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Abstract ─ In this paper, a perfectly matched layer 
(PML) medium with complex frequency shifted 
(CFS) constitutive parameters is introduced into 
the two-dimensional pseudospectral time-domain 
(PSTD) algorithm. The absorbing performance 
and computational efficiency of the method are 
illustrated by comparing with the PML method. It 
shows that no matter what spatial discretization is 
used, the reflection relative error of convolutional 
perfectly matched layer (CPML) is almost the 
same as that of the PML method. The total flops 
counts of the PSTD-CPML method are reduced 
from 49 to 34 compared with that of the PSTD-
PML method. This corresponds to an efficiency 
gain of 1.44 in flops count reduction for the 
PSTD-CPML method. 
  
Index Terms - Convolutional perfectly matched 
layer (CPML) and pseudospectral time-domain 
(PSTD) algorithm.  
 

I. INTRODUCTION 
Recently, the pseudospectral time-domain 

(PSTD) method has been introduced for solving 
Maxwell’s equation [1-5]. In this method, the 
spatial discretization only needs two cells per 
wavelength. This method is extremely useful for 
problems with electrically large structure. For 
solving these problems the PSTD method is more 
efficient than the finite-difference time-domain 
method (FDTD) method in terms of computer 
memory. Due to the important impact of PSTD 
method on the electromagnetic computation, an 
accurate and efficient absorbing boundary 

condition must be developed to simulate 
electromagnetic interaction in an unbounded 
space.  

In the initial implementation of the PSTD 
method in [1, 2], a split-step perfectly matched 
layer (PML) is used due to its broad band 
absorption characteristics and application to 
general media. Nevertheless, a split-field PML 
based on Berenger’s original formulation [5-7] 
needed to split the field components and the 
implementation is complex compared with the 
original PSTD method. 

Roden et al. [8] have demonstrated that the 
complex frequency shifted (CFS) constitutive 
PML parameters originally introduced by 
Kuzuoglu and Mittra [9] result in a PML that is 
highly effective at absorbing low-frequency 
evanescent waves. Their implementation, referred 
to as the convolutional-PML (CPML) method, 
allows the PML medium to be placed directly in 
the near field of geometric aberrations and can 
accurately absorb low-frequency waves.  

In this paper, the CPML technique is 
introduced into the PSTD method. It is not needed 
to split the field components. The effectiveness of 
the method is illustrated through numerical 
examples. It is demonstrated that the reflection 
relative error of the CPML can reach to -70 dB, 
which shows good absorbing performance of the 
CPML method. Besides, compared with the 
PSTD-PML method, the PSTD-CPML method can 
reduce the total flops counts from 49 to 34. This 
corresponds to a gain of 1.44 in the computation 
time reduction for the PSTD-CPML method. 
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II. FORMULATIONS 
The formulations of PSTD method inclusion 

of CPML are presented in equations (1) to (3), 
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Convolutional perfectly matched layer is 
introduced by the variables   and sk . The 

symbol sk is the spatially scaled in the PML layer. 

Its expression is, 
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where 0s is the CPML interface, d is the depth of 

the CPML, r  is the order of the polynomial, 

maxk is the maximum values of sk  at the exterior 

boundary. The expressions of   are as follows, 
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The symbol s  are the conductivity in the PML. 

Within the host medium, the values of sk are 

equal to 1, and all the variables   become zeros, 
then equations (1) to (3) are the standard 
formulations of the PSTD method [1]. 

The spatial derivatives in equations (1) to (7) 
should be replaced with the PS scheme, for 
example, 
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where FFT  and 1FFT   stand for the fast Fourier 
transform and its inverse transform. 
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is the Fourier transforms of  ,n
zE x p y . The 

symbol j  is a complex symbol. x and y are the 

spatial increments in x and y  directions; m and 

p denote the indices of the spatial increments; 

M is the total mesh cell in  the x  direction. The 
range of spectral domain xk is in the form of 

2/2x to 2/2x, so, ,
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Unlike the previous PSTD-PML formula [1, 2], 
the PSTD-CPML formula is not needed to split the 
field components and the implementation is 
convenient.  

681 ACES JOURNAL, VOL. 28, NO.8, AUGUST 2013



III. THE COMPUTATIONAL 
EFFICIENCY OF THE CPML-PSTD 

COMPARED WITH PML-PSTD 
To compare the computational efficiency of 

the PSTD-CPML method with that of the PSTD-
PML method, we recall the updating equation of 
the PSTD-PML method as follows, 
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The floating point operations (flops) counts 

taking into account the number of multiplications 
/divisions (M/D), additions/subtractions (A/S), 
exponentiation and Fourier transform (FT) 
required for one complete time step for PSTD-
CPML and PSTD-PML methods are listed in 
Table I, based on the right-hand sides of their 
respective updating equations. For simplicity, the 
number of electric and magnetic field components 
in all directions has been taken to be the same and 
assume that all multiplicative factors have been 
pre-computed and stored. From the table, it is clear 
that the total flops counts for the PSTD-CPML 
method are reduced from 49 to 34 compared with 
that of the PSTD-PML method. This corresponds 
to an efficiency gain of 1.44 in flops count 
reduction for the PSTD-CPML method. 

