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Abstract — In this paper, a fast m ethod to
perform backscattering calculations from perfect
electrically conducting (PEC) objects embedded
in continuous random media is presented. The
current generator method (CGM) is revisited and
is modified for speed, removing the need to
perform matrix inverse operations. The presented
formulations are adequate to solve two and three
dimensional problems. A Monte Carlo technique
will be employed to speed the high ordered
integration by using the de-correlation in space
found within the fourth moment of Green’s
function as an ‘importance sampling’ distribution.
This incoherence is explicitly shown in the current
generator formulation. The revisited formulation
has improved functionality in its ability to
consider three dimensional objects. Its algorithmic
performance is analyzed and is found to be
significantly faster than other candidate matrix
based methods.

Index Terms — Current generator method, electric
field integral equation, monostatic backscatter,
Monte Carlo integration, radar cross section, and
random media.

I. INTRODUCTION
Prior knowledge of monostatic backscattering
from particles and objects is a useful tool for radar
and optical imaging instrumentation. It helps to
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classify the returned signal into target types like
snow, light / dense rain, wind, etc. [1, 2].
Furthermore, it helps the aircraft developers to
optimize the effectiveness of the plane body design
in a way to hide from radar, preventing a costly
guess-and-test prototyping process. Calculating the
scattering  profile from arbitrarily  shaped
conducting targets is becoming trivial as a research
question since many methods already exist:
physical optics (PO), method of moments (MoM),
finite difference time domain (FDTD). To be
accurate, this task is straight forward when one
neglects the space between the target and the
observer, opting to consider only ‘free space’
conditions. On the other hand, when the aircraft is
surrounded by random media (i.e., clouds, air
pressure fluctuations, fog, rain, snow etc.); the
calculation becomes significantly slow and some of
the above methods produce erroneous results due
to various physical conditions.

In this paper, the current generator method [3,
4] is revisited and altered to remove any inverse
matrix operations. The complexity of the quadruple
surface integral found in the electric field integral
equation (EFIE) by the MoM can be reduced by
implementing the Monte Carlo integration as will
be shown later. Sampling points on the target
surface are chosen such that they are most likely to
contribute to the integration, neglecting those that
do not. This probability distribution is based on
signal coherence properties. Thus, the modified
current generator method outperforms the MoM in
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terms of its asymptotic complexity with respect to
the number of basis functions, and the usage of the
coherence Monte Carlo integration provides an
even larger improvement in computation speed. It
is well known that calculating the backscattered
intensity of large targets requires a quadratic
polynomial increase in sample points. Thus,
computational time saving of this method may
facilitate quick calculations of large targets like
stealth aircrafts.

II. THE CURRENT GENERATOR
METHOD
This approach is a boundary value method,
and as such, we express the backscattered field as
a function of current density on the boundary of
the object. Due to the targets being PEC, either the
Dirichlet condition (u(r) = 0) for E-wave incidence

20— 0) holds on the
surface, and will greatly simplify the final
expressions. Since there is little difference in the
current generator method between the two
configurations, we develop the method for E-wave
incidence for simplicity’s sake and refer to the
current generator in H waves so the reader can
make an analogy [5].

We start by re-emphasizing the radar process:
incident wave, u,,(r;) is generated by a sou rce
distribution, f{r,), and travels in the random media.
It is transformed on the target into current, which
then acts as a new source to reradiate to the
observer. Mathematically, and rather intuitively,
us(r), is related to the E-wave polarized incident
field via [6],

U (F)ZJIG(F|F2)[Y(FZ |r1)uin (n)]d’?drz (D

or the Neumann condition (

where Y(r,|r;) is a current generator operator that
maps incident field to target surface current
density, r; is the wave incidence point and r, is the
point at which current is generated due to u,,(r;).
Here, G(r|r;) satisfies the following Helmholtz
equation for random media. The entire spatial
fluctuations are represented by dielectric variation

[71,
[VZ +k; (1+5g(r))]G(r|rz):é‘(r—rz) . (2)

