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I. Introduction 
The focus of this tutorial is to detail the implementation of a locally corrected Nyström (LCN) 

based solution of three-dimensional electromagnetic scattering problems.  The LCN method has 
demonstrated exponentially convergent solutions for electromagnetic scattering problems, 
including problems involving PEC scatterers [1, 2], dielectric scatterers using surface [3] and 
volume integral equation methods [4], as well as for thin-wire antennas [5].  The principal 
advantages of employing a methodology that is high-order convergent are:  i) the computer 
resources required to realize accuracy to a desired tolerance can be greatly reduced as compared 
to a classical low-order technique, ii) accurate estimations of the solution error can be efficiently 
obtained, and iii) the LCN method is quite simple to implement.  As the LCN method is 
maturing it is being applied to more practical engineering design problems and is proving to be a 
very powerful solution technique. 

The following sections of this tutorial are aimed at outlining more specific details of 
implementing the LCN method.  While space limits a full description of all aspects of an 
implementation, it is hoped that enough detail is provided to encourage readers to implement and 
test this very powerful solution technique. 

II. Integral Equations 

Consider the interaction of a time-harmonic electromagnetic wave ( j te ω  time-dependence) 
with a material scatterer made of a composite of penetrable materials (with piecewise constant 
material profiles) and non-penetrable conductors.  Let the ith region with material profile ( , )i iε µ  
be defined as volume iV .  A surface separating volumes iV  and jV  is denoted as ,i jS .  Let ,i jS +  

denote the surface just inside iV , and ,i jS −  denote the surface just inside jV .  Equivalent current 
densities are then placed on surfaces separating each material volume.  These are defined as: 
 

, , , ,
, , , ,ˆ ˆ ˆ ˆ, , ,

i j i j i j i j
i j i i j i i j j i j jS S S S

J n H M n E J n H M n E
+ + − −

+ + − −= × = − × = × = − ×
r r r r r r r r

, (1) 

where ˆin  and ˆ jn  are the unit normal directed into iV  and jV , respectively.  At any point on ,i jS  
ˆ ˆj in n= − , and the tangential fields are continuous, thus: 
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 , , , , , ,,i j i j i j i j i j i jJ J J M M M+ − + −= − = = − =
r r r r r r

. (2) 

On the surface of a perfect conductor, only the electric current density is supported.  Thus, 
 

,
, ˆ

i p
i p i S

J n H
+

= ×
r r

. (3) 

The scattered electric and magnetic fields radiated by the equivalent currents in volume iV  are 
computed as: 
 ( ) ( ) ( ),scat

i eq eq i i eq i eqE J M J Mη= −L K
r r r r r

, (4) 

 ( ) ( ) ( )1,scat
i eq eq i eq i i eqH J M J Mη −= +K L
r r r r r

, (5) 

where 

 ( ) ( ) ( )2

1 ,i eq i eq i
i

X jk I X r G r r d
kΩ

⎡ ⎤
′ ′ ′= − + ∇∇ ⋅ Ω⎢ ⎥

⎣ ⎦
∫L

r r r r r , (6) 

 ( ) ( ) ( ),i eq i eqX G r r X r d
Ω

′ ′ ′= ∇ × Ω∫K
r rr r r , (7) 

and Ω  is either a surface or volume, I is the unit dyad, ( ) | |, / 4 | |ijk r r
iG r r e r rπ′− −′ ′= −

r rr r r r , 

i i ik ω ε µ=  and /i i iη µ ε= .   
A surface integral formulation is then derived by enforcing the appropriate constraints on each 

material boundary. A combined field formulation based on Müller’s formulation [6, 7] is applied 
on material surfaces leading to: 
 ( )

, ,, ,
,ˆ

i j i j i j
i j i ji j i j

inc inc scat scat
r i r j i i j r r r i r jS SS S

t E t E t n M t E t Eε ε ε ε ε ε
+ +− −

⋅ + ⋅ = ⋅ × + − − ⋅
r r r r rr r r r r

, (8) 

