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ABSTRACT. This paper describes the paral-
lelization of the method of moments and hybrid
code FEKO for execution on massively parallel
supercomputers with a distributed memory as
well as on clusters of connected workstations. The
parallel implementation of the different phases of
the solution process, e.g. matrix fill, solution of
the systemn of linear equations, and near- and far—
field computation is discussed in detail. Several
results for different applications are given and the
achieved performance is presented.

1 Introduction

The method of moments (MoM) originally developed by
Harrington in 1968 [1] remains a very popular technique
for solving numerous electromagnetic radiation and scat-
tering problems involving metallic or dielectric scattering
bodies.

As compared with other numerical techniques such as
the finite difference (FDTD) or finite element method
(FEM), the main advantage lies with the fact that for
most MoM formulations only boundaries must be dis-
cretized, i.e. instead of a three—dimensional discretiza-
tion for FDTD or FEM and other techniques, only a
two—dimensional discretization of boundaries is neces-
sary for 3D problems. Thus the number of unknowns
for the MoM is usually a magnitude smaller when com-
pared to FDTD or FEM. However, the matrix is not
sparse but dense so the memory requirement is rather
critical, especially for higher frequencies.

In this paper, we consider the computer code FEKO,
which has been developed at the University of Stuttgart
and represents a rather comprehensive MoM and hybrid
implementation. FEKQ has been adapted such that it
is capable of executing in parallel on massively paral-
lel supercomputers as well as on clusters of connected
workstations with a large distributed memory. In such a
distributed memory environment, every node (e.g. work-
station) has its own local memory which is not accessi-

ble by the other nodes as opposed to the shared memory
concept where all processes have access to a global bank
of memory. The terms node, processor, or processing
element (PE) are used interchangeably in the following.

A general overview of parallel processing techniques in
the area of computational electromagnetics (CEM) can
be found in [2, 3]. The parallel FEM is described in [4, 5]
and a parallel implementation of FDTD is presented in
[6]. Asymptotic high frequency methods are considered
in [7, 8]. Several authors have already described a par-
allel MoM formulation [9, 10, 11, 12, 13, 14, 15], but
in this paper we put special emphasis also on achiev-
ing reasonable performance on heterogeneous clusters of
workstations by implementing a dynamic load balancing
scheme. FEKO also offers some hybrid extensions for
higher frequencies and special geometries, and the par-
allelization of these parts is also considered. The hybrid
extensions allow a reduction of the matrix size, so for the
hybrid techniques high performance computing (HPC) is
mainly used to reduce the computation time. Only when
the conventional MoM is applied (e.g. for validation of
the hybrid results), we quite often face problems with
up to 40000 unknowns or even more, and then HPC is a
must.

QOur parallel implementation of FEKO is based on the
Message~-Passing Interface (MPI) standard [16], to which
an excellent introduction can be found in [17]. Alterna-
tively PVM (Parallel Virtual Machine) might be used
as well. For massively parallel supercomputers (the re-
sults in this paper were obtained on an Intel Paragon
and 2 CRAY T3E) the MPI functions and subroutines
are usually provided in an optimized library by the man-
ufacturer. But especially for clusters of connected work-
stations some public domain implementations are also
available. We have compared MPICH [18] and LAM
(Local Area Multicomputer). MPICH was chosen for per-
formance and compatibility reasons.

The general structure of FEKO including the hybrid ex-
tensions is presented in Section 2. Section 3 describes
in detail the parallelization of the different phases of the
solution process for the MoM part of FEKO, while Sec-
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tion 4 deals with the parallelization of the hybrid exten-
sions. Finally, some results demonstrating the perfor-
mance of the parallel implementation are presented in
Section 5.

2 General structure of the sequential ver-
sion of FEKO

2.1 Conventional MoM
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Fig. 1: Simplified structure of the MoM part of FEKO.

The simplified flow chart of the MoM part of FEXO is
shown in Fig. 1. Some additional blocks must be in-
cluded when considering hybrid extensions as described
in Section 2.2.

The first block in Fig. 1 entitled geometry setup includes
the allocation of memory, reading the geometrical data
from an input file, the setup of the geometry and some
optional error checks.