Here, k, is the wave number in free space, and
og(r) is the spatial fluctuation of dielectric.
According to the current generator method [6, 8],
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we expand the surface current, Ji(r,) into
harmonics and find an expression for their
coefficients,

J(n)=3 6.9, (). )

m=0 n=0
Here, ¥ mn(r2) is the three dimensional
basis function and b, is its weighting coefficient.
For a given coordinate system, this, albeit, places
its limitations on the shapes of considerable
targets. Nevertheless, for any target depicted by,
say, spherical coordinates, the function

v, (r) =sqrt(2/ )k, j, (kor)y:; (49,¢) 4
solves the separable wave equation and therefore
its set reconstructs any current distribution [9].
Here, v (6,0) = 22:1 EZ;Z;iP,Z(sin(Z))elme is
the spherical harmonic function and P} is the
Legendre function of degree n and order m. More
details on the choice of basis functions and its
properties are given in the appendix, but it suffices
to say W (1) in equation (4) forms an orthonormal
set according to [10]. This orthogonality is used in
the following approach to arrive at an expression
for the coefficients, b,,, much in the same way
they are for the Fourier transform. We multiply
equation (3) by ‘I’*m-n-(rz) on both sides and
integrate over the target surface,

JlP*m'n' (Vz)JS (ry)dr, =

M N (5)
> 3 b [ ) (),
m=0 n=0 s

The orthogonal property of W (1) states,
I\Pmn (FZ)\P*m'n'(r2)dr2 = 5 '5 (6)

m,m'~ n,n'
K

where the definition of the delta function is,

1 m=m'
5. { %

0 m#m'

which is similar for J,,. The normal part of the
orthonormal property of ¥ ,,(r,) ensures that the
value of J,,, for m = m' is indeed 1, and not a
normalizing constant. With the orthogonal
relationship, equation (5) reduces to an equation
where m' and n' becomes a particular value of m
and n, respectively, and thus the summations are
dropped. We are left with



mn mn

B = [, (79", (P ®)

s

where 1' denotes an arbitrary integration parameter
on S. In the following section, we derive another
expression for Jy(r') which, when substituted into
equation (8) provides a more useful expression for
by

A. Expression for the surface current
According to Huygen’s principle [11],

oG(r|r ou(r.
N L e
n, n,

)
where 7, is the unit normal from the target surface
S. When the Dirichlet boundary condition is
applied this becomes

=-Joc| 2)6”(”2

(10)

This is analogous to equatlon (1) where
Jo Y(rlr)uwgy, (r)dry = J5(ry), yielding,
ou(r,)
J ()= (1)
( 2) on,

Finally, we use equation (11) to determine the
current generator operator by applying to equation

(8),
b, :—IMT* (r')dr. (12)

an ] mn

B. The current generator operator

Considering that the total field, the sum of
incidence and scattering, is zero on the target (u(r")
= uy(r') + uyr') =0 ), we can expand the
expression of b,,, in equation (12) to add the extra
terms,

N

¥ () ou,, (r )
b, =-] on' g
S oy, (r")

Z (13)

dar'.
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Applying the Divergence theorem and using the
radiation condition as in [8, 11], we find

*

[w; (r')—a”“ () —u, (r')—aq]”’” fr') =0 (14)

g " on' on
and hence,
e oo, (1!
SO
by =—| ! dr' . (15)

g ov,, (r')

~u, (r')—
on'

With the expression of b,,, we can now use
equations (1), (3), and (15) to obtain the
expression for the current generator.

V(| () ==[ 323
()= _I,‘Pmn (n){‘l’;n ()2~ ) )}
* on, on,
u, (1) dr .
(16)

This equations is, by analogy, the current
generator operator acting on u;,,

¥ (rz)x

Y(rzn)—fi{q,* (1)2 8%_(11)}

mn

17)
We now have the expression for one term in
equation (1). Note that, unlike previous current
generator formulations [5, 6, 8], the expression for
Y (15| r;) does not require the computation of a
matrix inverse. The inverse integral transform
property found in equation (8) allows for this
simplification. As we will see, however, equation
(1) is a little less straight forward due to random
media components, and needs revisiting. The
following section completes the current generator
formulation and establishes a basis for CBMI.