 ( )
, ,, ,

,ˆ
i j i j i j

i j i ji j i j

inc inc scat scat
r r i i j r r r rS SS S

t H t H t n J t H t Hµ µ µ µ µ µ
+ +− −

⋅ + ⋅ = − ⋅ × + − ⋅ − ⋅
r r r r rr r r r r

, (9) 

where, ,inc inc
i iE H
r r

 are radiated by impressed sources in region i, ,scat scat
i iE H
r r

 are radiated by 
equivalent currents in volume iV , and t

r
 is a test vector tangential to ,i jS . The advantage of this 

formulation over the classical PMCHWT (Poggio, Miller, Chang, Harrington, Wu and Tai) 
formulation [8] is that it behaves as a second-kind integral equation moderate to low contrast 
materials, and the hyper-singularity of the L -operator in (6) is reduced by one order. 

On a PEC surface, the combined field integral equation (CFIE) is applied [9]:  

( ) ( )
, , , ,

,ˆ ˆ1 1
i p i p i p i p

inc inc scat scat
i i i i p iS S S S

i i

t E t n H t E t J n Hα αα α
η η

⎛ ⎞ ⎛ ⎞⋅ + − ⋅ × = − ⋅ + − ⋅ − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r r r r rr r r r
. (10) 

where α  is a real constant, generally defined between 0 and 1. 

III. Nyström Discretization 
In [2], it was shown that the LCN method is equivalent to a moment method formulation with 

smooth basis and testing functions that employs a fixed-point numerical quadrature 
approximation for the outer integral.  Through a simple transformation, this can identically be 
expressed as a quadrature-point matched method of moment formulation [10].  Then, mapping 
the currents to the quadrature points, the method of moment formulation can then be rendered in 
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an identical form as the LCN method [2].  Since most practitioners in computational 
electromagnetics (CEM) are trained in the method of moments, this paradigm will be followed in 
this tutorial. 

It is assumed that the three-dimensional surfaces are discretized using high-order quadrilateral 
patches (Section IV).  A set of basis functions is then introduced for each patch.  For smooth 
surfaces, one can expand the vector surface current density in terms via Legendre polynomials 
[1, 2, 10] leading to a set of functions that is polynomial complete to order p: 

 
( ) ( ) ( )
( ) ( ) ( )

, 1 2 1 2

, 1 2 1 2

, / ,

, / ,

j k
i i j k

j k
i i j k

J u u a P u P u g

M u u a P u P u g

=

=

r r

r r  (11) 

for ( )1, 2; , 0.. 1i j k p= = − , where, following the notation of Stratton  [11], 1 2( , )u u  are the local 

curvilinear coordinates of the quadrilateral patch, iar  are the local unitary vectors and g  is the 
Jacobian evaluated at 1 2( , )u u , and ( )jP u  are jth-order Legendre polynomials.  Note that for 

simplicity, we have assumed identical basis orders along the 1u  and 2u  directions.  In general, 
these do not have to be equal.  Some observations are made for this choice of basis: 1) the basis 
functions are local to each quadrilateral patch and do not enforce current continuity across patch 
boundaries, 2) the i-th basis is directed along iar  and is tangential to the patch boundaries 0ju =  
and 1ju =  ( j i≠ ), and 3) there are 22 p×  basis functions per patch for each current type.   

For geometries that lead to currents with known edge singularities (say a knife edge), basis 
functions with Jacobi polynomials can also be employed [2, 12].  Else, for general edge 
singularities, a mixed-order basis proposed by Çalişkan and Peterson can be employed [13, 14].  
For the sake of this tutorial, we will limit the discussion to the polynomial complete basis in (11). 