After this, the system matrix A is computed. Let N
be the number of unknowns, then the CPU-time re-
quirement for this phase is proportional to N2, After
the computation of the elements of the right~hand side
(RHS) vector 7, the system of linear equations AT =7
can be solved resulting in the current vector &. For very
large matrices this step dominates the CPU time since
there is an N2 dependency. Once the currents are known,
near- and far—fields can be computed. Several loops are
possible as indicated in Fig. 1 by the dashed arrows.

The computer code FEKO supports metallic surfaces
and wires as well as dielectric bodies. For the latter,
two different forrmulations based on the surface and vol-
ume equivalence principle, respectively, have been irple-
mented. Different basis functions f,i are involved:

e Linear roof-top basis functions f! according to
Rao, Wilton and Glisson [19] defined on flat tri-
angular patches are used for metallic surfaces.
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o Along metallic wires, overlapping triangular basis
functions f,? are employed to represent the line cur-
rent.

s Special basis functions f;.? are required to model
a current flow from metallic wires to surfaces at
attachment points.

e An application of the surface equivalence principle
to homogeneous dielectric scattering bodies leads
to equivalent electric and magnetic surface current
densities J and M, respectively. Similar to metallic
scattering problems, the surface of dielectric bodies
are also subdivided into electrically small triangu-
lar patches. Basis functions f* identical to f,! are
used to represent J, and for the magnetic surface
current M a new set of vectorial basis functions f5
have been developed in Ref. [20].

e For inhomogeneous dielectric bodies the volume
equivalence principle can be used in FEKO. The
dielectric volume is subdivided into non-uniform
cuboidal cells and within each cell three pulse ba-
sis functions f,° and three pulse basis functions i

« are employed in the three coordinate directions.
f% represents the equivalent electric volume cur-
rent density and is required only for regions where
the permittivity € is not identical to the free space
permittivity 0. The magnetic current is expanded
into basis functions f,:’ , and these basis functions
are required only when u # pio-

In addition to these 7 different basis functions f7, i =
1...7, corresponding weighting functions @, must be
defined in order to convert the set of coupled integral
equations into a system of linear equations. In general,

we use the Galerkin procedure with @), = fr.

Fig. 2 shows the general structure of the MoM matrix
A. The 7 x T sub-matrices A;; associated with the com-
binations of basis functions fJ and weighting functions
Wi can easily be identified. Note, however, that usu-
ally for an application to general radiation and scatter-
ing problems only some of these sub-matrices will be
present. For most of the metallic problems, the sub-
matrix Aj; will be dominant in size, i.e. N1 > Nz, N3,
a.ndN4=N5=N5=N7=0.

2.2 Hybrid extensions

FEKO is not only a pure MoM code, but includes some
hybrid features allowing an efficient application also to
high-frequency problems. The general idea is to reduce
the number of unknowns N by applying a coupling of
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Fig. 3: Hybrid method combining MoM, PO and UTD.
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the MoM with high—frequency techniques such as Phys-
ical Optics (PO} with correction terms [21, 22, 23], Fock
currents [24], or diffraction theory (UTD) [25]. The dif-
ferent coupling mechanisms are illustrated in Fig. 3.

Some examples considered in the references cited above
demonstrate the drastic reduction of memory require-
ment of the hybrid technique as compared to an applica-
tion of the MoM alone. There are, of course, some addi-
tional computations introduced by the coupling mecha-
nisms depicted in Fig. 3, so that the flow chart of FEKO
in Fig. 1 becomes more complicated, nevertheless there
is also a considerable reduction in the CPU-time achiev-
able.

Another hybrid extension of FEKO is the possible re-
placement of the free—space Green’s function by a spe-
cial Green’s function for a homogeneous, layered dielec-
tric sphere [26]. This technique can be used to optimize
the performance of mobile telecommunications antennas
radiating close to the operator’s head. Only the antenna

structure with the case must be discretized, hence the
number of unknowns N can be kept relatively small.

3 Parallel implementation of the MoM
in FEKO

3.1 Geometry setup

As briefly described in Section 2.1, the part of this phase
of the solution process consuming the most time is the
search for connected wires or edges between triangular
patches or connections between wires and surface ele-
ments etc. Some acceleration techmiques such as the
spatial partitioning technique borrowed from computer
graphics [27] together with boxing algorithms have been
implemented in order to avoid, for example, the compar-
ison of two triangular patches which are located far away.
Hence, for large structures, the CPU time spent in this
phase is rather small when compared to the matrix fill,
matrix solve and field calculations. Therefore, after the
allocation of memory (parallel by all processes), the in-
put file is read only by one process. After setting up the
geometry, the data are sent to all other processes using
the MPI_TYPE_STRUCT, MPI_TYPE_COMMIT, MPI_BCAST
and the MPI_TYPE_FREE subroutines. Using these sub-
routines enables us to send whole Fortran COMMON
blocks which is much more efficient than sending single
variables or arrays.

