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Abstract— The 1D inverse scattering problem of
reconstructing the material properties of an inhomo-
geneous lossy dielectric slab is considered. The ma-
terial properties are reconstructed using scattering
data from time harmonic electromagnetic plane waves.
The incident plane waves are either TE or TM polar-
ized. The inverse scattering problem formulated as
a nonlinear optimization problem by means of inte-
gral equations is numerically solved using an iterative
scheme and Tikhonov regularization. Numerical ex-
amples with both types of polarization are presented.

I. INTRODUCTION

In this paper we consider the inverse scattering prob-
lem of reconstructing the permittivity and conductivity
profile of an inhomogeneous lossy dielectric slab from the
known incident and scattered electric fields.

The solution methods for both the direct and the in-
verse scattering problem are based on integral equations.

The medium of interest is probed by plane waves at
a single frequency which are either TE or TM polar-
ized. The waves are incident at a finite number of angles.
The plane of incidence is assumed to be parallel to the
z — y plane. We define the TE waves to be linearly po-
larized with the electric field vector perpendicular to the
plane of incidence, the TM waves to be linearly polarized
with the electric field vector parallel to the plane of in-
cidence. The inversion algorithm employs measurement
data from either two receivers (R1 and R2) or from one
receiver (R1), see Fig. 1.

All measurement data used for the inversion are simu-
lated by numerically solving the corresponding direct scat-
tering problem. The error level of the measurement data
can be estimated to be err < 5.0 - 107*%. Hereby as in
the following the relative mean square error defined by
err = ||f — fllza/ || fllz, is used to specify a deviation of
a disturbed function f compared to its original f.

As the inverse electromagnetic scattering problem is
nonlinear, an iterative scheme (3], [4] is applied to re-
duce the nonlinear problem to a sequence of linear in-
tegral equations which are severely ill-posed [2], [1]. To
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obtain stable approximate solutions to the ill-posed inte-
gral equations of the first kind, some kind of regulariza-
tion is needed. In this paper Tikhonov regularization was
applied. As the iterative algorithm starts with an initial
estimate of the material properties the procedure allows
to consider a priori information.

For the numerical evaluation of all integral operators we
used the point-matching method with Gaussian quadra-
ture. Quadratic isoparametric finite elements were used
for the simulation of the measurement data. In order to
rule out so called inverse crimes [1], different discretiza-
tions are used for the simulation of the measurement data
and for the reconstruction of the material profile. Nu-
merical examples show the performance of the inversion
algorithm for both polarization types (TE and TM). In
the case of TE polarization a wider range of contrasts
could be reconstructed. The simulations point out that
the inversion algorithm is band-limiting.

1I. DIRECT ELECTROMAGNETIC SCATTERING

An inhomogeneous lossy dielectric slab with thickness

l = 25—z, embedded in free space, is successively illumi-

nated by N time harmonic electromagnetic plane waves

with either TE or TM polarization (see Fig. 1). The illu-
minated nonmagnetic material is described by

1 k()

n(r) = — —, 1

() = =leta) +i 7] (1)

where £(z) denotes the permittivity, x(z) the conductivity

and w the angular frequency of the incident plane waves.

A. TE polarization

In the case of TE polarization we have IV time harmonic
incident plane waves

(2)

with wave number kg = w,/Eofin, angular frequency w,
angle of incidence 8,, r € [1, N}, and

Ei"¢ = E!(z,8.,) exp(iko sin 6, y) exp(—iwt),

Ei(x,0,) = Eq exp(ikq cos 8, z). (3)

Using

El®* = E,(z,6,) exp(iko sin 0, y) exp(—iwt)  (4)
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Fig. 1. Geometrical configuration of the problem

for the total field, the underlying differential equation
reads [3]

a2
(d > + Kk} [n(z) — sin® @ ]) E.(z,6;) =0, (5)
where z € [z1,%;]. The second kind integral equation

E,(x,8,) = E}(z,0,) + E}(z,6,)

iyt / m(z')G(z,z,0.) B, (', 0,)dz’'  (6)

z:

= Ezi(z: 6"')

holds for E.(z,6,), z € IR, where
m(z') = 1-n(z') (7)
and

G(z,2',8,) = exp(iko cos by |z —z'|)  (8)

1
2k cos @,

denotes Green’s function.

B. TM polarization

In this case the IV time harmonic incident plane waves
take the form

E" = E%(z, 6, ) exp(iko sin 6, y) exp(—iwt),  (9)

where

sin @,

E'(z.6,) = Ey { — cosb, ] exp(tkocosbrz).  (10)

The total electric field E*°? can be written as

Etot =E*(z,y,6,) exp(—iwt), (11)

where E*(z,y,6,) = E(z,8,) exp(iko sin @, y). Using (11),
the wave equation reads [3]

curl curl E* — kgn(z)E"' =0, z € [z1, 23] (12)

As solution to (12), we obtain for E(z,0,), z € [z1,22], a
second kind integral equation

[ "(Oz) (1’ ]E(z, 8,) = E'(z,6,)

-kff/m "&(z,a',6,)E(z',6,) dz (13)

where G(z,z',6,) denotes a second rank tensor

i gin g, 9G

—-tsing

% Sinbr g% a4
Gcos? 6,

Gsin 6.