The currents in the integral operators in (8)-(10) are expanded via the basis functions in (11) 
and weighted by constant coefficients.  This leads to 22 p×  unknowns per patch for each current 
type.  Consequently, 22 p×  constraints must be enforced.  To this end, an appropriate quadrature 
rule is introduced over each quadrilateral patch.  For a quadrilateral patch, a convenient choice is 
the product of two p-point one-dimensional Gauss-Legendre quadrature rules [15].  This leads to 

2p  abscissa points on the patch.  Then, the integral operator is “tested” by performing the inner-
dot product of the operator with a test vector at each of the quadrature abscissa points.  A 
convenient choice for the test vector is simply the unitary vectors iar .  On a material surface, the 
same testing procedure is used for the electric field integral equation (EFIE) and the magnetic 
field integral equation (MFIE) in (8) and (9), respectively.  Thus, for each field type, there are a 
total of 22 p×  constraints per patch.  This leads to a square linear system of equations. 

IV. High-Order Patch-Based Discretization 
As found in [1, 2], the LCN method is most efficient when employing higher-order basis on 

large smooth curvilinear patches – that is, the error will converge to a desired accuracy with 
fewer unknowns.  The reason for this is simple: higher-order basis converge more rapidly than 
lower order basis.  Thus, with the LCN method it is desirable to model geometries with large 
curvilinear cells that represent the surface to sufficient accuracy.  A balance of CPU time and 
memory is often realized with a discrete patch representation that has an average cell radius of  
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Fig. 1. Curvilinear quadrilateral cell discretization of a spherical surface with 24, 5th-order cells). 

 
~ 1 λ .  Thus, it becomes imperative to employ isoparametric curvilinear patches that accurately 
model a surface of arbitrary curvature.  If one can not support such patches, then one is forced to 
use a refined discretization – thus losing the advantage of the high-order method.  For classical 
low-order techniques, this has not been an issue since the slow convergence requires one to 
resolve the surface with a minimum of 10 to 20 edges per linear wavelength to get reasonable 
accuracy.  Often, such fine sampling is also enough to represent a curved surface to sufficient 
accuracy using a piecewise linear approximation.   

Most commercial mesh generation programs are limited by the order of curvilinear cells that 
can be generated.  Most CAD packages provide at least bi-linear quadrilaterals (first order).  
Some will render bi-quadratic and very few will render up to bi-cubic elements.  This is still too 
limiting, since arbitrary order is desirable for a high-order method.  To have this ability, we have 
developed a mesh tool that will generate quadrilateral elements of arbitrary order from an initial 
coarse linear discretization.  As an example, Fig. 1 illustrates a sphere that is approximated by 24 
fifth-order quadrilateral patches that was generated by our mesh tool. 

A quadrilateral patch of order n is represented by ( 1) ( 1)n n+ × +  nodes that lie on the surface.  
In the unitary space, these nodes are uniformly spaced, as illustrated in Fig. 2.  Each node has a 
physical coordinate ,j krr  ( , 0,j k n= ).  The position at any arbitrary coordinate 1 2( , )u u  can be 
obtained via interpolation: 

 ( ) ( )1 2 1 2
,

0 0

( , )
n n

n n
j k j k

k j

r u u u u r
= =

= Φ Φ∑∑r r  (12) 

where the interpolation polynomials are expressed as: 
 ( ) ( , ) ( ,1 )n

i i n iu R n u R n u−Φ = −  (13) 

where ( , )iR n u  is a Sylvester interpolation polynomial [16]: 

 
( )

1

0

1 , 1
( , ) !

1, 0

i

ki

nu k i n
R n u i

i

−

=

⎧
− ≤ <⎪= ⎨

⎪ =⎩

∏  (14) 

It is noted that this interpolation procedure exactly represents a bi-linear quadrilateral when 
1n = , bi-quadratic quadrilateral when 2n = , and a bi-cubic quadrilateral when 3n = .  It also 

represents interpolations to arbitrary order.  

18



1u

2u

0 1

1

⇒
,j krr1 2

, ,( , )j k j ku u

 
Fig. 2. Mapping of a fourth-order quadrilateral cell from the unitary space to the physical patch. 

 
The unitary vectors for the patch are then computed as: 

 ( ) ( )
1 2

1 2
,

0 0

( , ) n n
n n

i j k j ki i
k j

r u ua u u r
u u = =

∂ ∂
= = Φ Φ

∂ ∂ ∑∑
r

r r  (15) 

Analytical expressions for the derivatives of the interpolation polynomials are easily derived, and 
the derivatives of the Sylvester interpolation polynomials can be expressed via a recursive 
relationship that is efficiently computed. 