As an option it has also been implemented to preprocess
the geometry on a PC or workstation. The connection
information and other computed data are written to a
file, which can be read later by the parallel job together
with the original input file.

3.2 Matrix fill

When trying to parallelize the setup of the matrix, i.e.
the computation of matrix elements aymy, m,n=1... N
with N = ELI N; (see Fig. 2), special care must be
taken in order to preserve the advantages of a possible
symmetry of the structure or of some efficient matrix fill
techniques. Exploiting symmetry allows to reduce the
number of unknowns from N to a smaller value N. If the
available main memory permits, then in a first step an
N x N matrix is constructed which is later compressed to
a square N x N matrix. The advantage of this procedure
is that we can use some symmetry relations between the
matrix elements in a row to further reduce the CPU-
time. However, if not enough main memory is available
for the N x N matrix, it is also possible to directly use



only an NxN array at the expense of a slightly increased
CPU-time.

Different storage schemes for dense matrices, to the effect
that the partitions can be assigned to different proces-
sors, are described e.g. in [28, Section 5]. When exploit-
ing symmetry, when using efficient matrix fill techniques,
or when using hybrid techniques where a modification of
the matrix elements is necessary because of the coupling
between MoM- and asymptotic region, it is is highly ad-
vantageous to keep a whole row of the matrix on one
node. N
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Fig. 4: Distributed storage scheme of the N x N matrix on p
nodes (the numbers in the blocks indicate the nodes).

Hence, for a parallel computation and a distributed stor-
age of the elements amn, the resulting rectangular ma-
trix with N rows and N columns is split among the
p processors according to Fig. 4 in a one-dimensional
block-cyclic row distribution. One square block con-
sists of Ng x Np elements with a block size in the range
1 < Np < [£] (the notation {z] represents the small-
est integer value that is greater than or equal to z), see
below (especially Fig. 10) for some considerations con-
cerning an optimal choice of Ng.

The CPU time required for the computation of a single
matrix element differs over a wide range by a factor of
about 10 or even more, since various adaptive integra-
tion and testing schemes are applied depending on the
distance |7 — | of source and observation point 7 and 7,
respectively. Also in some cases when ' is located within
the integration domain or very close to it, singular or
quasi singular integrals are evaluated analytically. But
on average, the time required to compute an element amn
of the sub-matrix A;; (see Fig. 2) on an IBM RS 6000
workstation is in the range of 120...250 us. Experience
has shown that the CPU time to compute the matrix el-
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ements in different blocks of Ny rows and N columns of
the sub-matrix A;; is about the same (averaging effect).

However, we cannot expect this any more when differ-
ent sub-matrices are involved. For a matrix row with
weighting functions .}, (sub-matrices A;;) the required
CPU-time is most likely not equal to the CPU-time
for a matrix row with different weighting functions w7,
j = 2...7. To overcome this problem, we have in-
troduced a special mapping function allowing us to ex-
change matrix rows when the original matrix according
to Fig. 2 is mapped to the matrix underlying the distrib-
uted storage scheme in Fig. 4. The mapping function is
constructed so that each node contains about the same
number of rows from all the sub-matrices, see Section 5
for an example (Figs. 12 and 13).

Another possible drawback of the described parallel ma-
trix filling technique is that it is not very easy to imple-
ment a dynamic load balancing scheme. In the startup
phase of the parallel version of FEKO, when the values
of N, N and the number of nodes p is known, a suit-
able block size Ng is selected and remains fixed. On
a cluster of connected workstations, where the different
processors are not exclusively assigned to a certain user,
it might happen, that during the computation of the ma-
trix elements another user starts some jobs on one of the
workstations and, consequently, the parallel job on this
node takes much longer than on the other workstations.
There is currently no way to react to this situation, i.e.
the other nodes have to wait (barrier) until the slowest
machine has also finished its calculations. We have some
ideas on how to overcome this problem, e.g. the faster
nodes calculate some more matrix elements which were
initially assigned to the slower machine and will then
send them as a whole block to the slower machine. But
this extension has not yet been implemented.

