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Abstract— Electrical machines are complex objects.
‘We have found that a variety of numerical techniques
are required in order to model them using finite ele-
ments. We concentrate here on the different formula-
tions which are useful in modelling such devices. Ex-
amples of modelling some of these machines using the
MEGA package are described.

INTRODUCTION

Many electrical machines and other electromagnetic de-
vices can be difficult to model using finite elements. They
can contain features such as magnetic nonlinearity, move-
ment, geometric complexity and connection to an exter-
nal circuit. Here we describe some features of a general
purpose finite element package MEGA which allows some
of the less pathological problems to be treated. First we
review the formulations used in the finite elernent models.

Fmnrre ELEMENT FORMULATIONS

The non conducting and conducting regions are mod-
elled using the magnetic scalar potential, ¢, and the mag-
netic vector potential, A, respectively. This approach
leads to an economic description of the field problem.

Nen Conducting Regions

Non conducting regions are modelled using magnetic
scalar potentials, either the total scalar ¥ ,defined as
Hy = -V, or the reduced scalar ¢, defined as Hr =
—V¢+Hs. Here Hy is the total magnetic field intensity
and Hg is the field defined as VxHg = Jg, where Jg is
the source current density. The basic method outlined in
[1] has been extended to allow voltage forced conditions
[2], and to produce cuts for solving multiply connected
problems. Both scalars give rise to a Laplacian type equa-
tion which has to be solved:

V'ﬂvw =0 (1)

Conducting Regions Including the Minkowski Transforma-
iton

Fields in conductors can be modelied using A , the mag-
netic vector potential, and V', the electric scalar potential.
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Using B = VxA and E = —22 — UV 4 u x VxA,
where u is the material velocity, we obtain:

VlexAza(—a—A—+uxVxA—VV) (2)
Iz ot ‘

Vo (%A-—ux VxA+VV) =0 (3)
The term involving u x Vx A in the above arises from the
Minkowski transformation and is only valid if the mov-
ing media cross section normal to the direction of motion
is invariant. Where appropriate {3], it is economical to
dispense with V from the above set of equations. If we
substitute 1V = A - u in the above formulation we have:

Vx—l-VxA. =
I
o (—%A —(u-V)A—(A-V)u—Ax (qu)) (4)

Now a solution of (4) involving only A is required.

The uniqueness of A is fixed by using a penalty term
to specify the divergence of A and forcing the normal
component of A to be zero on the inside surface of con-
ductors. The last two terms in (4) are non zero in the
case of rotational velocity [4] but are zero in the case of
translational velocity [5]. Equations (1) and (4) are solved
using a Galerkin finite element scheme [6]. If nonlinear,
the equations are solved using a Newton-Raphson scheme.
"This scheme can be very unstable if used directly. A mod-
ified scheme which uses line searches has been found to be
necessary in the general case [7]. The terms involving u
in (4) lead to numerical instability. This is alieviated by
using an upwinding scheme [8]. The scheme here allows
for a conductor moving at a velocity u, and leads to an
asymmetric global matrix which has to be solved. The
non moving case is of course symmetric.

Electrostatic Problems

Electrostatics problems may sometimes be formulated
in terms of the electric scalar potential V, so that

E=-VV (5)



Since
v-D=p, (6)
we obtain the Laplacian in V:
~VeVV=p (7)

As usual this may be solved using a Galerkin technique
and either 2D or 3D finite elements. After some manipu-
lation, this results in, for a 3D system:

/VN-eVVdQ—jNe%%dS:/diQ (8)
[+ 1)

Note that this formulation results in an exact enforce-
ment of the E x n continuous condition and that the D-n
condition is weakly correct.

COMBINING THE FIELD AND CIRCUIT EQUATIONS

Elecirical machines are almost always connected to a
fixed voltage supply or an electrical circuit such as an
inverter. Unfortunately many finite element packages only
allow constant current sources. Often a finite element
model is used to derive a simpler equivalent circuit which
may be connected to the external circuit.

In some situations it is not possible to use the finite
element field model to derive an equivalent cirenit. For
example if the field equations are nonlinear then the equiv-
alent circuit would have to be identified for all possible
field states, which is not practical. It is possible in some
circumstances to use a separate field and circuit model
and iterate until the interface conditions are met. This
may work if the field and circuit are loosely coupled but
for the tightly coupled case a combined solution is at-
tractive. Ancther advantage of the tightly coupled finite
element /circuit model is that the user interface is easier
to deal with, as the complexity of the situation is handled
in the software. This means that as far as the designer is
concerned, the computer model is conceptually very easy
to visualise and hopefully very similar to just wiring up
an experiment in the laboratory.

