The field in the radial direction is computed at 1000
places along the x-axis of the box containing the cylin-
der. The magnitude and phase components of the total
field are shown in Fig. 22. The solid line is the solution
computed using the mp_fem software while the dashed
line represents the series solution.

The field in the ¢ direction is computed at 360 angles
(one-degree increments) in a constant radius centered
about the cylinders axis. The field points are computed
at constant distance of 0.4 m from the center of the
cylinder. The magnitude and phase components of the
total field are shown in Fig. 23. The solid line is the
solution computed using the mp_fem software while the
dashed line represents the series solution.

There are a couple of important considerations when
determining how dense to make a mesh. The first issue
is that the electric field has to be modeled correctly.
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Fig. 23. Magnitude and phase plots for the first-order
mesh, cylindrical scatterer (phi direction).

This issue was addressed with the parallel-plate waveg-
uide and it was found that reasonably accurate answers
were obtained using 12-14 edges per wavelength. Un-
fortunately, while a mesh with this density produces
good answers on a rectangular geometry, it does not
accurately model the curvature of the cylinder. The
mesh generator used in this research allows a person
to choose a different mesh densities in different places
in the computational domain. For results shown in
Figs. 23 through 25, a mesh density of 16 edges per
wavelength was used near the surface of the cylinder
while along the edges of the PML box, a mesh density
of about 12 edges per wavelength was used.

Figure 24 shows the total field along the x-axis for
the second-order mesh. The solid line is the field com-
puted by the mp_fem software and the dashed line is
the field computed using the series solution. In many
places on the plot, they are indistinguishable.

Figure 25 shows the total field in a circle around
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Fig. 24. Magnitude and phase plots for the second-
order mesh, cylindrical scatterer (radial direction).

the cylinder at a distance of 0.4 m away from the cen-
ter. Again, the solid line is the field computed by the
mp_fem software and the dashed line is the field com-
puted using the series solution. On both plots, these
lines are generally superimposed.
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Fig. 25. Magnitude and phase plots for the second-
order mesh, cylindrical scatterer (phi direction).

Multiple Excitation Vectors One of the
strengths of a direct solver is the ability to amortize
the high matrix factorization costs over the time re-
quired to perform a large number of solves for mul-
tiple excitation vectors. In this finite-element applica-
tion, each new excitation vector represents a new angle
from which the incident field illuminates the scatterer.

Two meshes were run for the purpose of obtain-
ing the runtime statistics for multiple right-hand sides.
The first-order mesh consisted of 125,000 tetrahedral
elements containing 175,877 edges surrounding a cylin-
drical scatterer. The incident waves illuminated the
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cylinder from 360 angles at 1° increments. The time
needed to solve for each excitation vector is shown in
Fig. 26. In each of the three decompositions shown for
first-order elements, the total solution time for 360 ex-
citation vectors remained less than 40% of the overall
wall-clock runtime for the mp_fem code.

The second-order mesh had approximately 28,000
elements containing 201,890 unknowns. The cylin-
der was illuminated at 1° increments from 360 angles.
The time for each solve is shown by the upper line in
Fig. 26. The percentage of the total runtime spent on
solving for each excitation vector increased from ap-
proximately 26% on the 8-subdomain decomposition
to 41% on the 32-subdomain decomposition. This in-
crease in the percentage of runtime spent on the solve
is primarily a reflection of the decrease in the over-
all runtime since the time required to solve for each
right-hand side increases only slightly between 16—
and 32—subdomain decompositions.

15

T T
—+ 1st-Order Mesh, 157,877 Unknowns
—©- 2nd-Order Mesh, 201,890 Unknowns

o
)

Solve Time per Excitation Vector (s)
o
T
I

L L L L L
10 15 20 25 30
Number of Subdomains

Fig. 26. Wall-clock times for each solve for multiple ex-
citation vectors, 1st- and 2nd-order meshes, cylindrical
scatterer.

D. PEC Sphere

The second electromagetic scatterer of interest is
the perfectly conducting sphere. Similar to the last
problem, electromagnetic scattering from a sphere has
a known series solution. The geometry for this prob-
lem is shown in Fig. 27. The PEC sphere is placed in
a box with the center of the sphere at the origin. Un-
like the cylindrical scatterer which can be modeled in
two dimensions, the sphere is a true three-dimensional
scattering problem and therefore the scatterer must
be surrounded on all sides by absorbing material. The
shaded areas in Fig. 27 around the sphere represent
the PML absorber.

The interior of the box is 3.0 m long so as to capture
the standing wave in the incident region (—z direction)
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Fig. 27. Perfectly conducting sphere.

and the shadow (+=z direction) region of the solution
domain. The sphere has a diameter of 0.5 m. A layer of
artificial absorber (PML) 0.3 m thick is placed at the
edges of the box surrounding the sphere. The PML
regions are shown in grey in Fig. 27. For this set
of results, the sphere was illuminated by the incident
field,

Ei = 3E,eP=" (28)
at a frequency of 300 MHz.

After the runs were completed, the magnitude and
phase computations for the total field were performed
at 1000 points along the bold, dashed line in the radial
direction shown in Fig. 28. In addition, another set
of field computations were taken in the ¢ direction at
360 angles.
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Fig. 28. Field sampling line on PEC sphere geometry.