Note that this problem does not exist on massively par-
allel supercomputers where the different PEs are all of
the same speed and the nodes are exclusively assigned
to one single process. There are only some small differ-
ences in the required CPU—time on the different nodes
due to the fact that we use adaptive integration tech-
niques with a variable number of integration points or
that the elements of the different sub-matrices A;; are
based on different equations, see Figs. 11, 12 and 13 be-
low in Section 5 for some performance results.

3.3 Solution of the system of linear equa-
tions

A review of parallel matrix solvers for CEM applications
is given in [29], the paper [30] concentrates on a parallel
LU algorithm.
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As already mentioned in the introduction, the whole par-
allelization of FEKO is based on the MPI standard. Sev-
eral portable linear algebra packages based on MPI exist
and their suitability has been compared.

PIM [31] provides iterative solvers such as CG, BiCG,
BiCGStab, QMR, or GMRES. However, convergence
studies with the sequential version of FEKQ have shown
that convergence is only satisfactory for some dielectric
structures treated with the volume equivalence princi-
ple (sub-matrices Agg, Ag7, Are, Arr in Fig. 2). For
metallic structures, which in contrast to the Fredholm
integral equation of the second kind for these dielectric
problems is based on a Fredholm integral equation of the
first kind (EFIE), convergence is rather poor. However,
some recent publications (e.g. [32, 33, 34]) show, that
by using suitable preconditioners the convergence of the
above mentioned iterative schemes can be improved sig-
nificantly.

B8
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: § . .
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Fig. 5: Performance of the LU factorization on the CRAY
T3E using ScaLAPACK (data from [35]).

2 NP
Fig. 6: Call graph of the main program FEKO and the k-
braries.

Quite often we are also interested in a solution for mul-
tiple right hand sides  (loop indicated by the dashed
arrow in Fig. 1), therefore an LU factorization with sub-
sequent back—substitution is preferred here.

One possible candidate for the solution of the system of

linear equations might be PETSc [36], but motivated by
the performance of ScaLAPACK (37, 38, 39] (see Fig. 5
and Refs. [38, 35] for more performance details) we chose
the latter package, which is the parallel and distributed
memory version of LAPACK [40]. According to the call
graph in Fig. 6, ScaLAPACK requires the BLAS library,
its parallel version PBLAS [41] as well as BLACS [42].
Besides the MPI calls in FEKO to the MPI library (e.g.
MPICH on our workstation cluster), there are also di-
rect calls to BLACS and ScalLAPACK subroutines. In
ScaLAPACK, we use the subroutine PZGETRF to perform
the LU factorization of the matrix A, PZGECON to get an
estimate of its condition number, and PZGETRS to obtain
the solution by back-substitution.

At the end of 1997 an alternative to ScaLAPACK became
available. The PLAPACK [43] code ¢laims to outperform
ScaLAPACK for larger problem sizes, we are currently
investigating this package as well.
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It was already mentioned above and will again be shown
below (see Fig. 10) that the block size Ng is a very im-
portant parameter for an efficient matrix fill. However,
also the CPU-time required for the sclution of the sys-
tem of linear equations depends on Ng (see Fig. 7 for a
typical relation we found from experiments).

3.4 Parallel field computation

Normally, when the conventional MoM is applied to elec-
trically large structures, the CPU times for matrix fill
and solving the system of linear equations are dominant
(proportional to N2 and N2, respectively). The time re-
quired to compute electric and magnetic near~ and far-
fields, which is proportional to NV and tc the number of
observation points, remains relatively small in this case.

However, with the hybrid extensions as described in Sec-
tion 2.2, we are able to reduce N drastically, so that
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Fig. 8 CPU time requirement for the different phases of the
solution process for an analysis of a mobile telephone
radiating close to the human head (special Green's
functicn).

the time required to compute the fields might become
dominant. This is illustrated in Fig. 8, where the rel-
ative CPU-time for the different phases of the solution
process is given for an analysis of a mobile telephone
radiating at a frequency of 900 MHz close to the hu-
man head. The free-space Green’s function has been
replaced by the Green’s function for a layered dielectric
sphere [26]. One plane of symmetry was used, so that
the N; = 189, N> = 5 and N3 = 6 basis functions lead
to N = 99 unknowns. The near—field was computed in-
side the head in two planes (E is required for the specific
absorption rate SAR), and the far—field was calculated
on a spherical surface with 36 x 72 observation points in
order to compute the radiated power.

