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Abstract

In the microwave case the physical optics (PO) method is frequently used for
the analysis of complex structures which are modeled by flat plates of trian-
gular or quadrangular shape. The study of the radar cross section (RCS) of an
isolated panel, however, reveals deviations from experimental results which
are due to edge diffraction effects not considered by PO. In order to correct
the PO-field by an additive field term, the equivalent fringe currents (EC)
of Michaeli have been used to derive the backscattering matrix of an isolated
edge. By adding the matrices of the individual edges to the PO-matrix the RCS
of a square flat plate with zerc and finite thickness is analysed and the
result is compared with measurements. The efficiency of the method is demon-
strated for objects modeled by a higher number of panels and edges, namely a
cylinder and a double dihedral. All computations were performed with the com-
puter code SIGS of the Institute.

1. Introduction

Since several years, the computer program SIG5 is applied in the Institute
for Radio Frequency Technology for the prediction of the RCS of structures
which are complicated in shape and large compared to the wavelength. SIGE,
based on PO, is capable of analysing perfectly and imperfectly conducting
structures, including double reflections. The targets are medeled by panels
of triangular and quadrangular shape, see Fig. 1.1. The nidden surface pro-
blem inherent with PO is solved by an exact construction of the shadow boun-
dary for each panel, whose size is only limited by the admissible deviation
between the true surface and the model surface. SIG5 is organized in a very
similar way to the computer code RECOTA, developed by the Boeing Aerospace
Company, Seattle [1]. SIGS has been successfully tested for a series of per-
fectly conducting basic structures such as a sphere, cylinder, cube, circular
disk and a double dihedral [2-4]. Also, more complex bodies like a periscope
structure have been analysed with promising results [5].

Fig, 1.1
Panel model of an air-

] i éégééE?ﬁ plane for the applica-
L - tion of PO.
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Despite the good results which are generally available with PO, there are
special cases (certain structures, specific pattern cuts, selected polari-
zations) where deviations of practical significance between computational and
experimental results are observed. They frequently can be explained by the
feature of PO to treat the influence of an edge only as the gecmetrical boun-
dary of a panel thus neglecting physical edge diffraction effects.

The choice of a theory which takes into account edge diffraction effects is
influenced by the following viewpoints:

a) Since SIG5 is a very comprehensive computer code each extension should
cause a minimum of changes. Therefore, thecries are preferred which are
able to correct the PO-solution by an additive term.

b) In computing the RCS of large and complex objects modeled by numerous pa-
nels the computer effort increases considerably. Therefore, theories which
need a high computer effort are not favoured.

¢) Since edges of arbitrary length, wedge angle and orientation in space oc-
cur in the target model, the theory should not present a solution for a
specific panel, rather, the diffracted field of an isolated edge must be
described by the specific edge parameters alone,

Bearing these points in mind, only asymptotic theories come into question,
which either describe the difference between the total wedge diffracted field
and the PO-field directly [6,7] or which evaluate fringe currents flowing
along the edge and generating the same difference field by evaluating the ra-
diation integral over the length of the edge [8, 2].

In this paper, the second theory is followed. Here the fringe currents given
in [9] are preferred, since they are valid for arbitrary aspects of observa-
ticn. On the basis of these currents, the backscattering matrix for an iscla-
ted edge is derived.

In the following section the thecretical background is discussed. In section
3, the theory is applied for the RCS-analysis of a panel. In secticn 4, Lhe
results for a cylinder and a double dihedral are presented. Section 5, final-
ly, summarizes some conclusions on the basis of the preceeding analysis.

2. Theoretical Background

The results of the theories used in the computer code SIGS are expressed Dy
the backscattering matrix

ti1 tai2
(21) [T] = r
tz1  taz

which relates the cgrtesian components of the scattered field E, to those of
the incident field Es:

ESX Eex
(2.2) = [T]
Eay Fey
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The propagation direction of the scattered field is given by the z-axis
(observer fixed coordinate system). From the complex elements tjs of the
scattering matrix the polarization dependent RCS is computed:

(2.3) o35 = lim (dnr? tyig tIy) o

where r is the distance between the radar cbserver and the test object. The
RCS referred to 1 square meter and expressed in decibels yields the quantity
dBsm, which is used in this paper to compare theoretical and experimental re-
sults for the selected transmitting/receiving polarizations.