Two meshes were run to verify that the code was cor-
rectly modeling the electromagnetic scattering prob-
lem. The first problem was a first-order mesh with



284,092 elements and 350,109 edges. The average edge
length was approximately 32 edges per wavelength.
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Fig. 29. Magnitude and phase plots for the 1st-order
mesh, spherical scatterer (radial direction).
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Fig. 30. Magnitude and phase plots for the 1lst-order
mesh, spherical scatterer (phi direction).

The solid lines in Figs. 29 and 30 are the fields in the
radial and phi directions computed using the results of
the mp_fem software. The dashed line in both plots are
the field values computed using the Legendre solution.
It is evident from the figures that the results obtained
from the mp_fem software are very close to the series
solution.

The second verification mesh for this geometry in-
volved 2nd-order elements. The mesh density was set
to 8 edges per wavelength resulting in 37,161 elements
and 244,452 unknowns. The results for this run are
shown in Fig. 31.

Similar to previous plots, the solid line is the field
pattern computed using the mp_fem software and the
dashed line is the field pattern computed using the se-
ries solution. Clearly, using a mesh with only eight
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Fig. 31. Magnitude and phase plots for the 2nd-order
mesh, spherical scatterer (radial direction).

edges per wavelength is not sufficient to model the
spherical geometry. While the phase plot is very accu-
rate, this coarse mesh does not resolve the field well in
the incident side of the sphere. A considerable amount
of computational resources were required to obtain this
solution. The problem was run on 16 CPUs and re-
quired approximately 12 GB of memory. For compar-
ison purposes, a lst-order mesh with a density of 8
edges per wavelength requires about 750 MB of mem-
ory. Due to memory limitations, no other 2nd-order
meshes were run with the spherical scatterer.

V. CONCLUSIONS

The purpose of this research was to develop a par-
allel, direct solver and use it as a tool for use for elec-
tromagnetic scattering simulations. While the use of
the finite-element method (FEM) is well known and
has been documented extensively, the simulations of
interest to researchers are often limited by the lack of
memory and processing power. One goal of this re-
search was to develop a parallel software application
which would alleviate some of the constraints imposed
by other available software and to include some ca-
pabilities not found elsewhere. While it is recognized
that the scaling properties of the mp_solve software are
not optimal, it has shown to be a useful tool in solving
common problems of interest to the electromagnetics
research community.

A. The Parallel Solver

This research revolves around the parallel solver
which was specifically developed for use with the scat-
tering problems of interest. Several features were built
into this code which are not found in other software
packages including the ability to handle numerically
unsymmetric matrices, complex numbers and multiple
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excitation vectors. Local pivoting is also included in
the subdomain-boundary block factorization function
to help improve numerical stability.

As was illustrated in the results section of this disser-
tation, the parallel algorithm scaling is less than ideal
as the problem size or the number of processors are
increased. A more sophisticated approach to the par-
titioning problem might produce better load balances
with certain geometries. In addition, the simple block-
column LU factorization used here had a severe impact
on the runtime and on the parallel scaling.

While poor scaling is a serious drawback to any par-
allel algorithm, the mp_solve software remains a useful
tool. The mp_solve software has been used to solve
linear systems containing up to 1.35 million unknowns
in just over an hour on 64 processors. An engineer or
scientist can expect to use this software to solve large
problems in a reasonable time.

B. The Electromagnetic Scattering Simula-
tion Software

Software has been developed to find solutions to the
vector wave equation using the finite-element method.
While this is a well-documented area of research in the
electromagnetics community, a few words are in order
here concerning the results.

The two orders of vector tetrahedral elements used
offered both advantages and disadvantages. Code de-
velopment for the first-order elements was relatively
easy and the answers were found to be reasonably ac-
curate; often within 10% of the accepted solutions. In
addition, the memory requirements were considerably
less than those required by the second-order elements.

If more accuracy is necessary, the second-order ele-
ments offer a substantial improvement for a given mesh
density. Several of the scattering problems discussed
in the previous section had accuracies within 1% of the
accepted solutions. This increase in accuracy does not
come without cost however. One problem with second-
order elements is the memory required for a given mesh
density. Experience in this research has shown that the
second-order elements require seven to ten times more
memory for a particular mesh density than the first-
order elements. The memory consumption associated
with the second-order elements limited the tests that
could be run with this code. This problem was par-
ticularly evident when using second-order elements to
mesh curved surfaces.

Another aspect of this research which warrants com-
ment is the use of the Perfectly Matched Layer (PML)
absorbing boundary condition. The PML was proven
to be quite effective as shown by the accuracy of the
results. While this research did not focus on find-
ing optimal values for the PML material parameters,
those used by Hennigan worked well in the scattering
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problems shown in the results section [3]. The PML
domain termination conditions are easy to implenent
and avoid the need for the dense matrix computations
associated with the boundary-element method of so-
lution domain termination. They also did not require
the spherical terminating surface necessitated by the
radiation boundary conditions.
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Abstract — An analytic solution to the problem of
scattering of a plane electromagnetic wave by a lossy or
lossless dielectric confocal elliptic shell loading a semi-
elliptic channel is derived. The incident, scattered and
transmitted fields in every region are expressed in terms
of complex Mathieu functions. Applying the boundary
conditions at various faces and interfaces along with the
partial orthogonality properties of angular Mathieu
functions, the unknown scattered and transmitted field
coefficients are obtained. The presented numerical
results show a good agreement with the published data
especially for the case of a lossless dielectric shell
loading a semi-circular channel.