A master/server concept was chosen for the paralleliza-
tion, which allows an almost perfect dynamic load bal-
ancing: The master process distributes the tasks to the
remaining p — 1 server processes, which compute the
near— or far—field. As soon as one server process has
finished its calculation, it reports the result back to the
master process. By this message, the master process is
notified that the server process is ready and the mas-
ter sends the coordinates of another observation point 7
to the server process. By this method, it is guaranteed
that the server processes are always busy with numeri-
cal computations, i.e. server processes running on faster
workstations don’t have to wait for other processes run-
ning on slower machines.

Some possible drawbacks of this method are:

e The master process has to buffer the results it
receives from the server processes before writing
them to the output file, because the order how the
results are received may be quite arbitrary. In the
output file, however, the results shall be printed in
the correct order specified by the user, e.g. with
increasing ¢ when the field strength is computed
along the z-axis.
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e From p processes only p — 1 are actually involved
in the calculation. However, the loss of efficiency
by a factor of 21 is small for large values of p.
Also on clusters of connected workstations we usu-
ally start the master and one server process on the
same workstation, so that p processes are running
on p — 1 workstations and all processors of these
workstations are involved in the field calculation.

4 Parallelization of the hybrid extensions

The hybrid extensions by PO and UTD, as briefly sum-
marized in Section 2.2, lead to a drastically reduced
size of the matrix. The main changes concerning the
parallelization as compared to the conventional MoM
are that during the calculation of the matrix elements
Grmr all the coupling effects between the different regions
{(MoM/PO/UTD) as indicated in Fig. 3 have to be taken
into account. Therefore, with reference to the total solu-
tion time, the matrix filling remains relatively time con-
suming. The time for the matrix solve, however, becomes
negligible for most applications.

For the matrix we keep the one—dimensional block-cyclic
row distribution scheme, so that an entire row of the
matrix resides on a node. After computing the MoM
interaction, the modification due to PO or UTD can be
performed locally on this node without any communica-
tion, since we keep the required geometry information
for ray-tracing etc. on each node.

Especially concerning the coupling of MoM with UTD,
the time for near— or far-field computations might be
dominant for complex geometries with many surfaces
and edges, since for every observation point ray—tracing
must be performed in order to find possible ray paths
with reflections and diffractions between source and ob-
servation point. The parallelization of the field computa-
tion as described in Section 3.4 can be applied without
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Fig. 9: Model of an aircraft consisting of 1256 triangular
patches and 36 wire elements.



any modification to the MoM/UTD hybrid method as
well. The implemented dynamic load balancing scheme
is very important in this case, since for different locations
of the observation point the number of ray paths might
vary from zero to several hundreds or even thousands
for complex geometries, which is also reflected in large
variations of the required CPU-time for the ray—tracing
procedure and the subsequent field computation.

5 Examples and parallel performance

For benchmarking purposes, the simple model of an air-
craft as shown in Fig. 9 was used. The structure is ex-
cited by 3 small monopole antennas on top of the fuse-
lage. The coupling between the antennas was of inter-
est, but the far—field radiation pattern and the near—field
were computed as well. The model consists of 1256 trian-
gular patches and 36 wire elements, leading to N1 = 1850
rooftop basis functions fn on triangular patches, N» =
33 basis functions f2 on wire elements, and N3 = 20
basis functions f:f at connection points. There is one
plane of symmetry, so that the total number of N =
Ny + N2 + N3z = 1903 unknowns can be reduced to
N =975 (N, =940, N; = 22, and N3 = 13).
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Fig. 10: Theoretical efficiency for the matrix filling process

on p = 6 nodes with IV = 975 rows as a function of

the block size Ng.