The total scattering matrix [T] of a complex body can be thought to be compo-
sed of a matrix [TP°] which is the sum of the scattering matrices based on PO
of the individual N panels and the scattering matrix [T®] which sums up the
scattering matrices of the M edges of all panels:

Z
=

(2.4)  [T] = [TP°] + [Tf] , [TP°] = ) [TB®] , [Tf] = } I[T&]

=]
=2

The PC-scattering matrix of an individual panel of zero thickness and perfect
conductivity is readily evaluated using the radiation integral

kr

(2.5) F(T) = -]1; ?-% 7 I (3x (3xIp (T))) e
FP

. -—',
Jjks-r at’

and introducing the surface current

= oo -jke-r’ . :
- = 2nx (expe) Ea/Z & J } {lllumlnated } parts of
r - el te
(2.6)  Jelr') {0 on the 1 nadoved the panel.

The geometrical parameters T, T’, &, S, Fp and 0 are explained in Fig. 2.1,
while the electric parameters are given by A = wavelength, k = 2z/L = wave
number, 2 = wave impedance of the propagation medium, P, = px €, + py €

unit polarization vector and E. = magnitude of the incident electric field.

Fig. 2.1

Gecmetrical scheme for the
interpretation of the ra-
diation integral.
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The evaluation of the radiation integral for the backscattered (€ = -8) field
in the observer fixed cartesian cocordinate system and the comparison with
(2.2) results in the following backscattering matrix:

s . 10

jkr
2.7 (e = - T [ I gy [ }
" d 0 1

P

For a panel of polygonal shape the phase integral can be solved analytically.
Details of the integration are given in [4] for panels of triangular and
quadrangular shape which are used in the computer program SIGS to model the
target.

Normalizing the scattering matrix to e”3XC/r, the matrix appears purely ima-
ginary. Independent of the orientation of the panel, no differences between
xx-polarization and yy-polarization nor any cross-polarization are predicted
by PO. This, however, is only true if the panel is perfectly conducting and
no double or multiple interactions can occur between pairs or a higher number
of panels.

The electric and magnetic fringe currents of Michaeli [9] can be written in a
very compact way using the coefficients DE, DL, DL, (these symbols are propo-
sed by Knott [10]):

£ jZEet £ jZHet £
(2.8) L (We!Ws;ﬁest) = - —— DiVearVsiBerBs) - ——— Dem(wef‘{»‘s;ﬂerﬂs) !
kZsin®p. ksin?pe
jZZHet

(2.9) Mf(West;BerBS) Dg(wele;Be!Bs)

- ksinposinPg

£., = C'Fa or Hoy = T-H, is the component of the incident electric or
magnetic field parallel to the edge with unit tangent vector t. The geo-
metrical parameters wo, Vs, Ber Bs and n are explained in Fig. 2.2. The
formulas for DL, DI and DI, are given in the appendixz for the backscatte-
ring case (Ve = Var Bs = 1 = fo).

plane of
incidence

plane of
diffraction

Fig. 2.2
Wedge geometry.
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Before choosing the fringe currents of Michaeli, it was necessary to relate
this theory to other thecories, which, in principle, could be used to sclve
edge diffraction problems cbserving the viewpoints given in the introduction.

Though there are several papers [10 - 15] dealing with the relationships be-
tween asymptotic diffraction theories, it is useful to summarize the results
with the aid of a few statements. Thereby the output of the different theo-

ries are given in the form of currents. For mathematical details see [15].