I. INTRODUCTION

The electromagnetic scattering from grooves,
channels and cracks have been investigated by many
researchers. The investigations have shown that when
these structures are loaded with dielectric materials, the
overall scattering patterns significantly change and thus
it is important to obtain an analytic solution to predict
the new scattering behavior of the target.

Lately, there have been many analytic studies
available in the literature on the scattering by hollow
and lossless dielectric loaded semi-circular or elliptic
channels [1-9]. Most of these studies were based on the
exact series eigen-function solution. On the other hand,
numerical solutions based on the coupled integral
equations for the induced currents were obtained by
Senior et. al. [10-11].

To the best of our knowledge, there has been no
analytical or numerical solution to the problem of
scattering from a lossy or lossless dielectric elliptic
shell loading a semi-elliptic channel in a ground plane.

In this paper, we present the solution to the
scattering by a semi-elliptic channel loaded by two
lossy dielectric layers. The presented solution will be
the most general one available in the literature and the
special lossless circular case may be deduced by
making the axial ratios almost equal to unity [5], while

the lossless dielectric coated conducting elliptic
cylinder may be deduced by making the relative
permittivity of the inside dielectric layer very high [9].

Il. THEORY

Consider the case of a linearly polarized
electromagnetic TM plane wave assumed to be incident
on a lossy or lossless dielectric elliptic shell loading a
semi-elliptic channel in a ground plane at an angle
@; with respect to the X axis, as shown in Fig. 1. The

major axis of the outer dielectric coating is denoted by
a, and the minor axis is denoted by b,. Furthermore, the
major axis of inner dielectric elliptic cylinder is denoted
by a; and the minor axis is denoted by b; The ground
plane is assumed to be perfectly conducting.

Fig. 1. Scattering geometry of a semi-elliptic channel in
a ground plane loaded by a lossy or losslessconfocal
dielectric elliptic shell.

The time dependence el® is assumed and omitted
throughout. The elliptical coordinate system (u,v,z) is
defined in terms of the Cartesian coordinate system
(x,y,z) by x=F cosh(u)cos(v) and y=Fsinh(u)sin(v),
where F is the semi focal length of the elliptical cross
section [12]. The electric field component of the TM
polarized plane wave of amplitude E, is given in terms

of polar coordinates o, ¢ by,

El =Ege jkocos(4—4i) 1)

1054-4887 © 2007 ACES
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where k=27/A and A is the wavelength. The
incident electric field may be expressed in terms of
Mathieu functions in elliptic cylindrical coordinates &,

1 as follows [12],

00

E;:mz:ermRe%)(covg)sem(co’n) (2

+ AOmROF(I‘:IL)(Cng)SOm(CO1'7)

m=1

A, and ) e defined in [9], ¢, =kF, Se,

and So, are the even and odd angular Mathieu
functions of order m, respectively, Re!” and Ro® are

the even and odd radial Mathieu functions of the first
kind of order m, while N, and N, are the even and

odd normalized constants of order m. It should be noted
that &=coshu and 5 =cosv [12]. The reflected field

(6>¢&, ando<py <) due to the presence of the
ground plane can bewritten as,

Ezref = _Z Aem Re%)(co’f)sem (CO'”) (3)
m=0

+ 2 AomRorgl)(Cmg)Som (00'77) .

m=1

The scattered field (& > &, and0 <7 < 7) due to the
presence of the channel can be written as,

EJS™ = BonROG(cy,&)S0,(ch,7) )
m=1

where B~ are the unknown odd scattered field

expansion coefficients and Ro!” is the odd radial

Mathieu function of the fourth kind. The transmitted
electric field inside the outer dielectric layer
(& <£<E,) can also be written also in terms of

Mathieu functions as,

EI — i Cem Rer(i)(clvg)
’ +D,, ReP(c,, &) |
N 5)

i ConR0OM(cy, &)

+DomR0r(nZ)(C1'§)_

Se, (¢,,77)

m=0

SOm (C11 77)

m=1

where ¢, = k,F, k, :k\/?n' g =61~ 161 Cem» Dem
and coy, D,y are the even and odd unknown
tansmitted field expansion coefficients, and ge@ and
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Ro? are the even and odd radial Mathieu functions of

the second kind [12]. Furthermore, the transmitted
electric field inside the inner dielectric layer (0<£<¢,)

can also be expressed in terms of Mathieu functions as,

E)' = Gen Re()(c,,&)Sen (Cy,7) (6)
=0
+ Y GomRO(c,,&)S0q(cy,7)
m=1

where ¢, =k,F, k, =k\/&,, + &, :5;2 - jg;z while
G,, and G,, are the even and odd unknown transmitted

field expansion coefficients. The magnetic field in
every region can be obtained using Maxwell’s
equations. The unknown field expansion coefficients
given in equations (4) to (6) are yet to be determined
using the boundary conditions. The boundary
conditions at #=¢, require the tangential electric and
magnetic field components in the inner and outer
dielectric layers to be continuous. Enforcing this
boundary condition along with orthogonality property
of the angular Mathieu functions, we obtain

i Cen ReR(c,,&,)

