Electromagnetic waves in a nonlinear dispersive slab
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Abstract — The
normal incident
nonlinear and

electromagnetic
plane wave
dispersive

scattering of a
from a strongly
dielectric slab is
considered. The dynamics of the polarization
density vector are described through a forced
nonlinear ordinary differential equation of Duffing
type, which takes both dispersive and nomnlinear
effects into account. The aim of the paper is to
study the behaviour of the electromagnetic fields
by using the Galerkin method. In particalar it is
shown that shock waves with infinite slope cannot
be developed in real media becanse of the
dispersion.

I. INTRODUCTION

In recent years the growing interest in nonlinear
electromagnetic problems, related to electronic and optical
devices, has resulted in several studies on nonlinear
propagation phenomena in nonlinear dielectrics.

Often, these probiems are solved in the weakly nonlinear
limit; in this way the difficulties related to the resolution of
nonlinear hyperbolic equations are overcome [1]. In this paper
the electromagnetic wave propagation in a strongly nonlinear
dispersive dielectric is studied in the time domain, solving the
set of Maxwell equations by using the Galerkin method
directly.

The mathematical mode! consists of a set of nonlinear fully
hyperbolic partial differential equations, if dispersive effects
are neglected. When the dispersion is disregarded, field
equations lead to a decrease of the smoothness of the solution
for increasing time due to nonlinear effects: after a certain
time a discontinuity is developed in the electromagnetic wave
{shock wave) [2-3].

The discontinuity of the solution is related to the loss of its
uniqueness: when the discontinuity is developed the time
derivatives of electromagnetic fields are not bounded, and then
the uniqueness resuits known in literature do not hold any
more [4]. In fact, it is easy to show that the actual solution of
the nonlinear wave equation is not unique. This equation
admits several possible families of discontinuous solutions
[3]. The non-uniqueness can be resolved by choosing the
solutions that are physically meaningful. However, when the
time derivatives become steep, just before breaking, the
dispersive effects are no longer negligible. These effects must
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be included to give an improved model and a well posed
problem.

‘We note that in the non dispersive model we cannot use the
Galerkin method because it is not guaranteed the continuity
and unigueness of the solation.

The aim of this work is to study the behaviour of the
electromagnetic fields by solving Maxwell equations through
the Galerkin method when both dispersive and nonlinear
effects are taken into account.

1. FORMULATION OF THE PROBLEM
Let us consider an electromagnetic plane wave and suppose
that it is normally incident from the left on a nonlinear,

dispersive, isotropic dielectric slab, as shown in Fig. 1.
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Fig. 1. Schematic representation of the electromagnetic system.

We suppose that the fields E and D are directed in the x-
direction, while the fields B and H are directed in the y-
direction, namely

E=XE, D=%XD, B=yB, H=yH.

The plane wave propagates in the z-direction, and Maxwell
equations give
JE 0B _4 oH oD _g M
dz ot dz ot



The dynamics of the polarization density vector

P=xP=x({D-¢gE) @
are described by the following model [5]
aa—P+mnP+F(P2)P=xeom%E. 3)
t

Equation (3} is a Duffing equation without losses (the
medium behaves as a “lattice” of nonlinear driven oscillators),
and represents the simpler way to take into account both
dispersive and nonlinear effects (included aromalous
dispersion) in a dielectric. It may be regarded naively as the
motion equation of the “electrical dipoles™ in the dielectric
medium, driven by the external electric field. The nonlineatity
of the medium is expressed by the function F(:) with
F(0) = 0. In the limit of small values of P, namely the linear
case, the dipoles vibrate with a natural frequency o,
representing the resonance frequency of the medium.
Moreover, the constant y coincides with the dielectric
susceptibility in the linear and stationary case.

Assuming B =oH, and introducing the polarization
current J, = J,, we can derive the following mathematical
model for the electromagnetic propagation in the slab

OH__ 1 0E 0E_ _dH_ 1
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We will consider a homogeneous initial conditions in the
slab, and the following boundary conditions

l Zo H(z = 0",0) + E(z = 0".,t) = 2 Ei(—ct) )

ZoH(z=L"t)-E@z=L"t)=0
where Zo = Ypo/eo and ¢ are respectively the characteristic
impedance and the speed of the light in the medium
surrounding the slab, L is the slab width, and E; is the

amplitude of the incident electric field, which is supposed to
be

Em Sin(Zthc[) 3 te [0, ll(sz)] ]

0, elsewhere ,

Ei(-ct) = ‘ ®

where Eg, and f;, are the amplitude and the carrier frequency
of the incident wave, respectively.

The aim of the next section will be the study of the
behaviour of numerical solutions of the system made by
equations (2) and (4), with the boundary conditions (5}, and
with homogeneous initial conditions, using the Galerkin
method.