III. RADAR SIGNAL COHERENCE AND
RANDOM MEDIA
Any signal is comprised of both coherent and
incoherent parts,

u(r) = (u(r)) + du(r) (18)
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where the ensemble average, (u(r)) denotes the
coherent component at the observer while Au
represents the incoherent part. Based on equation
(18), one can rewrite the scattered equations due to
an E-wave polarized incident field,

us(r) = [ dry [ dr Y(rlm)G(rlr)G (riry)

19)
(us(r) =
Jy dri [, dry Y (ralr)(G ()G (rlr)).
(20)
Here, the u; (7 )is displayed in its Green’s function
representation. Fundamentally, u; () =

fVT G (rl |r) f (r ')dr', where r describes the source

distribution. For a source of unit strength, the
u;(r1) has been replaced with its point source
Green’s  function  representation, u;(ry) =
G (r1|r:), where r;is the position of the transmitter
within V7. For monostatic conditions, 1z =1, so
u; = G(r|ry) after reciprocity has been employed
G(r1|r) = G(r|ry). Since radar antennas measure
signal power, and not field, one must take the
average of u? as,

(s () [2) = f A Y ()Y (ra|r'y)
GGG rlrDE TlrY) Q1)

where 7 is the point of incidence, r,is the point
where the current is generated due to u; (ry), r; and
r, are the indices for complex waves of incidence

and scattering, respectively, finally, fs dr =

Jo dr [ dry [ dr'y [ dr',. This expression is
still too analytically complex. In addition to
evaluating the product of the current generator, the
average of the Green’s function needs to be
simplified.

A. Fourth moment of Green’s function in
random media

The fourth moment of Green’s function, M,,
in equation (21) is simplified using a common
statistical identity,

(UV) = (UXV) + covariance(U,V) (22)
leading to,
My = (G(r|r)G* (r|r' ONG(rIr) G (r|r2))

H(G(rir) G (rlr NG (rlr) 6 (rlr')).
(23)
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In order for this to be true, the incidence wave
must sufficiently uncorrelated from the scattered
wave [12]. Many natural processes, like those in
the atmosphere, are aggregations of independent
and identically distributed variables that have
Gaussian distribution. To be even more complete,
one can consider a small region of free space
around the target to minimize the likelihood of
reflected waves passing through the same random
media as during incidence [6, 7]. We can view the
fourth moment decomposition approximation as
just that, something with sources of error, and
therefore do not require this extra region. To
describe the problem as to be practically accepted,
however, restrictions on the random media
intensity, B = (5e(r)de(r')) « 1, and scale size,
[ > 1 must be kept to remove the depolarization
effects. The first term in equation (23) represents
the low spatial frequencies in the media (/f), while
the second term is the base for high spatial
frequency (#f) expansion. Furthermore, judging
from research into the spatial frequency spectrum
of atmospheric air flow velocity structure function
[13], its wave number ks, decays proportional to a
strong negative power ~ ks, ". This indicates there
is little natural high frequency energy as far as air
pressure is concerned that would invalidate the
above approximation. One could place a low-pass
filter on their random media spectrum without
much detriment to accuracy.

B. Second moment of Green’s function

The two expressions Méf and M;l I are the
products of the 2" moment of Green’s function
M. The expression of M; in random media is
expressed as,

- My = Mim(pod) (24)
M = Gy(r|r)Go(r|ry), (25)
m(pod) =
ko (7 b [2220 (pod), 2|0 | dz’ 26
exp{—2 2 t[Z_ZO (po ).ZIZo] Z}, (26)

D.[p,z || = fOZ_ZOD [p,z —%,Z'] dz', (27)

_Z =
D[p,z Z,Z] —B(p,z—é,z’) .

