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Abstract − Maintaining the topology of an expanding 
wavefront surface allows for a simpler time-domain wave 
ray launching model that is free from the problems 
associated with ray catching. In addition to the usual ray 
location and direction information, the wavefront 
launching model stores which rays are adjacent in the 
advancing wavefront surface. The added information 
allows interpolation over this surface, so the model easily 
incorporates diffracted waves and power density changes 
from beam spreading.  
 

I.    INTRODUCTION 
 
Ray tracing and launching methods have become popular 
for predicting wave propagation in complex geometries. 
Ray tracing methods trace “dominant” paths from source 
to receiver [1]. This can result in a large number of 
redundant rays being traced if the model has many 
receiver points. Ray launching reduces this computational 
burden by tracing a fixed number of rays from the source, 
which are followed as they scatter around the geometry. If 
they pass sufficiently close to a receiver point, they 
contribute to that receiver’s response. This leads to the 
problem of “ray catching,” where rays can be “double 
counted” at a receiver [2]. 

This paper describes a method of ray launching that 
avoids double counting by respecting the topological 
structure of the moving wavefront. Unlike ray catching, in 
which the wavefront is extrapolated to the receiver point, 
this method interpolates the wavefront to the receiver 
point. This avoids causing errors associated with 
extending the wavefront beyond its true extent. The 
topological information also allows accurate wavefront 
power densities to be computed purely from geometric 
considerations. 
 

II.   TOPOLOGICAL ASPECTS OF WAVEFRONT 
PROPAGATION 

 
The aim of this paper is to present a method for computing 
the solution to the scalar wave equation in a region Ω, 
with a transmitted signal f, 
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where the parameter c describes the wave propagation 
speed, which depends on the medium in which the wave 
propagates [3]. This equation can be used to predict 
electromagnetic wave propagation where polarization is 
not expected to be an issue, or in small-amplitude acoustic 
settings. In the case of acoustic waves, u describes the 
pressure at a given point, while for electromagnetic waves, 
it describes a component of the electric field vector. 
Typical indoor or outdoor urban environments do not 
show marked differences in electromagnetic wave 
propagation due to polarization, so it is reasonable to 
choose a component of the electric field parallel to the 
radiating elements [4]. 
 
A.  Waves in Unbounded Media 
 

When the spatial domain Ω is of odd dimension, Huygen’s 
principle ensures that there are well-defined wavefronts 
[3]. In an unbounded spatial domain, where 3Ω = \ , this 
is apparent from the Green’s function of equation (1), 
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The locus of points where ( ), , , 0G x tξ τ ≠ is called 
a “wavefront”. In general, the “wavefront set” shall be 
defined as 
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where G is the Green’s function relevant to the particular 
spatial geometry Ω. In unbounded media, the wavefront 
set does not change topologically with time; it is always 
spherical. 
 
B.  Reflecting Half-Space 
 

If an infinite, flat boundary is introduced, the method of 
images leads to a new Green’s function for equation (1), 

( ) ( ) ( )', , , , , , , , ,h u uG x t G x t G x tξ τ ξ τ ξ τ= −        (4) 

where 'ξ  is the image of ξ  reflected across the boundary. 
It is evident that the wavefront set of this Green’s function 
does not undergo topological change. Like the unbounded 
case, it is always topologically equivalent to a sphere. 
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C.  Diffraction and Topological Change 
 

Diffraction causes the topology of the wavefront set to 
change in the vicinity of convex boundary edges. The 
wavefront set is no longer confined to a thin surface once 
diffraction occurs, due to dispersion. The Uniform Theory 
of Diffraction (UTD) predicts that diffracted wave power 
falls off like t-3/2 at a given point (equation (16) of [5]). In 
light of this, it is reasonable to assume that the diffracted 
wave can be approximated by confining its power to the 
“leading edge” of the wavefront set. This removes the 
dispersive effects of diffraction, and makes diffracted 
waves easy to model with the wavefront approach. This 
approximation restricts the frequencies the model can 
accurately treat and introduces a small time delay error. 
Further, a scalar wave model ignores the polarization-
dependent effects of electromagnetic wave diffraction. To 
mitigate these concerns, frequency- and polarization-
specific diffraction coefficients must be chosen for the 
operating frequency and incident polarization. 
Alternatively, one may use empirical diffraction 
coefficients that explicitly ignore frequency, phase delay, 
and polarization [6]. 