This scheme is general enough to interpolate surfaces up to arbitrary order.  However, it still 
must be realized that the interpolation scheme is only 0C  continuous.  And, for very high-orders 
(~n > 10) the interpolation operator can be ill conditioned.  As a result, Gibb’s phenomena can 
occur leading to small high spatial-frequency oscillation of the interpolated surface.  These issues 
can be resolved by working with interpolation functions that enforce higher degrees of continuity 
across patch boundaries (e.g., splines or NURBS) and possibly using non-uniform point 
sampling that minimizes the determinant of the Vandermonde matrix (e.g., Lobatto or 
Chebyshev point sampling).  Nevertheless, the interpolation scheme proposed in (12) works 
quite well to reasonably high order. 

In a general implementation of a method of moment code, one would like to use an object-
oriented approach such that kernel evaluations are essentially independent of the patch type or 
order.  That is, one would like to use the same code for bi-linear quads, high-order quads, or 
specific curvilinear patches that exactly conform to a canonical surface (e.g., spherical, conical, 
cylindrical, or ellipsoidal surfaces).  This is easily done by defining a class (or a function) that 
simply returns the position vector and the unitary vectors given the local curvilinear coordinates 

1 2( , )u u  for the source or field patch.  In this way, the kernel of the code has no direct 
dependencies on the source or field patch types. 

V. Numerical Integration Issues 
The operators defined in (4)-(10) require the computation of a convolutional integral 

performed over an arbitrary “source” patch and computed to a field point.  This convolution is 
estimated using numerical integration.  How this integration is computed will depend upon the 
separation of the field quadrature point and the source patch and the level of accuracy desired.  If 
the field point lies on the source patch, then the kernel is singular and must be treated specially.  
If the field point is close to the source patch, then the integration must be performed using some 
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type of adaptive numerical quadrature.  In general, if d digits of accuracy is expected from the 
final solution, then d-digits of accuracy should be demanded from the adaptive quadrature 
routine.  This defines the “near” region.  Adaptive quadrature is not needed once the field point 
is sufficiently far away that the fixed-point quadrature rule of the Nyström discretization 
provides at least d-digits of accuracy.  This defines the “far” region.  In the near region, adaptive 
quadrature is used to compute the convolutional integral to d-digits of accuracy.  Then, a local 
correction is performed that effectively maps the current coefficient vector to the currents at the 
quadrature points (c.f., Sections II and III, pp. 2402-2404 of [2]).  In the far region this leads to 
the single point-to-point reaction that is equivalent to estimating the numerical integration of the 
convolutional integral with a fixed-point quadrature rule. 

The most difficult integration to perform in the near region is the singular integrations.  The L 
operator has a hypersingularity and must be properly manipulated so that it is numerically 
tractable.  The K operator has an integrable 1/R singularity.  However, care still must be taken to 
compute this in an efficient manner.   

Initially, consider the treatment of the L operator.  Specifically, from (6) 

 ( ) ( )2( ) ( , ) ( , ) ( )m i n i m n i m i m i m n
S S

t J jk t J r G r r ds k t G r r J r ds−

′ ′

⎡ ⎤
′ ′ ′ ′ ′ ′⋅ = − ⋅ + ⋅∇ ∇ ⋅⎢ ⎥

⎣ ⎦
∫ ∫L

r r rr r rr r r r r r  (16) 

where, ( )nJ r′
r r  is the vector basis function in (11), mr

r  is an abscissa point of the quadrature rule 
on the field patch, and the test vector mt

r
 is evaluated at mr

r .  The integrand of the first integral in 

(16) has a 1/R singularity.  However, due to the double ∇  operator, the integrand of the second 
integral is hypersingular in the limit 0R → .  In fact, it exhibits a singularity of ( )31/ RO .  