Here, G, is the Green’s function in free space, and

D is the random medium structure function in the
transverse plane [14]. The symbol p is the



transverse distance from the primary axis (i.e., the
line of sight) and py; = p2-p1. The symbol z is the
coordinate along the primary axis of the observer
and z, describes the target size. Further description
on the problem configuration is illustrated in Fig.
(D).

‘- PEC Cylinder

I
observer, z #=R
z=L
i) 4
4
, J
__]6:' Sphere of Random Medium
2 e(r)=¢_o(1+58&(r)) EFe D

Fig. 1. Problem description of a 3D PEC target in
random medium.

C. Expression of the coherent backscattered
intensity

The expression of the backscattered power for
a conductive target in random media is calculated
through the product of the current generators and
the derived expression of M,, which can be shown
as,

usIP) = [ d*ry )%

M N
ox (. _ax
zzoyjmn(rZ)a_nz yjmn(rl)a_nl

n=

m=0
_ 0% (n)}] y
8n1

S X X
X [Z 2 5I/mn(r'Zr)WZ,{BUmn(rlr)Wl,
m=0n=0
ayjmn (7‘19
B anl' }

X (Mg + Mg )M,. (29)
where,

kZ
M, = exp {—TOM)/(Z; 20)l(p1 = p1 D% +

(02 = 292}, (30)
Mg = exp {—%MY(Z, z0)[(p2 = p1)* +

(o1 — 2971}, 31)
Mo = [8nko<i—zO)]2 exp(X), n= ‘/_z<z — > 32
and
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X=—jk0(Zl Zi+Zz_Zz')

+2(JZ_‘;)(p1 Pt +pi—p).  (33)

IV. COHERENCE BASED MONTE
CARLO INTEGRATION

The quadruple surface integral found in
equation (29) makes computations very slow and
memory intensive. A mesh grid of even ten
samples in each of the & and ¢ directions
discretizes the target into 100 samples, making the
four-fold integration require 100* = 10® evaluations
of the 1ntegrand Each of My, M, and My may also
have 10° allocations in memory. Due to the
oscillatory nature of the basis functions, ¥, the
exponential decay of M, and My, and the target

dependent nature of g—:, it is logical to think that

certain points on the mesh will not contribute to
the integration. Avoiding computational efforts
toward these “useless” points is the reason why
Monte Carlo integration is used. Consequently, the
integrand is evaluated at a random set of sample
points that have a probabilistic emphasis toward
converging to the true answer faster. An estimate
of the mean value ofthe integrand is calculated
and from the Mean Value Theorem the integral is
determined. = Mathematically, denoting the
integrand of equation (29) as I, the integral

<u > J'd“rl (34)

that can be calculated by the expected value of the
integrand via

I)= %J.d“r.l [d'rai=a(1), (9)

where A is the surface area of the target.
Introducing a normalized function, R, leads,

o) g,

”1 23,4 (36)
_ ](’”1,2,3,4)
- I—dR( Nas 4)
s R(’i,z,s,4)
where 71,54 are the four integral dependence and

]%(472,3’4)= J. R(I/ilz’3’4)d1234 Here, the zero
0

vector, 0, denotes any starting point for the surface
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integration, and 7’ 534 1s an arbitrary parameter on
S. Making the change of variables, ¢ = R(r)
rewrites equation (34) as

2 1(R (1))
<us (r)| >:ﬁ£')mdt. (37)

The difference between equation (34) and equation
(37) is that, in the former, a uniform sampling
distribution within 7,54 may produce elements of
I(r1534) that donot effectively contribute to (/),
where as the latter does if I/R deviates less from
the mean than 7 alone. At run time, one can check
the variance of the estimate via,

ar<<z>>=<(;jz><é>2

N

r

(3%)

where N, is the number ofs amples already
calculated at run time. The whole idea lies in the
choice of the sampling points.

A. Interpreting coherent backscattered intensity

The Monte Carlo method described above has
an effective I/R arrangement when the function, R,
‘follows’ the integrand; when the distribution is
zero or large, so should the integrand.
Paradoxically, we are unable to generate the
perfect distribution since we would need to know
the analytic expression of equation (29) and hence
not need Monte Carlo integration in the first place.
Therefore we look at the expression in equation
(29) and break down its physical meaning to
provide insight on the choice of R.