Having motivated a non-dispersive scalar 
approximation for diffraction, we now look at how 
diffraction changes wavefront topology. Diffraction occurs 
when a wavefront crosses an edge in the boundary; 
wavefront points on one side of the edge are sent off at 
vastly different angles from those on the other side. The 
continuity of the wavefront is disrupted along such an 
edge, cutting the incident wavefront into two distinct 
pieces. This discontinuity is smoothed out by the 
introduction of a diffracted wave, as shown in Fig. 1. 
Using the UTD approximation, the edge begins to emit a 
diffracted wave when it is touched by an incident 
wavefront [5]. 

  

Fig. 1. An example of the topological changes of a 
wavefront: Waves near the left side of the room maintain 
their topology after being reflected at flat surfaces and 
concave corners. Waves at the convex corners (exit of the 
room) undergo a topology change as a distinct diffracted 
wave is created. 

III.  STORAGE OF TOPOLOGICAL 
INFORMATION 

 
In the wavefront launching model, the wavefront set is 
sampled both in space and in time, resulting in a collection 
of discrete points. A unit vector representing the motion of 
the wavefront is tied to each of these points and fills the 
same role as rays do in ray tracing or launching models. 
The topology of the wavefront is represented by 
maintaining links between adjacent points both in space 
and in time. This allows new points or rays to be 
interpolated anywhere in the wavefront set. 
 

A group of four wavefront points that form a link-
connected loop in space is called a “patch”. Two patches 
that are linked in the time dimension are called a “cube”. 
(See Fig. 2) It is often of interest to know if a wavefront 
crosses a particular point in space x over a given interval 
of time [t0, t1]: that is, if x belongs to the set 

( ) [ ]0 1, ,W t tξ τ ∩Ω× . This problem may be solved 
computationally by checking if the point of interest can be 
found in any of the wavefront’s cubes that are valid on the 
time interval of interest. This eliminates the problem of 
ray-catching, since the wavefront is interpolated rather 
than extrapolated to the point. Further, the incident power 
density at any point on the patch is easy to calculate: the 
wave power at the four points on the patch is smoothly 
distributed over the surface of the patch. 

 
  

Fig. 2.  Points, rays, and linkages of a “cube”. 
 
 

IV.  PROPAGATION OF THE WAVEFRONT 
 
The wavefront model generates the wavefront set by 
propagating snapshots of the wavefront at earlier times. It 
uses two previous snapshots (points, rays, and spatial 
linkages) Wi-1 and Wi to generate a new one Wi+1, where 
each Wn is valid over t ∈ [tn-1, tn]. Where rays do not cross 
a diffracting edge, they are propagated according to the 
usual rules of ray tracing. (See, for example, [1] or [2]) 

When a point on the wavefront comes near a 
diffracting edge, the wavefront model checks to see if any 
of the cubes containing that point intersect the edge. If so, 
then a new diffracted wavefront will be launched from that 
edge. The incident wavefront’s rays will be unaffected by 
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the diffracting edge, although the links of the incident 
wavefront will be broken along the edge. 

The structure of the diffracted wave is created from 
the incident wave by decomposing the patches incident on 
the edge. It is important to realize that a diffracted wave 
develops as different patches of the incident wavefront 
cross the edge at different times. It is important to allow 
these patches to duplicate points and rays along the edges 
if there is no explicit topological linkage between them. 
That way, the diffracted wave can form over several time 
steps. (This is not the most memory efficient approach, but 
it is simple and fast.) 

Once the patches for generating the diffracted wave 
are found, each one is used to create a family of diffracted 
wave patches. Since the diffracting edge generates the 
diffracted wave, the diffracted wave patches must be 
launched from that edge. The launch points are found by 
projecting each incident patch onto the edge. To simplify 
matters geometrically, the two points that are farthest apart 
are used as launch points for the diffracted patches. Then 
the rays are built by decomposing them into components. 
The ray component parallel to the edge is computed by 
projecting the incident ray onto the edge, 
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where v is the incident ray, and e is parallel to the edge. 
The components normal to the edge are built by the 

following formula, 
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where the parameter θ is controlled by 
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and the vectors t1 and t2 are normal to e and contained in 
the faces adjacent to the edge. Then the ray directions can 
be computed as,  
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Observe that by sweeping θ over the range of values 
specified in equation (7), a family of diffracted patches is 
generated for the incident patch. The diffracted wave 
power levels are then assigned to each point using UTD 
[5] or a similar approximation [6], and the diffracted wave 
topology is assembled using the topology induced by 
D(θ). 