For the first investigation, we used p = 6 nodes on an
Intel Paragon. The matrix with N = 975 rows and
N = 1903 columns is distributed among the PEs ac-
cording to Fig. 4 with a block size Np in the range
1 < Np < [&] = 163. If Np = 163 is selected, the
first 5 nodes have 163 rows of the matrix each, while the
last process stores only the remaining 160 rows. This
means that during matrix fill the last process has to wait
3T where T denotes the time to compute a matrix row
{(here we assume that the time T is the same for all the
matrix rows). The theoretical efficiency based on the
fact that some processes have to wait for others to finish
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the computations is then

5-163-7+1-160-T 975
6-163-T ~ 6-163
{communication times ete. have been neglected). How-
ever, a block size of for instance Ng = 140 results in
7 blocks (6 blocks with 140 rows on nodes 1...6 and
1 last block with 135 rows on node 1). The theoretical
efficiency is then much lower, namely

1-275-T+5-140-T 975

6-275-T T 6-275
The dependency of this theoretical efficiency on the block
size Np is plotted in Fig. 10. For our example here,
useful block sizes are 163, 82,55,41, 33,27, .... From this
set the final choice is made automatically so that we
expect the matrix solve to be most efficient {based on
experiences on the different target machines, see Fig. 7).
For the following investigations the maximum block size
Ng = 163 is selected.

Fig. 11 shows the time required to compute the matrix
elements on each of the 6 nodes. As already mentioned
in Section 3.2, the CPU time required to compute a sin-
gle matrix element a,,, differs over a wide range, since
some of the integrals contain singularities whilst oth-
ers are evaiuated numerically with adaptive integration

=99.69%

= 59.09%.
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Fig. 11: Run—time for the matrix fill on the different nodes
for p = 6 processes (without using the efficient fill
technique), N

= 975, N = 1903.
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Fig. 12: Run-time for matrix fill on the different nodes for
p = 6 processes (using the efficient fill technique but
no mapping function), N = 975, N = 1903.



1 221,17
2 1847
23 213,51
g 4 209,05
5 213,84
8 211,34
0 50 100 150 200 250 300

run-time matti fill in seconds
Fig. 13: Run-time for the matrix fill on the different nodes
for p = 6 processes ‘(using the efficient fill technique
and a special mapping function to interchange ma-
trix rows), N = 975, N = 1903.

schemes. But it can be seen from Fig. 11 that on average
all the 6 processes take about the same time to compute
the matrix elements. The difference is only in the range
of a few percent.

If, however, the efficient matrix fill technique is used,
the situation changes as shown in Fig. 12. Of course
the Tun times are reduced. The factor on the nodes 1
to 5 is 2.86 on average, which is guite satisfactory when
compared to the reduction factor of 3.07 for the sequen-
tial version (using no symmetry, the reduction factor is
usually somewhat higher, e.g. for the sequential version
it is 3.32 for this particular example). The high ratio of
228 ~ .93 indicates that in most cases all the matrix el-
ements to which the computed integrals (loop over trian-
gular patches) have a contribution are kept on the same
node. If we increase the number of processors, then this
ratio will decrease. But even for p = 100 nodes (block
size only Ng = 10), the ratio is still 1.75 on average, the
maximum for one node is 2.62.

From Fig. 12 it can be seen that with the efficient fill
technique the last process 6 takes about 30 % longer than
the other nodes. The reason for this is that apart from
the last 125 rows of the sub-matrices A;; (j =1...3, see
Fig. 2), the six sub-matrices Az; and Ag; (f = 1...3)
with 22 and 13 rows, respectively, are kept entirely on
this node and it takes longer to compute these elements.

The mapping function discussed in Section 3.2 can be
used to overcome this problem. We also distribute the
sub-matrices Ap; and As; to the different nodes, so that
for instance for our example considered here with N =
163 the first node contains 157 consecutive rows of the
sub-matrices A;;, 4 rows of As; and 2 rows of As;. The
resulting CPU-time requirement on the different nodes
is depicted in Fig. 13. As opposed to Fig. 12 without
mapping function, the total CPU time for the matrix fill
can be decreased from 257.2 sec to 221.2 sec.