E(:r, :L", 61") = (
- sm B,a——

and G is known from (8).
Qutside the material, z ¢ [z1, 2], there is n{z) = 1 and
E(z,6,), z ¢ [z1, z2], is obtained from

E(z,0,) = E'(z,6,) + E*(z,0,)

k{;‘/m(z) (z,2,0,)E(z',6,) de,

1

= Ei(z,6,) - (15}

using the solution of (13).

III. THE RECONSTRUCTION METHOD

For each incident field the components of the scattered
electric field are collected at M points zg;, Tr; ¢ [Z1,T2),
j € [1,M], where M = 2 in the case of two receivers
and M = 1 if one receiver is used. Given the measured
scattered electric field B (zgr;,8,) in the TE case, the first
kind integral equation

Er(aps,6,) = —k2 / m(z)G (2 rs, &, 0r) B (2, 6;) da’

I

(16)

has to be solved for m. In the TM case the first kind
integral equation

T2
E*(zgr;j,0,) = —ki / m(z')G(zr;, 7', 6,)E(z',6,) dz
I

(17)

relates the measured scattered electric field E“(xm-,ﬁ,.)
with m and E. As the electric field E; in (16) and E in (17)
also depends on m via (6) or (13), respectively, the inverse
electromagnetic scattering problem is nonlinear. Due to
the smoothness of G and G, (16) and (17) are severely i~
posed and some kind of regularization is needed to obtain
a stable approximate solution [1].

Applying an iterative procedure, the nonlinear relations
(16), (17) can be replaced by a sequence of linear ones.
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The iterative algorithm starts with an initial estimate of
n, which allows to consider a priori information. The
iterative approach can be summarized in the following
steps:

1. Solve the direct scattering problem (6), (13) for the
field inside the medium, and (6), (15) for the field at
the observation points using the last reconstructed
material properties.

Substitute the fields (z € [zi,z2]) obtained from
step 1 into (16) or (17}, respectively, and solve the
inverse medium problem to recover the next permit-
tivity and conductivity profile by using Tikhonov reg-
ularization with a certain regularization parameter.

Repeat step 1 and compare the field, calculated at
the observation points using the reconstructed pro-
file of step 2, with the measured field data. If the
difference is less than a certain bound, adopt the last
regularization parameter, otherwise determine a new
regularization parameter. Repeat step 2 - 3 until the
solution converges.

The point-matching method is used to solve the direct
and the inverse scattering problem in this inversion algo-
rithm. For the discretization of the electric field and the
material properties, we use a finite element approximation
with the pulse functions Ny(z) as basis functions. Using
the basis functions N,(x), m{z) can be written as

P
m(z) =3 Np(z)my, (18)
p=1
where m,, is the value of m(z) at the center of the pth
finite element. The parameter P represents the number
of finite elements. Substituting (18) in (16) or in (17),
respectively, and collecting E*(zg;,8;) or Es(xﬁj ,8;) for
each angle of incidence and at each observation peoint, we
obtain the following linear algebraic representation

[A{m} = {b}. {19)
In the case of TE polarization [A4] is a (N - M) x P matrix
whose elements are

App = —k2 / Glzr;j, 7', 6,)Elz,6,)N,(z') da’,  (20)
5

where S, is the domain of the pulse function N, p € [1, P]
and ! € [N - M]. The vector {b} contains the measured
fields

{8} = (B} (zR1,61), -, B (TR, On)]7, (21)
while the vector {m} consists of the values m,
{m} = [mi1,..,mp]T. (22)

In the case of TM polarization [A] is a (2-N- M) x P matrix
due to the vectorial formulation. The matrix elements are
constructed in a similar manner to the TE case.
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IV. REGULARIZATION AND PARAMETER CHOICE

Equation {19) represents an ill-conditioned linear sys-
tem. Therefore a regularization procedure has to be em-
ployed to stabilize the results. Instead of solving (19}, the
Tikhonov functional

F({m}) = ([A}{m} - {B}II* +al{m}*  (23)

is minimized [1], where a is the regularization parame-
ter. The unique solution {m} of (23) depending on the
parameter « is given by

{m} = ((A]"{A] +a (1) [A]" {8}, (24)

where [A]" denotes the conjugate transpose of [4] and [I]
is the identity matrix. The choice of the parameter a
is crucial to the convergence of the iterative scheme. A
small parameter o puts more weight on minimizing the
first term in (23) and emphasizes the accuracy between
the computed and the measured field at the observation
points. A large parameter « stresses the second term in
{(23) and cares for a stable solution. The choice of the
parameter « is a kind of compromise between accuracy
and stability.