The interpretation is very similar to that of
other work, namely the combined field integral
equation (CFIE) in [15], but with an added term
for random media. The expression for M, is the
complex free space propagation ‘transfer function’
between the source field intensity and the received
field intensity. It represents the effect of the I/r
power law while taking into account spatial
sinusoidal changes due to ¢*,". The expressions
for M, and M; each have exp{—uyp’'D}
dependence (where pD is used to denote the
difference between the appropriate p’s for either
M, or Mpg), which can be explained as the signal
decorrelation due to the random media effects u
and y. Lastly, the expression within the square
brackets, as mentioned in [15], is the translation

ACES JOURNAL, VOL. 28, No. 11, NOVEMBER 2013

response from incident wave to current density.
We denote this as a unit plane wave response of
current. To see this, the total field intensity
integral equation (not just the coherent intensity)
has a fourth moment of M, = M), and not M, =
My (M, + Mp) [5]. M, is already exposed as the
propagation transfer function, and the square
brackets is the only remaining physical process:
the generation of current on the target. To
summarize,

Uy =M, (39)
UdeL=Ma+Mﬁ, (40)
v on \Pmn(FZ)S_flix
P {q, (r)ag_a‘l’mn(n)}
" on, on,
_ . oX @D
M N m"(rzl)ﬁz'x
) Z’”:Z{‘P (n) X oY, (n ')} ’
A oy on,'

where the subscripts 7F means propagation
transfer function, dec means ade correlating
function, and p is for the plane wave response.

B. Choice of ‘importance sampling’ distribution

For an observer positioned very far from the
target, Urr does not vary much from one point on
the target to the next. Therefore, our easiest choice
for R closely resembles the uniform distribution
and does not follow the integrand well. The next
easiest choice comes from U,. It is somewhat easy
to emulate since it has a common factor within the
summation,

U, = NMa—X NMa—X
’ on, on,'

v (rz)x

\P* (r)a_X_a\Pjnn(’/i)
N on,

on,' on,'

g ;Z ¥, (1) ox —a\P'”"(rl')} " (42)



where o can be found under the far field

on
approximation (z—z,) >> 1 as,

~  4px .

) G . 20z—z
ox _ VX =h -t ik, (2-2)
on, 4py, - (43)
t———=
2(2—20)
= jkon, -z, .

Unfortunatly, choosing R = jk,(n,-z,—n"Z,")
will only speed up integration in the r; and 7’
directions. Furthermore, if the target boundary is
not analytic, we will need to perform surface
integral computations to normalize R via

_[drljdrl'R:I, (44)

rendering the algorithm slow. Lastly, the most
powerful choice of R lies in U,,. Due to the sharp
descent of the exp{—uyp’D} function, the signal
contribution from different sections on the target
that would normally occur in free space may no
longer be correlated (coherent). This effect is
excellent to consider as a sampling distribution to
emphasize the presence of random media. The
choice of

= Ma (’/i,z,l',z' ) + Mﬁ (ri,z,l',z')
[ [, (i) My (1)

samples points that are most likely to be coherent
and hence the name coherence based Monte Carlo
integration (CBMI) is the most appropriate.

R

, (45)

V. COMPUTATIONAL INTENSITY

In this section, the current generator and the
CBMI are analyzed for their computational
performance. These advantages are compared to
that of the MoM.