Consequently, this term must be manipulated to reduce the order of singularity.  Thus, we will 
focus on manipulating this term.  Initially, the following identity can be derived: 

 
( )( ) ( )( )( )

( )( )( )

||

||

( , ) ( ) ( ) ( , )

( ) ( , ) ,

m i m n m n i m
S

n m i m
S

t G r r J r ds t J r G r r ds
S

J r t G r r ds

′ ′ ′ ′ ′ ′ ′⋅∇ ∇ ⋅ = − ⋅∇ ⋅∇

′ ′ ′ ′= − ⋅∇ ⋅∇

∫ ∫

∫

r rr rr r r r r r

r rr r r  (17) 

where we have made use of the reciprocal nature of the Green function such that ( , )i mG r r′∇ =
r r  

( , )i mG r r′ ′−∇
r r  and the complimentary nature of the operators ( )( )||( )n mJ r t′ ′⋅∇ ⋅∇

r rr .  Also, ||′∇  is the 

projection of the gradient operator onto the surface tangent.  Next, utilizing a vector identity, the 
right-hand-side of (17) is rewritten as 
 ( ) ( )|| ||( ) ( , ) ( ) ( , )n m i m n m i m

S S

J r t G r r ds J r t G r r ds⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′= − ∇ ⋅ ⋅∇ + ∇ ⋅ ⋅∇⎣ ⎦∫ ∫
r rr rr r r r r r . (18) 

The first term on the right-hand-side of (18) can be rewritten using the divergence theorem for 
open surfaces [1] as: 
 ( ) ( )( )|| ˆ( ) ( , ) ( ) ( , )n m i m n m i m

S C

J r t G r r ds e J r t G r r dl⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′− ∇ ⋅ ⋅∇ = − ⋅ ⋅∇⎣ ⎦∫ ∫
r rr rr r r r r r

�  (19) 
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where C is the closed contour bounding the open surface S, and ê′  is the outward normal to the 
contour that is also tangential to the surface (i.e., ˆ ˆne dl dl a′ ′ ′= ×

r
, where ˆna  is the outward normal 

to S).  Next, the second-term on the right-hand-side of (18) is rewritten as: 
 ( )( )|| ||( ) ( , ) ( , ) ( )n m i m i m m n

S S

J r t G r r ds G r r t J r ds⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′∇ ⋅ ⋅∇ = ∇ ⋅ ∇ ⋅⎣ ⎦∫ ∫
r rr rr r r r r r  (20) 

This term still has a singularity which is ( )21/ RO .  To reduce this by one order, the right-hand-

side of (20) is rewritten as: 
 ( ) ( )||( , ) ( ) ( , )i m m n mn i m mn

S S

G r r t J r K r ds G r r K r ds⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′= ∇ ⋅ ∇ ⋅ − + ∇ ⋅⎣ ⎦∫ ∫
r r rrr r r r r r r  (21) 

where, ( ),m nK r′
r r is defined by 

 ( ) ( )
,

m
mn n m

r
K r

g
χ

′Ψ
′ =

′

r rr r ,  (22) 

where ,n mχ   is the constant: 

 ( ), || ( )
m

n m n
r r

g J rχ
′=

′ ′= ∇ ⋅
r r

r r , (23) 

and the vector ( )m r′Ψ
r r  is defined by: 

 ( ) ( ) ( ) ( ) ( )1 2
1 2

m m
m m mr r r r

r t a a r t a a r
′ ′= =

′ ′ ′Ψ = ⋅ + ⋅r r r r

r r rr r r r r r r  (24) 

such that at the singular point ( ) || ( )
m

mn m m n r r
K r t J r

′=
′ ′= ∇ ⋅ r r

r rrr r . Consequently, the singularity in the 

first term on the right-hand side of (21) is simply ( )1/ RO  and is numerically tractable.  The 

second term in (21) can be simplified to:  

 
( ) ( )( ) ( )

( )

|| ||( , ) ( , ) ( , )

ˆ ( , )

i m mn mn i m i m mn
S S

R
mn m

C

G r r K r ds K r G r r G r r K r ds

e K r G r r dl

⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′ ′ ′∇ ⋅ = − ∇ ⋅ − ∇ ⋅⎣ ⎦

′ ′ ′ ′= − ⋅

∫ ∫

∫

r r rr r r r r r r r r

r r r r
�

 (25) 