The initial iteration steps result in relative large er-
rors between the calculated and the measured data at the
observation points. For that reason emphasis should be
taken on minimizing the second term in (23), correspond-
ing to larger values of . As the iteration processes, {m}
approaches the true profile. Hence more weight should be
put on the first term in (23), corresponding with a smaller
a. Starting with an initial regularization parameter oy,
the parameter « is decreased at each iteration step, until
the error err; ; between computed and measured electric
field at the observation points is below a certain limit e.
The error err, ; between computed and measured electric
field at the receivers is defined by
N-M 3

> Jbri = bif?
= (25)

ETTsi = N
> |bf?
=1

Hereby b;; denotes the /th component of the computed
field at the ith iteration step, b; the {th component of the
measured field at the receiver locations in correspondance
to (21).

We choose the regularization parameter o to be

a1 = oy, (26)

where the reduction factor 8 € (0,1) is determined empir-
ically and 7 denotes the iteration step. In order to avoid
t00 small parameters which result in unstable solutions
the reduction factor 3 is set to 4 = 1 if the error err,;
is less than a certain prespecified limit e. The resulting
regularization parameter is employed until the iteration
converges.



V. NUMERICAL RESULTS

In ail examples presented in this paper, the profile was
reconstructed from simulated data. For the simulation of
the measurement data, we used a finite element mesh with
80 quadratic isoparametric finite elements, and the scat-
tered electric fields were calculated at the two receivers R1
and R2at zg = —~0.2mand zzs; = 1.2 m in all examples.
The thickness [ of the slab was chosen ! = 1 m. In order to
rule out so called inverse crimes [1], different discretiza-
tions were used for the simulation of the measurement
data and for the inverse scattering problem. Therefore
we used a finite element mesh with P = 50 constant ele-
ments in the inversion procedure, where the electric field,
the permittivity and the conductivity are assumed to be
constant. The relative mean square error of the recon-
structed profile at the ith iteration step is defined as

. }
> Imp,i — mpl2

p=1
e B - W— B

P
2. my|?

=1

(27)

where p, my and m,,; denote, respectively, the finite ele-
ment number, the exact values of the function m(z) and
the reconstructed values of m(x)} at the ith iteration step
at the center of the pth finite element.

In all examples we chose the initial regularization pa-
rameter g = (.01 and the reduction factor 3 = 0.5. All
examples were reconstructed knowing the boundary of the
slab @ prieri. The iteration scheme started in each case by
the initial estimate n(z) = 1. Numerical simulations show
that the convergence of the inversion algorithm could be
accelerated by using a priors information about n(z). Un-
less explicitly mentioned, in all examples the reconstruc-
tions were calculated using measurement data from both
receivers. The angles of incidence @, are equally spaced
in the range [0°, 70°] for the N incident plane waves in all
examples.

A. TFE polarization

Fig. 2 and Fig. 3 show the reconstruction of the pro-
file n(z}) = 1 — m{z) = 1 +sin{rz/l) + i sin(rz/l), where
the error of reconstruction is 3.5% with a proposed error
bound of e = 10~*%. We used N = 70 incident plane
waves at an operating frequency of f = w/27 = 50 MHz.
The wave length A in free space is A = 6 m.

The numerical convergence of the profile error erry, ;
and the error err,; is plotted in Fig. 4 and in Fig. 5,
where the proposed bound e to stop the reduction of the
regularization parameter o is varied. The results clearly
show that the reconstructions depend on this error limit.
If the bound e is selected too small, e.g. ¢ = 1074%, the
inversion algorithm doesn’t converge and we obtain an
unstable solution without any physical meaning.
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Fig. 2. Reconstruction of the real part of —m(z) compared to the
original; the profile is described by n(z) = 1+sin(rz/l)+isin(rz/1);
the error of reconstruction is 3.5% (e = 10~ 1%).
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Fig. 3. Reconstruction of the imaginary part of —m(z) compared
to the original; the profile is described by n{z) = 1 + sin(mz/I) +
isin(zz/l).

Table I lists the reconstruction errors obtained by vary-
ing the error limit e.

TABLE I
ErRrROR BOUNDS AND RECONSTRUCTION ERRORS
€ 10-1% 1072% 10-3% 1074%
ETTm,i 3.5% 1.8% 0.8% failed

Reconstruction errors corresponding to different error bounds ¢
for the profile n(z) = 1 + sin{wz/l) + isin(rz/1).

As in practice the profile error err,, ; cannot be mea-
sured, the only available measure of convergence is the
error quantity err, ;.