]M emn (Cl’ Cz)

in=0| +Degp, ReSnZ)(Cl’é:z) @
= N.n(C,)Gen REV(C,, &)
= |C. Re®(c ,
z em m ( 1 fz) Memn(cl’cz) (8)

10| + D,y Re (¢, ,)
= Nen (Cz)Gen Regl) (Czifz)
where

2
M mn (€1,€2) = | Som (€1,77)Sen (€2,m)dv - ©)
0

omn

The prime in equation (8) denotes derivative with
respect to U. Similar equations can be written
corresponding to the odd solution. To eliminate G, we
solve for Gg, from equation (8) and substitute into
equation (7). This leads to

0Cem {Re%)(cl"fz)_

Ms

' Memn(clvcz)
Re%) (Clvégz)uen

m

+

M

m

oDem *Reg)(cl’fz)—

, M emn(cpc,)=0.
Re(? (cl,éz)uen}

(10)
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We can write a similar equation for the odd solution,
i.e,
@
© Ro,’(c,,&,) -
Z Com M omn (Cl' CZ)

m=0 ROr(nl)'(Cl,é:Z)Uon
+ (11)
=, |Ro (&)~
ZDom ! v Momn(Cl,C2)=0
m=0 Rof? (c,,&,)u,,
where
en(l)
U, = Ron I(Czagz) (12)

" R (c.&)

The boundary condition at ¢=¢ (7 <5 <27z) requires

the tangential electric field component to vanish at
surface, and the total tangential electric and magnetic
field components to be continuous across the interface
at #=5 (O0<ny<x). Enforcing these boundary
conditions along with the partial orthogonality property
of the angular Mathieu functions, we get [7, 9]

i _Cem Reﬁ) (c, &)+ L
m=0| Dem ReEnZ) (Cl’ §1) i
CoROM (e, &)+

+ (7/2.0)=0.0,
L Don Ror(12) (Cl’ 51)

(13)

Z ZA\Jm Ror(nl) (CO’ Sgl)Nmn + Z Bom Ror(r14) (CO ) él)‘Nmn
m=1 m=1
= [C, Re®(c,, &) +
_ Z em ' om ( 1 é:l) F o+
| Do R (6,41)

[C,Ro%(c,, &)+
L Don RO[EZ) (Cl’ é:l)

o

m=

}(mz.o),

(14)

Z zpbm Ror(nl) (CO ! ‘fl)\A/mn + z Bom Ror(n4) (CO ! ‘fl)\A/mn
m=1 m=1

_§|CaRel @) |
m:O_Dem Refnz)l(cl’é:l)
_C Ro®' c,E)+
on-en ,( 1161) (7/2.0)
_Don Ror(12) (Cl’ é:l)

(15)

where

W, = [$0,(Co. m)S0, (c,m)dv,  (16)
0

Fon = [ Sen(cm)So, (comdv, — an)
0

27
Lon = [ Seq (€, m)S0, (¢ m)dv =—F,,. (18)
Equations (13) to (15) are evaluated for m=0,1,2... and
n=0,1,2,.... In case of c,=c; equation (16) reduces to

Wmn=(z/20)s ., Where o, is the Kronecker delta.

Equations (10), (11), and (13) to (15) may be written in
matrix form to solve for the unknown scattered and
transmitted field expansion coefficients [9].

The lossy case requires the computation of Mathieu
functions with complex argument and more details on
the computation of Mathieu function can be found in
[13-14].

I11. NUMERICAL RESULTS

The scattered near and far fields can be calculated
once the scattered field expansion coefficients are
computed. The scattered far field expression may be
written as follows,

E: = [ e *P(c,n) (19)
kp

P, )= i"[BS0,(C, )] (20)
m=1

In order to solve for the unknown scattered field
coefficients, the infinite series are first truncated to
include only the first N terms, where N in general is a
suitable truncation number proportional to the channel
electrical size. In the computation, the value of N has
been chosen to impose a convergence condition that
provides solution accuracy with at least four significant
figures, The accuracy of the numerical results is checked
against the special case of a semi-circular channel
loaded with a lossless dielectric shell [4].