The fringe currents of Michaeli can be written in the following way:

(7.8a) ¥ = 1% - pPe ,
(2.9a) ME = Mt - MPO

where I, M® are the equivalent electric and magnetic total currents, respon-
sible for the total wedge diffracted field while IF® and MP® are the equiva-
lent PO-compeonents responsible for the PO-field of the wedge. The expressions
derived by Michaeli are cobtained by asymptotic end-point evaluation of the
fringe current radiation integral over the ray coordinate measured along the
diffracted ray grazing the surface of the local wedge. The resulting expres-
sions are finite for all aspects c¢f illumination and observation, except for
the special case where the direction of observation is the continuation of a
glancing incident ray coming from outside the wedge. This situation occurs
only in forward scattering.

Choosing the coordinate for the radiation integral in a traditional way nor-
mal to the edge, expressions for the fringe currents are obtained [16] which
display infinities for certain combinations of observation and incidence di-
rections. These fringe currents are identical to those which can be evaluated
[15] from the fringe diffracted fields of Mitzner [7]. Now adapting the frin-
ge currents tc the cone of diffracted rays one would expect that these would
be identical to those which can be derived from the fringe field expressiocns
of Ufimtsev [6] and which are used in [1]. This is the case for the electric
total current, for the magnetic total and PO-current but in general not for
the electric PO-current.

The total currents are identical to the filamentary currents of Keller's
GID-field [17), represented by Knott and Senior in a compact manner [18] and
denoted as equivalent currents by Ryan and Peters [19] who applied the con-
cept to compute the edge diffracted field in caustic regions. Evaluating the
equivalent currents c¢f the GTD for vertical incidence (Bs = 90°) on a half-
plane (n = 2) one receives the filamentary currents of the diffracted field
derived by Scmmerfeld [20].

The difference in the electric PO-currents is given by a coupling term be-
tween the incident electric field, being perpendicular tc the plane of inci-
dence, and the PO-field having a component parallel to the plane of diffrac-
tion. This coupling term is not taken into account by the thecry of Ufimtsev
as was pointed out in [14]. Only in the case that both faces of the wedge are
1lluminated by the incident wave does the coupling term become identical tc
zero [15] and the fringe currents extracted from the theory of Ufimtsev
become identical to the fringe currents ¢f Michaeli.
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Introducing now the fringe currents (2.8) and (2.9) in the radiaticn integral
over a filamentary current with length L

— 1 —jkr — — — — — — = '_._"
(2.10) EI(T) = %% 9~;—— J (2 TE(E) (Bx(ExT)) + ME(T) (3xT)) KT e
L
one arrives at the backscattering matrix
"Ik_r . — —»
f —_I__i'[ jZkS'I' r
(2.11)  [17] = - o= = e dlf x
L
DE t2 + DE 2 - DL, te ty (DS - DI) ty by + DEn t3
X
(D - DL) t. t, - D&, t2 D tZ2 + DL tZ + DL, ty ty

The geometrical parameters are explained in Fig. 2.3.

Fig. 2.3
Geometrical sketch to evaluate
the radiation integral.

As in Lhe case of the PO-scattering matrix the phase integral can be solved
analytically. Introducing the mid-point vector ry of the edge one obtains

2.12) ST g, L sin(kLty) N s

’ kLt 2
] 1-t,

with t, = -cosfe.

Normalizing the backscattering matrix [TT] by e 3%¥/r it appears purely

real. In general differences between HH- and VV-polarization are predicted.
Also, since [Tf] is asymmetric, differences between HV- and VH-polariza-

tion are predicted which is not correct for monostatic scattering processes.
This is due to corner diffraction effects which arise with an edge of finite
length and which are not considered in the theory. Symmetry is observed for
the special case of normal wave incidence (B = 90°). Further, if the contour
of a panel is a smooth curve, the matrix [TT] would be symmetric.

For the discussions in the next section, some properties of the coefficients
DE, DL, DL, are needed, which are summarized in the following. Fig. 2.4 shows
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the coefficients for normal incidence (B, = 90°) and a half-plane (n = 2) de-
pending on the angle y.. In Fig. 2.5 the coefficients for a step (n = 1.5)
are represented where DI, is identical to zero. In both cases, mirror sym-
metries for each coefficient become relevant about y. = 180° for the half-
plane and y, = 135° for the step. Further symmetries, now radial symmetries,
occur for the half-plane between coefficient DI and DI about y, = 90° and

ye = 270°.