However, from (22)-(24), it is immediately seen that ( )|| , 0m nK r′ ′∇ ⋅ =
r r .  Then, applying the open 

surface divergence theorem on the remaining term:  
In summary, from (17)-(25): 

 
( ) ( )

( )( ) ( )

||( , ) ( ) ( , ) ( )

ˆ ˆ( ) ( , ) ( , ) .

m i m i m m mn
S S

m i m mn i m
C C

t G r r J r ds G r r t J r K r ds

e J r t G r r dl e K r G r r dl

⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′⋅∇ ∇ ⋅ = + ∇ ⋅ ∇ ⋅ −⎣ ⎦

′ ′ ′ ′ ′ ′ ′ ′− ⋅ ⋅∇ − ⋅

∫ ∫

∫ ∫

r r rr rr r r r r r r

r rrr r r r r r
� �

 (26) 

It is assumed that the Nyström discretization points are interior to S and do not lie on the contour 
C.  Consequently, the surface integration in (26) and the leading term in (16) have an integrable  
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Fig. 3 (a) Decomposing the unitary square into triangles with common vertex at the singular point.  (b) 

Mapping the “Duffy-triangle” into a parameter space. 
 
( )1/ RO  singularity.  Similarly, the surface integral arising from the K-operator is also ( )1/ RO .  

These surface integrals can be computed efficiently and to controllable accuracy using a Duffy 
transformation [17] and adaptive numerical quadrature.  The contour integrals are non-singular 
and can be computed directly using one-dimensional adaptive quadrature routines. 
 
The Duffy Transform 

At this point it deems instructive to review the integration of a singular integral via the Duffy 
transformation.  Consider the integration over a quadrilateral cell: 

 ( )
2 1

1 1
1 2 1 2 1 2

0 0

( , ) ( ) ( , ( , )) ( ( , ))m m m
S u u

I r t K r r J r ds t K r r u u J r u u gdu du
= =

′ ′ ′ ′ ′= ⋅ ⋅ = ⋅ ⋅∫ ∫ ∫
r rr rr r r r r r r  (27) 

where K  represents a dyadic kernel that has a 1/R singularity at mr
r  and it is assumed that mr S∈

r .  
Initially, the quadrilateral cell is triangulated with a set of triangles that share a common point at 

mr
r , which is defined by local unitary coordinates 1 2( , )m mu u .  This is depicted in the unitary space 
in Fig. 3 (a).  The integration over the quadrilateral is then expressed as a superposition of the 
integration over each “Duffy triangle.”  Each Duffy triangle is then mapped into a parametric 
space as illustrated in Fig. 3 (b) such that the singular point is mapped to the edge 0u = .  Thus,  

 ( )
1 1

1 2 1 2 1 2

1 0 0

2 ( , ( , )) ( ( , )) ( , )
N

m mI r t A K r r u u J r u u g u u d d
ζ ξ

ξ ξ ζ
∆

= = =

′ ′= ⋅ ⋅∑ ∫ ∫l
l

rrr r r r  (28) 

where N∆  is the number of Duffy triangles, and Al  is the area of the l -th triangle (computed in 
the unitary space).  From Fig. 3 (b): 
 ( ) ( )1 22 m mA u u u u= − × −l

r r r r . (29) 
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Fig. 4 Relative mean error in the RCS of a sphere of radius 6ok a =  computed via the LCN method 

with ninth-order basis versus the interpolation order n of the 24 curvilinear cells.  Also compared 
in the graph is the relative error of the area of the patched sphere. 

 
There is also a simple linear mapping from the parametric coordinates to the unitary coordinates: 
 ( ) ( ) ( )1 2

1 2, 1 1mu u u u u uξ ξ ζ ξζ= = − + − +
r r r r . (30) 

When evaluating (28), one first computes 1 2( , )u u  from the parametric coordinates and then 
computes 1 2( , )r u u′r , the unitary vectors and g .  Though, it is worth noting that since the 

current basis functions in (11) normalized by g , this term cancels in an actual implementation. 