A. Generation of basis coefficients

CBMI and the current generator’s
performance relative to the MoM technique
depend on the management of basis vectors. MoM
performances are specified as it applies to
manipulating the bases vectors, often assuming an
analytic fourth moment in free space that does not
slow the computation process. Considering
different Green’s functions (like that in random
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media) will add extra complexity on account of the
integration. A traditional MoM approach involves
filling the N, X N, coefficient matrix whose
elements represent interdependence of bases (inner
products), storing this information in memory, and
solving the linear system. Here, N, is the number
of unknown basis functions. According to [16] and
[17], this approach has a computational
complexity of O(N,’) for each step. Assuming a
double summation expression, which one would
expect for the term / of the current generator
method shown in equation (34), where the
summation inside the integrand computes very
simple terms. This in turn, causes the current
generator to have a very fast effective “fill time”
of O(N,), where a matrix is not needed. Fast
Fourier Transform method (FFT) has matrix filling
and solving complexities of O(N,'” log N,) and
Adaptive Cross Approximation (ACA) algorithms
scale to O(N,"* log N,) for moderately sized
targets [18]. Fast Multipole Method (FMM) and
multilevel FMM (MLFMM), which have achieved
O(N, log N,) in free space, are dependent on the
analytical form of Green’s function and can be
translated to account for random media [16].
Ultimately, neither of these achieve the ultimate
goal of removing interdependence among bases to
reduce the complexity from O(N,?) to O(N,).

B. CBMI computational intensity

The quadruple integral required by the current
generator equation should scale with a complexity
of O(N,", if one were to use a quadrature
integration. However, as the number of sample
points increases in CBMI, the estimate of the
Monte Carlo integral decreases and, according to
the law of large numbers, its variance reduces as

1/\/N, . This continues until an acceptable error

level has been reached. Therefore, the quadruple
surface integral within the current generator
method that requires N,* points using quadrature
integration should converge as /N! =N’ using
CBMI. As previously noticed, the double
summation over M and N adds an extra order of
complexity, bringing the overall performance of
equation (34) to O(N,’). This is better than the

MoM, that brings the its total complexity to
O(NSSAS)'
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VI. ALGORITHM PERFORMANCE

While asymptotic analysis is useful, especially
when assessing targets of large electrical size, it is
important to consider computational advantages.
The first is how Monte Carlo implementation
stops once it has achieved a low variance in its
estimate. One can make this stopping threshold
fairly high since calculations need not be more
precise than the noise floor of the receiver system.

To be specific, Var(A4<I>)<ka.Ra.Av-G-F2
where k,T is the thermal energy, Av is the

bandwidth of the receiver, R, is the antenna
resistance, G is the antenna sensitivity to electric
field, and F = noise,,, / Gain - noise; 1s the
voltage noise figure of the preamp. In Radar
Systems, one can choose a noise floor of a
predetermined strength (e.g. ~ -60 dBm) and use G
to determine the level of var(4*()). Due to the
Gaussian-Like nature of the integrand of equation
(34), there is a confident feel that var(4%(l))
represents more accurately the error. A second
speed advantage is that knowledge of the system at
hand can reduce the algorithm speed. Knowing the
number of wavelengths on the target determines
the number of harmonic modes required.
Moreover, CBMI lends itself to be used easily in
parallel processing applications. Due to the
integral being evaluated as an average of sample
points, tasks can be distributed among many
modules, each performing their own estimate of
(I), with almost no modification to the algorithm.

VII. CONCLUSION

We have presented a method for the fast
calculation of backscatter from arbitrary 3D PEC
objects embedded in continuous random media for
E-wave polarization. The method was developed
for 3D targets in spherical coordinates but could
be applied to targets that conform to any other
system (cylindrical, polar etc.). The formulation of
a field intensity integral equation called the current
generator method was modified to not contain any
matrix inverse operations. This expression was
broken into physical processes and a Monte Carlo
integration based on the signal decorrelation
greatly  reduced the  total  algorithmic
computational complexity to O(N,’) compared to
that of fast MoM (~O(N,>)). Signal decorrelation,
as described by M, and Mjy, depends heavily on
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the second moment of Green’s function, whose
analytical expression is described and is very
involved. The consideration of random media
characteristics, intensity and distribution are,
therefore, critical aspects in adapting the
formulation to  specific  scenarios.  The
computational speed shows promise and may
justify the efforts. Since, by the Nyquist criterion,
Nj is tied directly to (koa)z, backscattered intensity
calculations of airplanes observed by UHF and
higher frequencies may become possible with the
decrease in complexity.
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