Fig. 2.6 shows the coefficients DI, DL and DI, for y. = 270° and a half-plane
now dependent of the angle P.. One also finds symmetries, namely mirrcr-
symmetry for DI and DI and radial-symmetry for D&, about B. = 90°. These sym-
metries occur for all y. = const.
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3. Analysis of the RCS of a Square Test Panel by the PO- and EC-Methed

Studies similar to the ones reported here were performed by Ross [21], Sikta,
Burnside, Chu and Peters {22], Balanis, Griesser and Marsland [23], Volakis
and Ricoy [24], Pelosi, Tiberio, Puccini and Maci [25], Ivrissimtzis and Mar-
hefka [26]. Ross applied the GTD up to triple diffraction to compute the RCS
of rectangular flat plates. Sikta et al. used a modified equivalent current
concept based on GTD and a corner diffraction analysis to study the RCS of
flat plate structures such as a square flat plate, a finlike plate and a
disc. Balanis et al. used GTD up to third order diffraction for principal
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plane and EC-currents of Michaeli for off-principal plane backscattering of
plates. The angular spectrum method along with the generalized matrix formu-
lation were employed for the diffraction analyses of a thick perfectly con-
ducting half-plane by Volakis and Ricoy. Pelosi et al. applied GTD to calcu-
late the RCS of a square plate. Ivrissimtzis and Marhefka used a uniform

ray approximation including higher order terms for the analysis of polyhedral
structures.

The procedure presented in the previous section is not limited to the simple
structure of a flat plate as will be demonstrated in the next section. How-
ever, in this section the scattering from a square test plate is investigated
in great detail to estimate the efficiency and the limits of application of
the chosen method.

The square test panel is analysed at a frequency of 16.66 GHz which results
in a wavelength of 17.995 mm. The edge length is 91.4 mm (5.08 &) and the
thickness is 0.8 mm (0.044 A). In order to have an independent external accu-
racy check for the following computations, the test panel was chosen to be
equal to one of the panels investigated by Ross [21]. The panel is defined in
the observer-fixzed coordinate system, see Fig. 3.1. The rotations around the
x, y and z-axis are defined by the angles ¢i, ¢y, 9. AN incident wave with
electric field vector parallel to the x-axis is designated as horizontally
polarized while a field vector parallel to the y-axis describes a vertically
polarized field, if the object is rotated around the y-axis for instance.

€x
F
le
— ¥ =
tg edge 3 y - €z
— t2
W?’ E.
2 > e
P ¥ t y
edge 4 Py my_hx Py 1 N
® o Y »
— z z
th JL edge 2 4
ta
- I
edge1 }T 4

Fig. 3.1 Orientation of the panel in the observer-fixed coordinate system
and numbering of the edges for a panel with zero thickness.

Fig. 3.2 resp. Fig. 3.3 shows the experimental RCS-result for horizontal
resp. vertical polarization and for the principal plane (=0, gpy=0, 9.=0).
For ¢ = 0° one has normal incidence, for o = 90° the panel is seen under gra-
zing incidence. The PO-result for a panel with zerc thickness, which is
usually compared with experimental results, is shown in Fig. 3.4. The maximum
RCS-value amounts to 4.33 d&Bsm.
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Experimental result for vertical
polarization.
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Fig. 3.5

PO-result for the test panel
with thickness 0,044 a.

Besides the smoothing of the deep nulls of the PO-result, the sidelobe peaks
far from the mainlobe are significantly higher in the experiment than in the
theory. At grazing incidence a deep null of -= GB is predicted from theory.
In the experiment this null cccurs only for horizontal polarization, while
for vertical polarization & level of about -27 dB under the main lobe peak
can be observed. In view of the experimental results the theoretical results
need improvement.