VI. Some Numerical Results 
We have implemented the LCN solution for a number of integral operators and have reported 

the results in [2, 4, 10, 12, 14].  Additional studies have been reported in [1, 5, 18].  Here we 
present a few examples mainly to study the convergence characteristics of the LCN method.  
Initially, we will study the electromagnetic scattering by a PEC sphere of radius a defined by 

6ok a = .  The sphere was discretized with 24 quadrilateral curvilinear cells as defined in Section 
IV.  Initially, the basis function order was set to p = 9.  Similarly, a 9 9× -point Gauss-Legendre 
quadrature rule was used for the Nyström discretization of each patch.  Thus, there are a total of 
3,888 unknowns.  Then, the order of the cells was increased from n = 1 to n = 12.  The bistatic 
RCS was then computed for the sphere and the mean relative error was calculated relative to a 
Mie-series solution as: 

 
( ) ( )

( )1

, ,1Mean Error
,

a
LCN MieN

i i i i

Mie
ia i iN

σ θ φ σ θ φ

σ θ φ=

−
= ∑  (31) 

where aN  is the number of angles (360 uniformly spaced angles were computed).  A graph of 
the mean relative error versus the cell order n computed for the MFIE is illustrated in Fig. 4.  The 
error in the area of the sphere as approximated via the 9 9× -point Gauss-Legendre quadrature 
rule is also graphed in Fig. 4 as a comparison.  Initially, it is observed that error in the RCS and 
the area follow the same general trend.  It also appears that the minimum error is reached when  
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Fig. 5 Relative mean error in the RCS of a sphere of radius 6ok a =  computed via the LCN method 
versus the basis order p. 

 
1n p= + .  It is also observed that even cell orders (which have an odd number of points) 

converge at a different rate than odd cell orders for an odd-order quadrature rule. 
Next, the error in the RCS was computed for the sphere as a function of the basis order.  In 

each case, the cell order is set so that n = p+1.  The RCS was predicted via the MFIE ( 0α =  in 
(10)), the EFIE ( 1α = ) and the CFIE ( 0.1α = ), and the mean error was predicted via (31).  A 
graph of the mean relative error versus order p is illustrated in Fig. 5 for p = 3, 5, 7, and 9.  The 
MFIE is converging optimally with the error decreasing nearly two orders of magnitude as p is 
increased by 2 orders.  The EFIE is converging at a slower rate, and the CFIE is somewhat in-
between.  It is also noted that the number of degrees of freedom for each case is equal to 

224 2 p× , since there are 24 cells, 2p  basis and quadrature points, and 2 vector projects per 
quadrature point.  Finally, Fig. 6 illustrates the bistatic RCS for p = 5 as compared to the Mie-
series solution.  There is no observable difference for the MFIE and CFIE solutions, and only a 
very slight discernable difference for the EFIE solution.  These simulations required only 1200 
unknowns.  We should also point out that the average patch edge length is ~ 0.75 oλ .  Thus, with 
p = 5, this corresponds to a discretization of < 7 unknowns per linear wavelength.   

Finally, we illustrate the scattering by the EMCC metallic ogive [19].  The curvilinear cell 
discretization of the ogive is illustrated in Fig. 7 (288 cells n = 7).  The ogive is 10 inches long 
along the major axis and has a 1 inch radius at the center.  The monostatic RCS of the ogive at 9 
GHz computed in the 0o elevation plane ( 90oθ = ) is illustrated in Fig. 8.  This was computed via 
the MFIE with p = 4.  These results compare extremely well to the measured data and predictions 
by Cicero in Fig. 9, pg. 86 of [19].  At this frequency, the ogive is approximate 7.6 oλ  long and 
has a radius of 0.76 oλ  at the center.  These results were obtained using only 9,216 unknowns.  
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Fig. 7 The EMCC metallic ogive [19] approximated by 72 curvilinear cells (n = 7). 
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