Figure 2 shows the normalized backscattered field
| P(c,,cos)| for a lossy or lossless dielectric shell

loading a semicircular channel versus ka, with ka;=1.0,
a1/b1=1.0, &1 = 1.5, &, =12 and ¢ = 90°. The solid line
represents the calculated numerical results while the
circled curve represents the solution in [4]. For example,
the convergence for this is achieved for N=9. It can be
seen that the calculated results agree very well with [4]
for ka, < 3.2, the range given by [4]. Further, high peak
resonances occur at different values of ka, and the

where
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amplitude of these peaks becomes even larger with the
channel size. The strong resonant behavior may be due
to the multiple scattering between the circular shell and
channel. Finally, the dotted line represents the lossy
dielectric case with &; = 1.5- j0.5 and &, = 12-j0.5. For
example, the convergence for this is achieved for N = 7.
The presence of lossy material seems to have little effect
on the normalized backscattered field especially for ka,
< 2.0, and attenuates the amplitude of the high peak
resonances for ka, > 2.0. Figure 3 shows the normalized
backscattered field for a lossy or lossless confocal
dielectric elliptic shell loading a semi-elliptic channel
versus the major axis of electrical size ka, . The major
axis electrical size of the inner elliptic dielectric shell is
kept constant at ka;=1.0 with axial ratio a;/b;=1.43 and
& = 90°. The solid line represents the lossless dielectric
case, &1 = 3.0 and &, = 5.0. The circled line represents
the weakly lossy case, &1 = 3.0-j0.1 and &, = 5.0-j0.1,
while the dotted curve represents the strongly lossy case
of ;= 3.0-j0.5 and &, = 5.0-j0.5.

12

—— calculated, &1 =1.5, [ =12

1ol| © Refld g, =15 ¢,=12

. Llossy, g, =1540.5 ¢, =120.5

©
T

IP(cC0S )
(2]

Fig. 2. Normalized backscattered field versus electrical
size ka, for a lossy or lossless dielectric circular shell
loading a semi-circular channel with ka;=1.0, a;/b;=1.0
and ¢ = 90°.

8

— g,=30,¢,=50
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w

1 115 ‘2 2‘.5 I‘% 3‘.5 4

ka,
Fig. 3. Normalized backscattered field versus electrical
size ka, for a lossy or lossless confocal dielectric
elliptic shell loading a semi-elliptic channel with

ka;=1.0, a;/b;=1.43 and ¢ = 90°.
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In Fig. 4 we have plotted the normalized echo pattern
width | P(c,,cos¢) |against the scattering angle ¢ for a

lossy or lossless dielectric circular shell loading a semi-
circular channel with ka;=2.0, a;/b;=1.0, ka,=2r,
a,/b,=1.0 and ¢ =60°. The solid line represents the
lossless case with &1 = 4.0, &, = 2.0. A strong resonance
with high amplitude is located at ¢ =120° as expected,
in addition to other resonances located at ¢=40°and 90°.
It seems that the presence of lossy dielectric material has
little effect on the amplitude of the resonance at ¢ =120°
while strong effect may be observed on the amplitude of
the resonances located at ¢ = 40° and 90°. Figure 5
shows normalized echo pattern width for a lossy or
lossless dielectric elliptic shell loading a semi-elliptic
channel with ka;=5.73, a1/b;=5.73, ka,=2 77, a,/h,=2.3
and ¢ = 60°. The solid line represents the lossless case,
& = 4.0, & = 2.0, which seems to have strong
resonances at different scattering angles and the
strongest resonance peak is located at ¢ = 120°. It can
also be observed that the presence of the lossy dielectric
material has a significant effect on the amplitude of the
high peaks resonances, but has no effect on the location
of resonances.

Figure 6 shows the normalized backscattered far
field versus the incident angle ¢ for a lossy or lossless
dielectric elliptic shell loading a semi-elliptic channel
with ka;=2.0, a;/b;=2.0, ka,=4.36 and a,/b,=1.1. It
seems that the normalized backscattered field of the
elliptical channels is highest at the incident angle ¢ =
90°. It can also be observed that the presence of lossy
dielectric material has shifted the resonance peaks at ¢ =
30° and 55°.

— gy = 4,0,.£r2 =20 » 2
6 O g = 4.0-!0.1, §o = 2.0-JvO.1 (.)
o g, = 40405 ¢, =20405 A
(¢}
5L
o
ZSar .
[ O
<
° o8 .
L3 © o
a o o
o) (e8]
2F S X
o oo
Ofese, .
Q . O o
1 @ <% )
® [IReQ)
© ) o
0 ‘ ‘ %o ‘ ‘ L0
0 20 40 60 80 100 120 140 160 180
¢, degrees

Fig. 4. Normalized scattered field versus the scattering
angle ¢ for a lossy or lossless dielectric circular shell
loading a semi-circular channel with ka;=2.0, a;/b;=1.0,
ka, =2, ay/b,= 1.0 and ¢ = 60°.
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Fig. 5. Normalized scattered field versus the scattering
angle ¢ for a lossy or lossless dielectric elliptic shell
loading a semi-elliptic channel with ka; = 5.73, a;/b; =
5.73,ka, =2 7, ay/b, = 2.3 and ¢ = 60°.
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Fig. 6. Normalized backscattered field versus the

incident angle ¢ for a lossy or lossless dielectric elliptic

shell loading a semi-elliptic channel with ka; = 2.0,
allblz 2.0, kaz = 4.36, a2/b2 =1.1.

IV. CONCLUSIONS

An analytical solution and numerical results for the
electromagnetic scattering by a lossy or lossless
dielectric circular or elliptic shell loading a semi-
circular or semi-elliptical channel in a ground plane is
obtained. The presence of lossy or lossless dielectric
shell has significantly affected the appearance and
attenuation of the channel resonances. Finally, the
presented solution is the most general one available in
the literature and special cases can be deduced by
choosing the appropriate axial ratio and dielectric
constant.