The general problem is to combine the field equations
in terms of potentials with circuit node equations. In
our scheme we use various field formulations for 2D and
3D. In the circuit problem we solve for nodal voltages
using Kirchoff’s current equations at each node. To couple
the two models we must identify the voltage and current
within the field equations. These can then be used directly
in Kirchoff’s circuit equations.

The field equations fall into two forms depending on the
formulation,

e Current is the source term:

£ 51(7)-(3) o

¢ Voltage is the source term:

v (1) =(0)

ExXaMPLE oF A 2D MOTOR

(10)

Consider a 2D model with coils of a given turns density.

s Each wound coil has a known current distribution
(but unknown value I.).

e The turns densily tdefines the distribution of current.

e Then current density is

J =1t (11}

e The voltage across the terminals is found by integrat-
ing the back e.mn.f.

V:Ijt-AdS (12)
The equations to be solved are,
1 8A,
—V-;VAZ +c 5% tleor = 0 (13)

ataiz dS-V = 0 (14)

After applying the usual Galerkin procedure we get a
set of equations that can be expressed in matrix form,

K W A 0
[wr ’ (Ic)=(V)=O (15)
If this is connected to ports A and B, we have:
K W 00 A 0
wl 0 -11 I 0
0 -1 ool wva |z |=0 0O
0 1 00 Ve Ip

3D MODEL OF A CAR ALTERNATOR

The car alternator can be difficult to model because of
its complex shape. Figure 1 shows a 3D finite element
model of a typical claw-pole type car alternator. It has
12 rotor poles and 36 stator slots. It is difficult to model
because the features of its rotor and stator are so different
both circumferentially and axially that the finite element
meshes at the interface between these objects will be to-
tally incompatible. As a result, creating a sensible mesh
in the air gap will be difficult.
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To overcome this meshing difficulty, we create separate
meshes for the stator and rotor and then bring them to-
gether to touch in the middle of the air gap. The two
meshes are then coupled together by linking their poten-
tial variables on the interface using Lagrange multipliers.
The main advantage of this approach is that the nodes of
the two meshes do not need to be ‘matched’ on the inter-
face. As a result, the individual meshes can be made to
be as well-formed as possible.

This method is used to solve the FE model shown in
Fig. 1. Due to symmetry, only one-twelveth of the whole
alternator is modelled. The resulting vector plot of B
near the tip of one of the rotor pole is shown in Fig. 2.
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Fig. 2. Field vectors near the rotor pole tip

AN ELECTROSTATIC MICRO MACHINE

Often electrostatic devices move or rotate and finite ele-
ment solutions would be required at many positions. This
may be achieved using Lagrange multipliers in much the
same way as for magnetics formulations [9]. If a region is
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split up into two meshes which have some common inter-
face which will allow relative movement, such as a cylin-
der or a flat plane, equations such as (8) may be used
in each mesh. These meshes would still be disconnected
and the natural boundary condition would prevail on the
common interface. The meshes can be joined using La-
grange multipliers. The condition that V is continuous
may be enforced at the common interface using Lagrange
multipliers. The Lagrange multipliers may be identified

with — so that, as before, the D -n continuous condition

is wea.kTy satisfied and the continuity of V and therefore
E x n is correct in an average sense. The two meshes need
not have the same mesh at the cornmon interface, nor the
same number of nodes.

Figure 3 shows a small electrostatic machine, diameter
15 x 10~%m. The torque versus position curve is of some
interest to designers of such machines. The Lagrange slid-
ing interface method is used to solve the problem with the
rotor in 12 different positions, as shown in Fig. 4. This is
achieved with very little user effort.
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Fig. 3. A micro machine

PERIODIC BOUNDARY CONDITIONS

Often symmetry may be used to reduce the size of a
finite element model. This section deals with another type
of feature, periodicity. This is a function of the shape of
the device and the state of the fields within it.

One of the earliest references to periodic boundary con-
ditions may be found in [10], so the concept is well estab-
lished. However, all of the published work up to now
(as far as the authors know) deals with scalar variables.
When solving 3D eddy current problems, vector variables
are required, at least in conducting regions. These are
slightly mote complex and are described here.