However, it must be emphasized, that for the experiment a panel with a thic-
kness of 0.044 % was used while for the theory the panel was assumed with
zero thickness. Thus far the comparison is a little unfair. If one models the
flat plate with the same thickness as was used for the experiment, then it
consists of six faces. Each of them can contribute to the total scattered
fleld 1f it is illuminated by the incident field. The result is presented in
Fig. 3.5. One can see that the deep nulls are filled up, that the peaks of
the distant sidelobes are higher than in the case of zero thickness, and
that, at grazing incidence, an RCS cn the order of -41 dB under the peak is
predicted compared to -+ dB for the zero thickness panel and the -27 dB of
the experiment.
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In the following the influence of the edges is considered. First the panel
with zero thickness is analysed.

Edges 2 and 4 make an angle B = 90° with the incident ray independent from
9y, See Fig. 3.1, while . of edges 1 and 3 varies with B = 90° + ¢,. From
Eq. (2.11) and Eq. (2.12), one can expect an ¢scillating kehaviour of the RCS
of edges 1 and 3 and a monotonic function for edges 2 and 4 with respect to
the rotation angle ¢,. For rotation angies 0° < o, < 180°, edge 2 is nearer
to the radar cbserver than edge 4, therefore, it 1s scmetimes called the lea-
ding edge while edge 4 is the trailing edge.

First the influence of edges 1 and 3 on the RCS computed by PC is considered.
The scattering matrix of edge 1 is given by

| e-dkr sin(kLeingy) |DE Din

£ o =
(3.1) [T£) 2n " KLsingy, 0 bt |

Srh

with arguments ye = 90°, Be = 90° + ¢, for Df, DE and DEn. For edge 3 the

following formula is obtained:

o kT sin(kLsing,) |D& DL
(3.2) [15] =

L .
Zn klLsingy 0 DE !
m

with ygo = 920°, Be = 90° - ¢y.

We can make the following observations:

1. Both scattering matrices are purely real, after normalizing by the fac-
tor e”IKE/r.

2. The maximum value is reached for g, = 0° (the incident ray hits the
plate normally). The maximum value amounts to about -32 dBsm which is ab-
out -36 dB under the PO-value. This means that the peak value computed by
the PO-method is negligibly influenced by the diffraction effects of ed-
ges 1 and 3. Since, further, the RCS decreases with increasing angle ¢,
in an oscillating manner, both edges have practically no influence on the
PO-result.

3. Since mirror symmetries for D, and Dy hold, see Fig. 2.6, the copolar
scattered fields of each edge are equal in amplitude and phase.

4. Both matrices indicate a cross-polarization term and, therefore, are
asymmetric. Since, however, for the edge coefficient DL, a radial symme-
try, see Fig. 2.6, holds, the sum matrix [Tf, 3] = [Tf] + (15} is sym-
metric and is given by

ok sin(kLsingy) |DE& 0

f l
(3.3) [T131 - L }L '

0 o2
with arguments y. = 270°, Pe = 90° - ¢,. The sum matrix predicts diffe-

rences between horizontal and vertical polarization. However, this effect
has practically no influence on the final result.

33



Fig. 3.6 shows the RCS of edge 1 and 3 for herizontal polarization and Fig.
3.7 for vertical polarization. Fig. 3.8 shows the sum RCS of edges 1 and 3
for horizontal polarization. For vertical polarization only negligible diffe-

rences exist,
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Fig. 3.6 Fig. 3.7
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Contrary to edges 1 and 3, edges 2 and 4 generate contributions of signifi-

cant practical interest. Bearing in mind that DL, (Be = 90°) = 0, one obtains
for edge 2
-4 . . Df 0
Jkr =
(3.4) [T5] = - %_ g oJkasingy
T r .
0 DL

The arguments of the edge coefficients are yo = 270° - ¢y, B = 90°. For
edge 4, we get for the parameters yo = 270° + 94, Pe = 90°

£
=-Jjkr _ ; D 0
(3.5) [T%] = - %E E_E__ L o~ Jkasingy

0 ot

The following observations can be made:
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After normalization both scattering matrices appear to be complex.

The RCS contributions of both matrices vary monotonically with respect to
the rotation angle and are significant compared tc the PO-solution.

The individual RCS contributions are different from each other and show

differences for horizontal and vertical polarization.