ACKNOWLEDGEMENT

The author wishes to acknowledge the support provided
by the University of Sharjah, U.A.E.

REFERENCES

[1] B. K. Sachdeva and R. A. Hurd, “Scattering
by a dielectric-loaded trough in a conducting
plane,” J. Appl. Phys., vol. 48, no. 4, pp. 1473-
1476, 1977.

[2] M. K. Hinders and A. D. Yaghjian, “Dual-
series solution to scattering from a
semicircular channel in a ground plane,”
IEEE Microwave Guided Wave Lett., vol. 1,
no. 9, pp. 239-242, 1991.

[3] T.J.Park, H.J. Eom, W.-M. Boerner, and Y.
Yamaguchi, “TM scattering from a dielectric-
loaded semi-circular trough in a conducting
plane,” IEICE Trans. Commun., vol. E75-B,
no. 2, pp. 87-91, 1992,

[4] T.J.Park, H.J. Eom, Y. Yamaguchi, W.-M.
Boerner, and S. Kozaki, “TE-plane wave
scattering from a dielectric-loaded semi-
circular trough in a conducting plane,” J.
Electromagnetic Waves Applicat., vol. 7, pp.
235-245, 1993.

[5] H. A. Ragheb, “Electromagnetic scattering
from a coaxial dielectric circular cylinder
loading a semicircular gap in a ground plane,”
IEEE Trans. Microwave Theory Tech., vol.
43, no. 6, pp. 1303-1309, 1995.

[6] T.Shen, W. Dou, and Z. Sun, “Gaussian beam
scattering from a semicircular channel in a
conducting plane,” Progress In
Electromagnetics Research (PIER), vol. 16,
pp. 67-85, 1997.

[71 W.J.Byun,J. W. Yu, and N. H. Myung, “TM
scattering from hollow and dielectric —filled
semielliptic ~ channels  with arbitrary
eccentricity in a perfectly conducting plane,”
IEEE Trans. Microwave Theory Tech., vol.
46, no. 9, pp. 1336-1339, 1998.

[8] D. Erricolo and P. L. E. Uslenghi, “Exact
radiation and scattering for an elliptic metal
cylinder at the interface between isorefractive
half-spaces” IEEE Trans. on Antennas and
Propag., vol. 52, no. 9, pp. 2214-2225, 2004.

[91 A-K. Hamid, “Electromagnetic scattering
from a dielectric coated conducting elliptic
cylinder loading a semi-elliptic channel in a
ground plane,” J. Electromagnetic Waves
Applicat., vol. 19, no. 2, pp. 257-269, 2005.

418



419

[10] T. B. Senior and J. L. Volakis, “Scattering by
gaps and cracks,” IEEE Trans. Antennas
Propag., vol. 37, pp. 744-750, 1989.

[11] T. B. Senior, K. Sarabandi, and J. Natzke,
“Scattering by a narrow gap,” IEEE Trans.
Antennas Propag., vol. 38, pp. 1102-1110,
1990.

[12] P. M. Morse and H. Feshbach, Methods of
TtheoreticalPphysics, vols. | and Il. New
York: McGraw-Hill, 1953.

[13] A-K. Hamid, M. I. Hussein, H. Ragheb, and
M. Hamid, “Mathieu functions of complex
arguments and their applications to the
scattering by lossy elliptic cylinders,” Applied
Computational Electromagnetics Society, vol.
17, no. 3, pp. 209-217, 2002.

[14] A-K.  Hamid and M. I.  Hussein,
“Electromagnetic scattering by a lossy
dielectric coated elliptic cylinder,” Canadian
Journal of Physics, vol. 81, no. 5, pp. 771-778,
2003.

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

A.-K. Hamid was born in Tulkarm, West Bank, on
Sept. 9, 1963. He received the B.Sc. degree in Electrical
Engineering from West Virginia Tech, West Virginia,
U.S.A. in 1985. He received the M.Sc. and Ph.D.
degrees from the University of Manitoba, Winnipeg,
Manitoba, Canada in 1988 and 1991, respectively, all in
Electrical Engineering. From 1991-1993, he was with
Quantic Laboratories Inc., Winnipeg, Manitoba,
Canada, developing two and three dimensional
electromagnetic field solvers using boundary integral
method. From 1994-2000 he was with the faculty of
electrical engineering at King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia. Since
Sept. 2000 he has been an associate Prof. in the
electrical/electronics and  computer  engineering
department at the University of Sharjah, Sharjah,
United Arab Emirates. His research interest includes
EM wave scattering from two and three dimensional
bodies, propagation along  waveguides  with
discontinuities, FDTD simulation of cellular phones,
and inverse scattering using neural networks.



ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

Investigation of Wire Grid Modeling in NEC Applied to Determine
Resonant Cavity Quality Factors

Franz A. Pertl, Andrew D. Lowery, and James E. Smith

Department of Mechanical and Aerospace Engineering
West Virginia University, Morgantown, WV 26506, USA
franz.pertl@mail.wvu.edu, dlowery@gmail.com, james.smith@mail.wvu.edu

Abstract — Numerical computer simulations using the
NEC Method of Moments (MoM) code were performed
on wire grid models of resonant cavities in order to
study how well conductive structures and their surface
impedances can be modeled by wire meshes. The
resonant cavity quality factor, or O, was examined due
to its high sensitivity to surface impedance. Several
half-wave coaxial cavities were simulated using various
mesh element sizes. The cavities’ outer conductor
radius was varied to obtain different geometries. The
quality factor O was determined from the simulated
input impedance spectra. The wire grid model results
were compared to well known theoretical and
experiment results. Qualitative agreement between
simulation, theoretical, and experimental results was
achieved for fixed mesh parameters, giving confidence
in comparative simulation using the same wire grid
meshing parameters. Quantitative agreement of
simulation results was achieved through repeated
simulation with varying mesh element lengths and
extrapolating the simulation results to a conceptual
mesh element length of zero. This shows that
simulations to determine quantities sensitive to surface
impedances can be successfully performed with codes
such as NEC.

Key words — Wire grid modeling, method of moments,
extrapolation, and surface impedance.

I. INTRODUCTION

A resonant cavity’s quality factor, Q, is highly
dependent on the surface impedance, Ry, of the cavity’s
interior conducting surface. Numerical simulation of
well understood cavities can serve to investigate
numerical techniques employed to model conductive
surfaces and their impedances. Once shortcomings of a
particular  numerical ~modeling technique are
determined, they can often be compensated for and
hence result in more accurate simulation results. These
techniques can then be applied with confidence to the
simulation of more complicated resonant structures for

which analytical solutions are not readily available. In
this paper, the well known quality factor of cylindrical
half-wave coaxial cavity resonators was investigated, to
determine how well wire grid models can represent
conductor surfaces in resonant cavity structures.

Il. THEORETICAL BACKGROUND ON
QUALITY FACTOR OF HALF-WAVE
RESONANT COAXIAL CAVITIES

A basic definition of quality factor, O, for a resonant
structure is given in equation (1). For the
case of an electromagnetic half-wave coaxial cavity
resonator, the energy stored, Es, can be calculated
through equation (2, the integral over the cavity
volume, ¥V, of the magnetic-field intensity, H. The
energy dissipated per cycle, Ep, is given by equation
(3), the surface integral of the ohmic losses due to the
surface current density J;, over the interior cavity
surface area, 4. The Q of a resonant cavity is often
normalized with respect to the wavelength, A, and
conductor skin depth, J, as shown in equation

(4), and is then referred to as the cavity form factor [1],

_2n-Eg
Q——ED (1
Eszgﬂﬁ‘z-dV, 2
ED=”'RSJ“7S2~dA or
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Since the fields in a half-wave long resonant cavity are
standing transverse electromagnetic (TEM) waves, the
time average magnetic-field intensity, H, which is
strictly in the ¢-direction for this mode, is known to be
of the form given in equation (5) where C'is a
constant and z, is the length of the cavity as shown in
Fig. 1.

‘__)I‘-f__ == \‘\\
" \
N —— —
\\4-""'-__:250

Fig. 1. Coaxial cavity geometry with inner radius, a,
outer radius, b, and length, z,.

Fl(r,¢,z)zcl-cos(”'z}¢?. 5)
r

Zy

Substituting H into equation (4) and
evaluating, provides results shown in equation (6)
for the form factor of a half-wave coaxial cavity [1].
Note that this quality factor is the unloaded quality
factor, Q,, which does not include losses due to a
coupling structure or associated source impedance. If
simulations of wire grid representations of such coaxial
cavities result in quality factors predicted by theory,
then the simulation technique must properly model
conductive structures and their surface impedance

losses with wire grids.
b
In| —
a

Z, -(1+1)+4-ln[b)
a b a

o
—— 6
Qu/1 (6)
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111. BACKGROUND ON CONDUCTIVE
SURFACE MODELING BY WIRE GRIDS

Richmond pioneered modeling of conductive
geometries using wire grid representations and this
technique has become accepted radiation and scattering
problems [2]. Rules of thumb have been developed for
modeling conductive structures. A usual requirement
for the wire grid models is that the grid element size be
“small” with respect to a wavelength.  Another
commonly used rule is “the equal surface area rule”,
where the total surface area of the cylindrical wires
comprising the grid is made to match the surface area of
the conductive object being modeled [3-5]. It has been
found that a rectangular wire grid, with the grid axes
aligned to electromagnetic polarization, generally gives
more accurate simulation results than other types of
grids, including triangular grids [5]. A more elaborated
set of rules for wire grid simulation of surfaces using
the Numerical Electromagnetics Code (NEC) [6], a
popular and well tested method of moments code, is
discussed in Truman and Kubina [3]. However, these
rules are only guidelines. According to Moore and
Pizer, some simulations require the wire grid surface
area to be up to five times larger than the object’s actual
surface area in order to match experimental results, so
surface impedance seems to not be modeled well in
these wire grid simulations [6].