 

V.  INSTRUMENTATION 
 
One of the most attractive features of ray models is that 
the impulse response of the channel is easy to compute 
[1]. From this, useful parameters such as the RMS delay 
spread can be extracted to yield predictions of coverage. 
The ray tracing, ray launching, and the wavefront 
launching methods sample the impulse response at given 
locations in space. The impulse response data contains 
wavefront arrival time, direction, and power density. The 
arrival direction allows the user to explore the use of 
directional antennas to cure multipath problems. 
 

VI.   RESULTS 
 
A.  Discussion of Images 
 

Figure 3 shows the results of this model on a two room 
geometry. Despite appearances, the model is three 
dimensional. There is a single source, which appears near 
the center of the left room. This source emits a uniformly 
distributed spherical wavefront, and so is a simple model 
of an acoustic source or a electrically small antenna. Each 
of the walls is perfectly reflective, and there is a 3 dB 
attenuating window in the middle of the hallway. The 
plots on the left side of the figure are peak power density 
plots, and those on the right are RMS delay spread. The 
left plots indicate the signal strength of the dominant path. 
The RMS delay spread plots give an indication of 
multipath. 
 

  

Fig. 3. (a) Relative power density (dB) without diffraction, 
(b) RMS delay spread (s) without diffraction,  and (c) 
Relative power density (dB) with diffraction, (d) RMS 
delay spread (s) with diffraction. 

 

(a) (b)

(c) (d) 
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The simulation was stopped after most of the signal 
had entered the right room, but before it reflected too 
many times. One can still see the wavefront structure in 
the upper half of the right room. It is evident that the 
diffracted waves contribute strongly to the multipath 
situation in the shadowed region of the right room. A 
strong diffracted wave reaches into the shadowed region 
well before the specular components from the incident 
wave. This results in a large delay spread, and would be 
problematic for wideband digital communications. Near 
the transmitter, the coherence bandwidth is roughly 16 
MHz. In the shadowed region, the coherence bandwidth 
drops to 6 MHz, which represents a 266 % loss in 
available bandwidth. 
 
B.  Discretization Problems 
 

The wavefront method avoids most discretization 
problems associated with ray launching, since it 
interpolates the wavefront between points on the 
wavefront set. However, discretization becomes evident 
when using a diffraction model, since diffracting edges cut 
apart incident wavefronts. If the wavefront is not sampled 
with enough points, these cuts will become jagged. This 
leaves gaps between the diffracted wavefront and the 
incident wavefront, which result in lost impulse response 
data. Some of these gaps can be seen in the lower plots of 
Fig. 3, where they look a little like streaky noise. The best 
solution for this problem is to resample incident 
wavefronts along a diffracting edge so that the cuts do not 
become jagged. 
 

VII.   FUTURE WORK 
 
A.  Ray Resampling 
 

Like all numerical solvers for the wave equation, the 
wavefront model loses accuracy after a long period of 
simulation. This occurs when adjacent points become 
quite far apart. The wavefront set gradually becomes 
poorly sampled, and interpolating points on it is likely to 
be inaccurate. It seems that this problem could be 
alleviated by interpolating new points and rays onto the 
surface of the wavefront as time elapses. This would help 
avoid the discretization that appears in the diffraction 
results, and would also yield more accurate power density 
calculations. 
 
B.  Vector-Wave Models 
 

The model presented here is a scalar model, which is 
assumed to be a good approximation of electromagnetic 
phenomena even though electromagnetic waves are 
polarized. The reflection and diffraction coefficients of 
many materials respond differently to waves of different 
polarization, so a vector wave formulation would allow 
the wavefront model to handle these sorts of materials. 
 
 
 

VIII.   CONCLUSIONS 
 
Maintaining the topology of the wavefront allows for a 
simpler time-domain wave propagation model that is free 
from the problems associated with ray catching. Using 
interpolation over the surface of the wavefront, this model 
naturally incorporates diffracted waves and power density 
changes from beam spreading. The measurable quantities 
are automatically power densities, which do not need to be 
weighted by ray counts. It is also possible that this model 
can compensate for errors associated with discretization of 
the signal into rays, by carefully interpolating them over 
the wavefront. However, this particular aspect of the 
model has not been investigated. 
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