 

Table I: Flops count for PSTD-CPML and PSTD-
PML algorithms. 

 A/S M/D FT exponentiation 
PSTD-CPML 12 18 4 0 
PSTD-PML 9 28 4 8 

 
IV. NUMERICAL RESULTS 

To illustrate the CPML termination of the 
PSTD lattice, a simulation of a small current 
source radiating in free space is studied. A 
uniform mesh with cell spacing x = y = 0.01 m 
and lattice dimension of 200  200 is considered. 
The reflection error due to the CPML is studied by 
exciting a small current source at the center of the 
grid. The time dependence of the source is, 
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where 0t  and 1t  are constants, and both equal to 

110-9. The highest frequency of the Gauss source 
is determined by the value 2/t1 = 2 GHz, thus the 
minimum wavelength of the source is about 0.15 
m. The spatial discretization x is equal to 1/15 of 
the minimum wavelength. The reflection error is 
computed at the source point. A reference solution 
based on an extended lattice is computed in order 
to isolate the error due to the CPML from grid 
dispersion error. The relative error is computed as, 
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where ( )stdE t is the value of the electric field at 
that point computed by the extended lattice PSTD. 

( )E t is the electric field calculated by the PSTD 
truncated by the CPML. 

CPML layers that are twenty cells thick 
terminate all four sides of the lattice. Within the 
CPML, the conductivity is selected as, 
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A choice for maxs  that will minimize the 

reflection is expressed as, 
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where s is the grid spacing along the normal axis. 
The time step is selected as 

   2 2
2 1 1t c x y     = 15 ps, which is 
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the maximum time step to satisfy time stability 
condition in the PSTD method, where c is the 
speed of light within the host medium. The 
reflection error with respect to time step is showed 
in Fig. 1. For the sake of comparison, the 
reflection error of the PSTD-PML method is also 
plotted in this figure. As can be seen from this 
figure, both the reflection relative error of CPML 
and PML are less than -70 dB. It means that the 
CPML has almost the same absorbing 
performance as the PML method. 
 

 
 

Fig. 1. The reflection relative error of CPML and 
PML with t = 15 ps. 
 

The significant feature of the PSTD method is 
its spatial discretization, which only needs two 
cells per wavelength. So, we can increase the 
spatial increments of the PSTD method to x = y 
= 0.075 m, corresponding to 1/2 of the wavelength. 
The reflection error with this spatial increment is 
plotted in Fig. 2. The time step size is selected as 
the maximum to satisfy the limitation of the stable 
condition in the PSTD method. It is 

   2 2
2 1 1t c x y     = 112.5 ps, which is 

seven times as that of the conventional FDTD 
method. It can be seen from Fig. 2 that the 
reflection relative error of the CPML method is 
also the same as that of the PML method, but due 
to very large time step size and spatial 
discretization used, both the reflection relative 
error of the CPML and PML become a little larger 
than the results in Fig. 1, especially in the late 
response. The reflection relative error reach to -50 
dB after 400 time steps. However, it does not affect 
the application of the CPML method in the situation 
not with very stringent absorbing performance 
requirements. 

It should be noted that when spatial 

increments of the PSTD method increase to 1/2 
wavelength, some ripples appears in the reflection 
relative error of the CPML method, as shown in 
Fig. 2. This is duo to the wraparound effect of the 
PSTD method, which can be eliminated by using 
PML cells at the outer boundary. 

 

 
 

Fig. 2. The reflection relative error of the CPML 
with t = 112.5 ps.  
 

One advantages of the CPML lies in its 
capability of dealing with the low frequency  
evanescent waves. Therefore, it is necessary to 
show the reflection relative error in the simulated 
frequency domain. The variation of the reflection 
relative error of the PSTD-CPML method with 
respect to frequency is plotted in Fig. 3. It can be 
seen from this figure that in the entire frequency 
range (including the low frequency band) the 
reflection relative error of CPML is less than -50 
dB and it is highly effective at absorbing low-
frequency evanescent waves. The CPML 
parameters r and maxk are selected by using the 

method in references [10] and [11].  
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Fig. 3. Variation of the reflection relative error of 
the PSTD-CPML method with respect to 
frequency. 
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V.  CONCLUSION 
A pseudospectral time-domain method 

employing the CPML equations is presented. It is 
not needed to split the field components. 
Numerical example demonstrates that the 
reflection relative error of CPML is less than -70 
dB and shows good absorbing performance of the 
convolutional perfectly matched layer. 
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