Reconstructing the profile only with measurement data
from one receiver at zg; leads to a reconstruction error
of 10.3% with e = 107% and to a reconstruction error
of 4.7% with e = 4- 1072%. The reconstruction failed for
e = 1072%. The numerical examples show, that better
results are obtained by using data from both receivers.
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Fig. 4. Reconstruction error err,, ; in % versus the number of iter-
ations for different error bhounds e.
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Fig. 5. Error erry,; in % between the computed and the measured
field at the abservation points versus the number of iterations for
different error bounds e.

The results of the reconstruction of a more complicated
profile n(z) = 1-m{z) = 2+ (z /1) sin(2nz /1} +i sin{mz /1)
are plotted in Fig. 6 and Fig. 7. Again we used 70 plane
waves at an operating frequency of f = 50 MHz. The re-
construction yvields an error of 3.1% with an error bound
e=2-10"%%.

In the next example we consider an object with discon-
tinuous profile

The measurement data were simulated using 70 incident
plane waves at an operating frequency of f = 100 MHz.
The error limit e was chosen e = 107! %. Fig. 8 and Fig. 9
show the results of the reconstruction. The inversion al-
gorithm is band-limiting and we obtain a smoothed ver-
sion of the profile. Additional numerical simulations con-
firmed that our inversion algorithm reconstructs smooth
profiles very accurately, while for discontinuous profiles
band-limited reconstructions are obtained.

2.00 +% (z/1)°, z/l€[0.0,0.5]
1.25 +i (z/1)°, z/l€ (0.5,1.0]

n{z) = 1 —m(zx)
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Fig. 6. Reconstruction of the real part of —m(z) compared to the
original; the profile is deseribed by n(z) = 2 + (z/{)sin(2rz/l) +
isin(rx/i); the error of reconstruction is 3.1% {e = 2 - 10~ 3%).
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Fig. 7. Reconstruction of the imaginary part of —m(z} compared to
the original; the profile is described by n{z} = 2+ {z/{) sin{27z/{)+
isin(mz /i),
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Fig. 8. Reconstruction of the real part of —m(z) compared to the
original; discontinuous profile.
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Fig. 9. Reconstruction of the imaginary part of —m(z) compared
to the original; discontinuous profile.

B. TM polarization

Fig. 10 and Fig. 11 show the reconstruction of the pro-

0.6 | l T T

 reconstt,. ——
..... T

0.5

0.4

03

0.2

Real Part of —m(z)

a1

02 04 06

Position z (m)

Fig. 10. Reconstruction of the real part of —~m(z) compared to the
original; the profile is described by n{z) = 1.0 + 0.5sin(mz/l) +
0.5¢sin(mz/1); the error of reconstruction is 3.2% (e = 10~ 1%).
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Fig. 11. Reconstruction of the imaginary part of —m{z) compared
to the original; the profile is described by n{z) = 1.04+-0.5sin{rz/{})+
0.54sin(xz/L).

59

file n(z) = 1 -m(z) = 1.0+0.5sin(zz /1) + 0.5 sin(nz/1).
We used 50 incident plane waves at an operating fre-
quency of f = 100 MHz. Table II shows a comparison of
the achieved reconstruction errors in the TE and the TM
case corresponding to different error bounds e using the
same parameter configuration in both polarization cases.

TABLE II
ERROR BOUNDS AND RECONSTRUCTION ERRORS
e 1071% 5.1072% 1072% 10~3% 5.10"4%
TM :errm; 3.2% 1.3% failed - -
TE :errm,i 5.0% 3.7% 1.7% 1.4% failed

Comparison of reconstruction errors corresponding to different
error bounds e for the profile n(x) = 1+0.5sin(wx /) +0.5i sin(wz/{)
in TE and in TM case.

Comparing the reconstructions obtained by TE polar-
ized incident waves to the results of TM polarized waves,
a wider range of profiles could be reconstructed in the case
of TE polarization. Using TM polarized incident waves
the reconstructions succeeded as long as the deviation of
n(z) from the mean value of n(z) was not too large. The
influence of a combination of both polarization types on
ihe reconstruction of material profiles has still to be ex-
plored.

VI. CONCLUSION

A numerical method for solving the 1D nonlinear in-
verse electromagnetic scattering problem based on inte-
gral equations has been proposed using TM or TE polar-
ized probing waves.

Several examples have been investigated. From the
above results one can conclude that the algorithm gives
reasonable reconstructions of smoothly varying permittiv-
ity and conductivity profiles.

In the case of discontinuous profiles, the method leads
to a smoothed i.e. to a filtered version of the profile.

The numerical simulations show that in the case of TE
polarization the range of the profiles the inversion algo-
rithm is able to reconstruct is larger than in the TM case.
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