For horizontal polarization, the contribution of edge 4 dominates, while,
for vertical polarization, the contribution of edge 2 dominates.

Since symmetry, see Fig. 2.4, is given, the RCS of edge 2 for horizon-
tal (vertical) polarization is identical to the RCS of edge 4 for ver-

tical (horizontal) polarization. For the sum matrix one obtains

(3.6)

[T

£
2r4

} =

1 e Jkr ! ¢
-5 L cos{kasingy) (D5-DE) -
! 0 -1
.1 eTdkr . 1 0
- J5r T L sin(kasing,) (DRIDE) ;

0 1

where the edge coefficients have the arguments y. = 270° - ¢, Be = 90°.

The individual RCS contributicn of edges 2 and 4 is represented in Fig. 3.9
and Fig. 3.10. The sum RCS of edges 2 and 4 is given in Fig. 3.11,
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Fig. 3.9
RCS of edge 2 (leading edge) for hori-
zontal polarization and of edge 4 (trai-
ling edge) for vertical polarization.
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Fig. 3.12 finally shows the PO-result plus the contribution of all four edges
which is identical for horizontal and vertical polarization. One can confirm
excellent agreement with the experimental results for vertical polariza-
tion. It is, however, unsatisfactory that the theoretical solution doesn’t
indicate any polarization dependence.
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Mathematically this can be explained by discussing the scattering matrix

[T, 4]. The imaginary part has identical elements for horizontal and ver-
tical polarization. The real part has elements of equal magnitude but opposi-
te sign, so that, with the additive correction cof the purely imaginary PO-so-
lution, the matrix behaves like -a-jb for horizental and +a-jb for vertical
polarization. This means that the final RCS result (PO-solution + EC-solu-
tion) presents identical values for horizontal and vertical polarization.
This is not in agreement with measurements. Physically the effect is ex-
plained by the fact that the theory used does not take into account second
and higher order diffraction effects. Fer horizontal polarization, the

fields asscciated with double diffraction e.g. are 4 kL greater than the cor-
responding vertical polarization contribution [21]. Polarization dependent
effects, however, are predicted by the theory for other diagram cuts, other
panel shapes {e.g. triangle) or cther wedge angles.

The latter is dermonstrated for a flat plate with dimensions of the square pa-
nel, however, with the same thickness, namely 0.044 &, as in the experiment.
This plate is modeled now by 6 panels and 12 edges {(n = 1.5). Without discus-
sion 1f it is allowed to use the theory for close adjacent edges the result
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Fig. 3.13 Fig. 3.14
RCS of the test panel with 0.044 1 RCS of the test panel with 0.044 A
thickness for horizontal polarization. thickness for vertical polarization.
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of the computations is presented in Fig. 3.13 and Fig. 3.14. For horizontal
polarization, the discrepancies between theory and experiment have become mi-
nor, but the deep null for grazing incidence again is not predicted by the

theory,

If the plate is rotated around the z-axis by an angle of ¢, = 45° a diagonal
cut can be achieved by a following rotation with ¢. The theoretical results
are presented in Figs. 3.15 and 3.16. Again no creoss-polarization occurs
which is in agreement with symmetrical properties. The experimental results
are presented in Figs. 3.17 and 3.18. Since the RCS-values drop very quickly
down to levels of about -40 dB under the mainlobe it is not very meaningful
to discuss minor deviations between experimental and theoretical results.
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Fig. 3.15

Theoretical RCS of the test panel
for a diagonal cut, horizontal pola-
rization.
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Fig. 3.17

Experimental RCS of the test panel
for a diagonal cut, horizontal po-
larization.
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Fig. 3.16
Theoretical RCS of the test panel
for a diagonal cut, vertical pola-
rizatiom.
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Fig. 3.18

Experimental RCS of the test panel
for a diagonal cut, vertical pola-
rization.