IV. IMPLEMENTATION OF WIRE GRID
MODELS FOR COAXIAL CAVITIES

To facilitate the construction of various simulation wire
grid geometries for this study’s simulations, a
commercial computer aided design (CAD) program was
employed. Each resulting cavity model mesh was
exported to a text file in the open-Wavefront OBJ
format [8]. This format specifies the mesh as a series of
numbered vertices followed by a series of planar faces
or patches with the vertices at the corners of these
patches. This text file was then processed into a format
compatible with NEC through custom written software.
The process generated a wire segment for each edge of
each mesh surface patch, while avoiding duplication
amongst adjacent patches. The equal area rule was
applied, in which the cylindrical surface area of a wire
segment was chosen to be the average of the surface
areas of the quadrilateral grid patches on either side of
the wire. The wire mesh generated used equally sized,
primarily square patches, and as such, polarization
alignment of the mesh was not completely achieved at
the shorted ends of the resonator. The equal area rule
resulted in a total surface area of the grid elements of
approximately twice the modeled conductor area.



V. MODEL FIELD EXCITATION AND
SIMULATION

A small rectangular loop near the base of the cavity
wire grid model provided the excitation to the model.
This loop was added by manually editing the NEC
geometry input file. The input files were then simulated
using NEC2++ ver. 1.2.3, a PC implementation of NEC
in the C++ programming language [9]. Approximate
resonance peaks were found through iterative frequency
sweeps. The coupling loop area and the loop’s position
were adjusted so that the simulation achieved
reasonable coupling and the cavity Q could be reliably
determined. Note that the effect of the coupling
structure on Q was later removed from the data, and
attention was focused on the unloaded quality factor,
independent of the coupling structure.

A series of half-wave coaxial cavities were modeled to
obtain the simulated impedance spectra. The inner
conductor radius, a, and the cavity length, z, were held
fixed arbitrarily, at 1 m and 12 m, respectively. The
outer radius b was allowed to vary from 2 m to 6 m in
increments of 0.5 m. Larger outer radii were not
simulated, as 6 m is close to the upper limit for the TEM
resonance mode [10]. Some sample cavity models are
shown in Fig. 2.

mto6m,andz=12 m.

VI. THEORETICAL, SIMULATION, AND
EXPERIMENTAL RESULTS

Once simulations were complete, the simulated
impedance spectra were used to determine the
corresponding unloaded quality factors. The impedance
spectra were transformed to reflection coefficients, as
they would have been measured with a 50 Q network
analyzer. The loaded (by coupling loop) and unloaded
quality factors were then determined by the half power
frequency span about the resonance frequency. This
was performed on the Smith chart, where the locus of
the impedance is known to form a circle in the vicinity
of the resonance frequency. A freely available piece of
software readily performs these calculations from
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network the analyzer data. For references on the
software and other methods of determining quality
factors from impedance data, refer to Ginzton, Kaifez,
and Hwan [11][13]. The resulting unloaded quality
factors for the half-wave cavities were then normalized
with respect to the skin depth, J, and the wavelength, 1,
and compared to theoretically calculated values, as
given in equation (6). Several mesh edge lengths
were simulated for each cavity. The edge length data
was then extrapolated to a conceptual length of zero
through a quadratic least squares fit of (Q,. For
comparison purpose, experimental cavities (Fig. 3) with
correspondingly scaled dimensions were constructed
from brass and measured on a network analyzer. The
measured data were processed identically to the
simulated data to determine the normalized cavity form
factors. The results are plotted in Fig. 4.

Fig. 3. Experimental cavity models, @ =11in, b =2 in to
6in, and z= 12 in.

VII. DISCUSSION AND CONCLUSIONS

As shown in Fig. 4, mesh size has a considerable effect
on the magnitude of the simulated form factors.
However, the general shape of the simulated curves for
each mesh element size agrees with theory and
experiment. A large mesh size seems to result in erratic
simulation results especially around b/a = 5.5 m, which
is not reflected in the experimental data. These erratic
results must therefore be numerical instabilities rather
than excitation of higher resonance modes. As
expected, finer mesh sizes result in more accurate and
better behaved simulation results, but at the cost of
additional computation time. The simulation error in
absolute magnitude can be corrected by artificially
shifting up the curves, which is equivalent to decreasing
the conductivity of the wire grid elements. The required
adjustments in conductivity for the 0.5 m and 0.375 m
grids, is about 1/5 and 1/4, respectively, and seems to
correlate well with Moore and Pizer’s suggestion of a
simulated area up to five times the actual area [6].
Alternatively, the simulation results for each b/a can be
extrapolated to a conceptual mesh element length of
zero. This then results in excellent agreement between
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Fig. 4. Comparison of theoretical, simulated and experimental form factors.

experiment, theory and simulation. In practice,
experimental data is expected to be slightly below
theoretical, due to surface imperfections that lower the
overall surface conductivity. Despite modeling errors,
such as low level radiation leakage from meshed
structures representing closed volumes and inaccurate
absolute surface impedance modeling at larger mesh
element sizes, trends in the simulation results are
retained. This allows for meaningful comparison of
other resonant geometries via simulation by using wire
grid meshes with identical mesh parameters. As an
alternative, the mesh element size can be varied and the
results extrapolated to the limiting case of a zero length
edge element. This will give quantitatively simulation
results with much better accuracy. Wire grid modeling
can be a valuable tool, not just for radiation and
scattering problems, but even for problems that show
sensitivity to surface impedance.
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