Another investigation is depicted in Figs. 14 and 15. We
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Fig. 14: Run-time of the various phases of the parallelized
MoM solution for the example of the plane depicted
in Fig. 9 as a function of the number of processes
(no usage of symmetry and no efficient matrix fill),
N = 1903.
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Fig. 15: Run-time of the various phases of the parallelized
MoM solution for the exaraple of the plane depicted
in Fig. 9 as a function of the number of processes
(usage of symmetry and efficient matrix fill}, N =

975, N = 1903.

have executed FEKO again on the Intel Paragon, but
now using a variable number p of nodes. The run-time
of the different phases of the solution process according
to the flow—chart in Fig. 1 has been measured and is plot-
ted in Fig. 14 (symmetry was not used and no efficient
matrix fill) and in Fig. 15 (usage of symmetry and effi-
cient matrix fill) as a function of p. As explained in Sec-
tion 3.1, the geometrical setup is performed sequentially
by one process, i.e. the run—time for this part is con-
stant. The other run—times show a satisfactory decrease
with increasing p. The ideal case would be a decrement
by a factor of 10 with 10 times more nodes, i.e. a linear
diagonal line in the double logarithmic diagrams.

The example of the plane is relatively small to be con-
sidered a real HPC problem. However, we have used this
problem to optimize the code and perform a large num-
ber of tests. Some data for larger problems are also avail-
able. For instance, for EMC purposes we analyzed the
surface currents and field distribution inside a car when a
plane wave is exciting the structure with N = 15864 ba-
sis functions. The model has no symmetry, therefore also
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Table 1: Wall clock times for an EMC investigation of a car
on a CRAY T3E with N = N = 15864 unknowns.

64 nodes | 128 nodes | ratio
geometry setup 8.12 sec 7.56 sec | 1.074
matrix fill 390.23 sec | 195.92 sec | 1.992
matrix solve 1174.48 sec | 616.86 sec | 1.904
near— & far-fields 39.85 sec | 20.66 sec | 1.929
total solution time | 1616.14 sec | 844.77 sec | 1.913

N = 15864. The resulting wall clock times are tabulated
in Table 1. The last column gives the ratio of the times
for the runs on 64 and 128 nodes, respectively. A value
of 2 is expected for perfect scaling, our values show a
very promising scaling factor {except for geometry setup
which has not been parallelized).

For near— and far-field calculations, the performance of
the dynamic load balancing scheme, i.e. the automatic
adaptation to the different CPU speeds and to the ac-
tual load of the workstations, shall also be demonstrated.
The problem used to illustrate the scheme is the analy-
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Fig. 16: Near- and far—field calculation with FEKO on a het-
erogeneous cluster of 15 different workstations during
office hours with other users present in the network.

sis of a mobile communications antenna radiating close
to the user’s head. The hybrid MoM/Green’s function
technique as briefly discussed in Section 2.2 is applied.
For this kind of formulation the CPU-time for the field
computation is dominant, see Fig. 8. But also for some
of the hybrid formulations, e.g. when the time consuming
ray-tracing of the UTD must be performed, the CPU-
times for near— and far—field computations and matrix
fill dominate over the matrix solve time.

FEKO was executed on a heterogeneous cluster of 15
different workstations with different speeds (see Fig. 16
a} for relative speed) during office hours, so that there
were also other users logged in (see Fig. 16 b) for the
number) and there were also some background processes
from other users running on some of the machines (see
Fig. 16 ¢)).

Fig. 16 d) shows the relative number of computations
carried out by the different server processes running on
the 15 workstations. Even though there were no other
background jobs on the last 4 workstations no. 12 to 15,
they calculated the near— and far—field for only about
1.5% of the observation points each. The reason for this
can be seen from Fig. 16 a): These 4 workstations are
rather slow when compared to the other ones, so that the
master process automatically takes this speed difference
into account. Another example to demonstrate the dy-
namic load balance: If one compares the first two work-
stations of the same model and same speed, one can see
that the process I computed only about half the number
of field points when compared to process 2. Again Fig. 16
c) can be used to explain this behavior: There was one
background process by another user on workstation 1.

Results for the speedup on a homogeneous cluster of
identical workstations (no. 1 to 10 in Fig. 16 a}), which
were exclusively available to the FEKO job during the
test, i.e. there were no other users present and no back-

"
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| Welectic near-field
| Omagnetic near-field
W far-field

speedup
Q@ 4w kD N P W
-

s 4 5 6 7 8 9 10

number of server processes
Fig. 17: Speedup for the near— and far-field calculation with
a special Green’s function on a homogeneous cluster
of 10 IBM RS 6000 {Model 43P) workstations.