Finally, the RCS has been computed for a cut where the rotation axis makes an
angle of ¢, = 30° with the main axis (15° with the diagonal) of the plate. In
this case no symmetry occurs and the theory predicts cross-polarization. Be-
cause of the asymmetry in the scattering matrixz, the cross-polarization HY,
see Fig. 3.19, is slightly different from the cross-polarization VH, see Fig.
3.20. No experiments could be carried out at this time in our institute; see

however [27].
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Fig. 3.19 Fig. 3.20
Theoretical RCS of the test panel Theoretical RCS of the test panel
for a 30°-cut, HV-polarization. for a 30°-cut, VH-polarization.

This section is closed with simple formulas derived from the above matrices
to estimate the effect of a single edge in relation to the RCS peak value of
a panel computed by PO. The panel may be of arbitrary polygenal structure
with size A. The edge under consideration has the length L, is hit ncrmally
by the incident wave and is rotated arcund the y-axis by the angle ¢, (this
is just the situation of edge 2 in Fig. 3.1). Relating the magnitude of the
elements of the scattering matrix given by Eqg. (3.4) tc the peak value of the
PO-scattering matrix, one obtains for horizontal polarization

L |pE|
kA !

(3.7) 'yg = 20 log

and for vertical polarizaticn
L |pZ]
kA

(3.8) ryv = 20 log
The arguments of Df, DI are wo = 270° - gy, B = 90°.

Using the values for Df and Df given in Fig. 2.4 for a2 half-plane (n = 2) and
in Fig. 2.5 for a step (n = 1.5), the following table may be established
choosing the test panel c¢f this section as an example.

oy 0° g5°f  90° | 135° | 180° | 225° 270°
halfe | ruy [(dB] | =36.1 | -40.8 | -» | -40.8 | -36.1 | -33.1 | -30.1
plane
(1=2) | v [dB] | -36.1 | -33.1 | -30.1 | -33.1 | -36.1 | -40.8 | -=
step | Tew [dB) | -32.3 | -36.8 | -44.5 | -42.8 | -4e.5 | -36.8 | -32.3
(=130 taB] | -= | -40.3 | -34.8 | -35.4 | -34.8 | -40.3 | -=

Table 3.1 Level of edge diffraction effects related to the PO-peak value for
the square test panel with edge length 1=5.08 &.
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4, Bpplication of the EC-Methed for a Circular Cylinder and a Double Dihedral

4.1 Circular Cylinder

The test cylinder has a length of 5 % and a diameter of 1 L. The wave length
is 1128 mm. The broadside RCS amounts to 20 dBsm and the front face RCS to
9.9 dBsm. The cylinder is rotated around an axis vertically to its own axis.
Theoretical results for the smooth cylinder based on PTD are published toget-
her with experimental results by Ufimtsev in [6]. The circumference of the
cylinder was modeled (see Fig. 4.1) by 14 rectangular panels with dimensions
5 % x 0.22 A. The deviation from the true cylinder surface was about i/8C.
Each of the front faces was medeled with 14 triangles. In the geometrical mo-
del artificial edges (n = 1.29) arise between the rectangular panels. The na-
tural circular edges (n = 1.5) between the cylinder circumference and the
front faces are approximated by straight lines of length 0.22 X. Both types
of edges are treated in the same way by the theory.
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RCS (dBsm) —=
n

Na | ]

A

~10 IR
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Fig. 4.1 Fig. 4.2
Panel model of the test cylinder. RCS of the clinder modeled by
panels, PO-solutien.

The PO-solution, insensitive to polarization, is presented in Fig. 4.2. The
results of the experiment and of the PTD-theory for horizontal and vertical
polarization are given in Fig. 4.3. The broadside peak of the theoretical
curves, however, should not exceed 20 dBsm. The pictures of Fig. 4.4, finally
present the results of the procedure outlined in this paper. For this special
cut they should be identical to the results of Ufimtsev. This is the case
except for the difference at broadside incidence and some deviations of mi-

nor practical interest.
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Fig. 4.3 RCS of the smooth cylinder, experiment (---) and PTD-solution (—),
left side: HH-polarization, right side: VV-polarization.
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Fig. 4.4 RCS of the cylinder modeled by panels, PO- and EC-solution,
left side: HH-polarizatiocn, right side: VV-polarization.
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4.2 Double Dihedral

A double dihedral constructed on the basis of a cube with additional shado-
wing surfaces, see Fig. 4.5, is rotated in an unconventional way as shown by
Fig. 4.6. For « = (° the edges of the double dihedral make an angle of 45°
with the axis of rotation. The purpose was to generate a strong depolarized
backscattered field. Previous PO-results are published for the main cut in [2]
and for the diagonal cut within a restricted range of aspect angles in [4].