If periodic boundary conditions exist on some parts of a
device, a relationship between some potentials on bound-
aries is implied, of the following form:
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Fig. 4. Torque versus rotor angle for a micro machine

slavevariable = P x mastervariable

(17)

In this case the slave variables depend on the master
variables. Only the master variables appear as degrees of
freedom in the final set of equations. In the general case,
for a vector variable at a periodic node, we can relate the
slave variable to the master variable using a transforma-
tion matrix and a periodic parameter.

Az | . I:r.‘y I::z A;
Ay =P| s by I Ay (18)
Az siave I"“t Izy Izz z masier

";[’alave = P¥master (19)

The transformation matrix shown in (18) ‘rotates’ the
slave vector so that the components of slave and master
are aligned. This is more fully explained in [11]. The P
in the above is the periodic parameter.

In general, the information required for establishing the
periodic constraints in a typical electrical machine model
are the location of the axis of rotational symmetry, a de-
fined master-slave boundary, and the degrees of mechan-
ical (M) and electrical (£) rotation. In the case of time
transient or magnetostatic problems (P) the periodic pa-
rameter would normally be equal to cos E, where E would
be 0 or 180 degrees. For linear time harmonic problems
where complex numbers are used, P could be complex.

If the axis of mechanical symmetry is, for example, the
z-axis, the potentials at the slave nodes are related to
those of the master nodes in the following way:

Ar cosM —sinM 0 A
A,y =cosE | sinM cosM 0 Ay
Az siave 0 0 1 A; master
(20)
VYslave = (COS E)¢maater (21)

A PERIODIC TEST PROBLEM

The device to be modelled is a purpose built test rig,
having the basic configuration of a switched reluctance
machine. All iron parts are solid so that we have a 3D
nonlinear eddy current problem. A full model of the test
rig is shown in Fig. 5. A detailed description is presented
in [7]. The purpose of the experiment is to use the finite
element method to simulate the behaviour of the time-
transient torque when a step voltage is applied to the
system, and to validate these predicted results against
measurement.
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Fig. 5. Full model of the test rig

When using a full model of the test rig, which does not
take advantage of the periodic boundary conditions, sat-
isfactory correlation can be obtained between predicted
and measured results. The discrepancy is less than 2% at
a near-stabilized current. However, this problem is com-
putationally expensive to solve, in both time and space.
The file containing the results at each time step requires
approximately 1.5 GBytes of disk space. In order to re-
duce the computational demands, periodicity constraints
are implemented in the finite element software package,
MEGA, and a new model, half the size, is constructed.

Only one half of the device width need be modelled for
reason of symmetry. Further symmetry simplification is
not possible because of the unaligned position of the rotor
with respect to the stator pole. However a periodic model,
shown in Fig. 6, can be constructed, containing only one
of the coils and a periodic boundary.

The rig is excited from a constant voltage supply. A
step voltage of 23.14V is applied to the coils which have a
total resistance of 3.09Q [7]. The coil currents are there-
fore unknowns in the system and must be calculated. This
is carried out using the techniques described in the first
section.
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Fig. 8. A view of the periodic model mesh

Results

A preliminary validation of the periodic model is carried
out using a lmm-thick slice of the original model. The
periodic and non periodic 3D slice models yield identical
torque curves, as may be observed in Fig. 7. However,
since the periodic model contains only half the number of
nodes compared to the non periodic one, the answer file
containing all the time-step results is also decreased by the
same factor (35 MBytes vs 7T0MBytes). The solving time
on a DEC ALPHA model 3000 workstation has reduced
from 6 hours to 2.4 hours, a saving of approximately 60%.
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Fig. 7. Comparison of measured and calculated torque

Full periodic and nonperiodic models were then con-
structed. Both of these torque curves agree very well with
each other, as is shown in Fig. 7. The agreement with
experimental results is also quite good. At 0.18s, the last
computed time shown on the curve, the full 3D model
predictions agree with experimental results to within 3%.
Results from the slice models, which are essentially 2D,
are of course less accurate. Here the agreement with mea-
surement is approximately 14% at 0.16s.
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CONCLUSIONS

Some of the techniques which can help in modelling
electrical machines using finite elements have been pre-
sented. The sliding interface technique allows a machine
to rotate in a realistic manner, while connected to an ex-
ternal circuit. The use of periodic boundary conditions
can sometimes yield a more economic solution. Despite
many recent developments around the world, electrical
machines still present some difficult challenges for the
modeller.
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