Table 2: Speedup for the near- and far-field calculation with
a special Green’s function on the Intel Paragon.
no. of server nodes | 10 20 60 90 110
total no. of nodes p | 11 21 61 91 111
speedup for cale. of

9.99
9.98
9.95

19.52
19.50
18.00

59.14
59.09
56.36

87.78
88.12
85.10

96.70
96.86
99.98

electric near-field
magn. near—field
far—field

Fig. 18: Dipole antenna radiating on top of 2 building. Some
ray paths of the UTD are shown for an observation
point in the near—field.

ground jobs were running, are given in Fig. 17. As men-
tioned above, the number of server processes corresponds
to the number of workstations that were used, the master
process was run together with one of the server processes
on the same workstation.

Table 2 lists the achieved speedup on the Intel Paragon
for the same computation.

An example for the application of the MoM/UTD hy-
brid method is depicted in Fig. 18, where a dipole an-
tenna is radiating at a frequency of 900 MHz on top of 2
building. The building is modeled by 14 flat polygonal
plates, and for the UTD we consider direct, reflected,
edge and corner diffracted rays. Some of these rays are
also shown in Fig. 18 for an observation point in the
near-field. However for determining the performance of
the parallel implementation, we calculated the farfield
radiation pattern in 3 planes for a total number of 2880
observation directions.

The achieved speedup on the Intel Paragon is plotted in
Fig. 19. For p = 100 nodes the speedup is about 75.

One final example shall be considered demonstrating the
application of the MoM/PQ hybrid method. A mobile
communications antenna on the roof of a car was an-
alyzed resulting in N = N = 54 basis functions in the
MoM-region and 10005 basis functions in the PO-region.
Full coupling between these regions (see Fig. 3} is taken
into account, so that the computation of the coupling
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Fig. 19: Speedup for the calculation of the radiation pattern
of the dipole antenna on top of a building (hybrid
MoM/UTD method executed on the Intel Paragon).
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Pig. 20: Run—time on the CRAY T3E for the various phases
of the MoM /PO hybrid method for the analysis of a
mobile communications antenna on the roof of a car
(10059 basis functions in total).

coefficients is the most time consuming part of the solu-
tion process, see dashed line in Fig. 20. These coupling
coefficients are required for the computation of the ma-
trix elements and the RHS vector. It can again be seen
from Fig. 20 that the geometry setup has not been par-
allelized, but also here for the matrix solve process the
scaling is very poor. However, the time for this phase is
almost negligable, and we cannot expect a better scal-
ing for only 54 MoM unknowns. The total solution time
(solid line with square symbols) shows an excellent scal-
ing behavior, almost parallel to the ideal curve.

6 Validation of the results

The results of the FEKO code have been extensively vali-
dated during the past years by comparison with measure-
ments or with other published reference data. We have
also performed numerous calculations by comparing the
different methods available in FEKO, e.g. 2 mobile tele-
phone radiating in front of a spherical head model can be
treated by the conventional MoM, the hybrid MoM/PO
method and also by the special Green’s function tech-
nique.
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Fig. 21: Computed and measured monostatic radar cross sec-

tion of a brass strip with dimensions 63.3 x 6.3 x

0.32mm® at 15 GHz.

As a validation example, Fig. 21 shows the predicted
monostatic RCS of a brass strip with dimensions 63.3 x
6.3 x 0.32 mm® at a frequency of 15 GHz. The measured
results have been published by the David Florida Labo-
ratory, Ottawa, Canada [44].

7 Conclusions

A parallel implementation of the MoM and hybrid code
FEKO in & distributed memory environment has been
presented. The parallelization is based on the MPI stan-
dard, so that all major massively parallel supercomput-
ers and also clusters of connected workstations are sup-
ported. Promising performance results were presented
for an Intel Paragon, a CRAY T3E and a cluster of work-
stations of 10 identical IBM RS 6000 Model 43P and 5
slower IBM RS 6000 workstations. Especially on the
heterogeneous cluster of 15 workstations we were able to
demonstrate the efficiency of the dynamic load balancing
scheme for the near— and far—field computations, which
might dominate the total solution time for some hybrid
techniques.

Current investigations concentrate on out-of-core solu-
tions and also on improving the performance. We are
evaluating PLAPACK and iterative techniques in PIM
with preconditioners as an alternative to the LU factori-
sation in ScalLAPACK.
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