4+i 500 »t—
/// ]
)
o
/// 250
/" | Fig. 4.5
Cube with additional shado-
5 |, 245_*L_ wing faces forming a double
- | 250 dihedral, dimensions in mm,
AT 250"
245
L
1
axis of
rotation
d!
L
Cl= Qe =15° {=30° (=450

Fig. 4.6 Geometry and axis of rotation.

Figs. 4.7, 4.8 and 4.9 present the results for VH-polarization of experiment,
of PO including double reflection and of PO + EC for the full range of aspecl
angles and a frequency of 15.5 GHz (& = 19.4 mm). The measurements had to be

arranged with great care since a wide dynamic range was needed. In addition,

the exact positioning of the double dihedral according Fig. 4.6 caused major

problems.

The structure of the pattern arcund 0° is well represented by PO alone but
the decrease is too rapid with increasing aspect angles. In addition, the
spikes at -235°, -180°, -125°, -535° and +55° are not predicted by PO. This,
however, is the case when the EC-field is added to the PO-field. The spikes,
therefore, are due to edge diffraction only.
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Fig. 4.7 PO-result for the double dihedral, VH-polarization.
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Fig. 4.9 PO- and EC-result,
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5. Conclusion

The PO-method is frequently applied with good success to predict the RCS of
large and complicated structures modeled by a collection of quadrangular and
triangular panels. However, there are certain situations (specific structu-
res, pattern cuts, polarizations) for which a correction of the PO-field by
an edge diffracted field is required.

In this paper the concept of equivalent currents (EC) is applied. The fringe
currents of Michaeli are used to derive the scattering matrix of an isolated
edge with arbitrary length and orientation in an observer fixed coordinate
system. The relatiocnship of the method to other theories which are concerned
with edge diffraction are summarized by some statements. The theory is ap-
plied for the analysis of a square flat plate, of a cylinder and of a double
dihedral. All theoretical results are compared with measurements,

The square flat plate with edge length 5.08 i is analysed in great detail.
The results for the principal plane pattern are in excellent agreement for
vertical polarization, independent of whether the plate was assumed with zero
thickness or with 0.044 A thickness (as used for the measurements). For hori-
zontal polarization the agreement is unsatisfactory. In the case of zero
thickness beyond that identical results for vertical and horizontal polari-
zation are obtained. These effects are due to second order diffraction ef-
fects neglected in the EC-theory. This means that further effort is required
if one is interested in the improvement of RCS calculations of an isclated
plate.

The method is further applied for a cylinder with length 5 A and diameter

1 4. The circumference was modeled by 14 rectangular panels, thus introducing
artificial edges. Each of the front faces consisted of 14 triangular panels,
thus modeling a circular edge by short straight edges. The RCS-results of the
EC-method are in good agreement with those of the PTD-method and experiment,
both applied for a smooth cylinder.

Finally the concept is used for a double dihedral which was positioned in
such a way that strong depolarizations could occur during rotation. Also in
this case the correction of the PO-field by the fringe current field was very
efficient. The calculated RCS-values are again in good agreement with experi-
mental results.

So one can conclude that the implementation of the presented procedure in a
computer program would be efficient enough to treat edge diffraction effects
with sufficient accuracy under practical viewpoints.
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Appendix

The coefficients DL, DL, DI, of the backscattering matrix are given by the
theory of Michaeli [9]. For more details see also [15].

fo_ - ppo - ppe =
(A1) Dv Dlv Dlv + D2v D2v PR e,m,em ,
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The coefficients D., , DE® result from D, , DE® by the following transforma-
‘ions 2vh 72w v Ty

arccospy
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