17

1. NUMERICAL SOLUTION

In order to perform a numerical study of system (4), it is
convenient to put it in a dimensionless form making use of

the new variables (Hm = En/Z0)
=i h:-.l.-l_ =--‘l—?-, j =J—p, T=-t—, C=L;
En  Ha TP PTL T UL
therefore we obtain
dh__oe oe__db g,
ot al ot BZ; )
p_: dp__o_q +Qe,
lar =l at p-op

where the function F(x) = 1 x? has been selected to describe,
by means of the quantity 1, the nonlinearity, and the
following constants have been introduced

To=-1 1 LO Q=

%, Po = Q€oEm, @ =1 (Eero) )
®0

Boundary conditions (5) in a dimensionless form are

{ B(Z = 0%,7) + e(f = 0",1) = 2 ei(~1)

B(C = A1) - e(C = A\T) =0 ®

where ¢ = L{Lg; the normalized incident wave is

sin(veT) ,
0,

T e [Om/ve],
elsewhere ,

&)

&i(-7)

where we have

2nf;
Wo

Ve =

According to the definition (10), the weak form of the
equation (7) becomes

4
(wv)= J w@Q v dg. (10)
0

Using the definition (10) and multiplying the differential
system (7) for a test function w({), we have

L)
i (wey=— (w,i—z) -
a:— (w.p) = (WJP) ’

4 (wjp) =~ (w,p)~ a (w.p’) + @ (w,e) .
dr

Q (ijp) ' an




Boundary conditions (8) can be automatically taken into
account by means of the integration by parts

Q): -(QE_ ) el -
w, &)+ wel; - welp
( dg g
gn.}= -(gv_v h) B, - Wiy

W, s + Wk - Wixo ,

il
(the subscripts 0 and ¢ mean { =0 and { = ¢, respectively)
producing the following weak formulation of the problem

R

d(w.e) _fdw &) L i
dat (dt;’h) v+ weh + 20 £ = (o) (12)
d(:tp) = (w.jp)
d(‘:’JP) = - (w,p)— a{w.p’} + Q(w.e) .
T

Consider, now, a functional space of finite dimension N,
whose basis functions wi({) are continuous piecewise linear
with a compact support: they take the value 1 at {; =i A, and
the value 0 at other node points.

If we expand each unknown field in this space, namely

N
e(C,1) = Y, el wil) ,
i=]
and similarty for the other unknown fields, introducing the

vectors (1) = [ex(®), eX1), -, en(v)]', h(1), p(x), and jol(%),
the system (12) becomes the following system of ordinary
differential equations

tdh_DesBe,
dr

Lde-Dbh-Re+2ce(t)-QLjp,
&t 13)

o pral Fp)+Qe,
dt

where ¢=[1, 0, ---, O]T, L =(w;,wj) is a tridiagonal and
symmelric matrix, given by

14,5=§‘(2-8i,1w6m) i=1,2,--

Liga=4
6

D = {dwi/dZ,w;) is a tridiagonal matrix with Dij =— Di; (i#j),
given by

Di,i=%(51,N—8j‘1) i=1,2,...,N,

Dijn=-1

S8 ]

and B = diag(1,0,0,..., -1), R =diag(1, 0,0, ..., 1),
. N 3
Wi,LZf wj ij )

IV. NUMERICAL RESULTS AND FINAL REMARKS

Fi(p) =

All the numerical results discussed in the paper are obtained
with the following set of parameters

Q=5 v.=001¢=40.

The incident wave is the sinusoidal pulse given by (6), with a
duration much longer than the characteristic response time of
the material polarization.

In order to prove the convergence of the proposed
algorithm, we start by doing numerical experiments for
different numbers N of nodes. The r.1m.s. error defined by

4
Erl;rns('t) = v 1?[ [eN(c’T) - eN—I(‘;aT)]Z dt.;
4]

is reported in Table 1 for different values of N, at T = 100 and
for the nonlinear parameter ¢ = {).1: a few hundred elements,
even in the nonlinear case, are sufficient to give a satisfactory
accuracy (en({,1) is the electric field obtained with N
elements). Equations (13) have been solved by the fourth
order Runge-Kutta method with a time step smaller than the
smallest characteristic time of the discrete model, related to
the incident pulse and the characteristic frequencies of the
dielectric slab.

Table 1

N 300 400 500

N (1=100) | 27103 1.5 10°3 1.1103

Then we studied the influence of the dispersion phenomena,
modelled by equation (3), on the nonlinear propagation.

We considered the liner case (o = 0), first. The electric field
profiles at different times are shown in Fig. 2. Since the
pulse duration is much longer than the characteristic response
time of the material polarization, the propagation will be
almost dispersionless. In order to show that the effects of the
dispersion are negligible, we plotted in Fig. 3 the pairs (p,e)
at t = 100 for all the nodes: the loci are located close to the
straight line p = Se, as in the non-dispersive case. The
wiggling tails in Fig. 2 are due to the frequency components
of the incident pulse (even if their amplitdes are small) close
to the characteristic frequency of the dielectric.

We tested also the algorithm for a linear and really
dispersive case. The behaviour of the field is in a good
agreement with the analytical results.



Finally we considered the same incident pulse wave, but in
a dispersive nonlinear dielectric with o = 0.1. The pulse
shapes of the electric field along the slab at different times are
given in Fig. 4, whereas the pairs (p,e) at T =25 and 1= 175
are plotted in Figs. 5.

0.35 —
0.3
0.25
0.2
0.15
0.1H 1\, \\z'
0.05 :
0 fomg '\\J-

-0.05 P
0 5 10 15 20 25 30 35 40

Fig. 2. Electric field profiles at t1=25i(i=1,2, .., Nfora=0.
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Fig. 3. Plot of p({,T) versus e({,t) for 1=100 and o = 0.
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Fig. 4. Electric field profiles at =251 (i= 1,2, .., Nfor ¢ =0.1.

Figures 4 and 5 show the interaction between the nonlinear
and dispersive behaviour. The plot of p({,7) versus e({,7) is
close to the straight line p = Se in the linear case and in the
nonlinear dispersionless case is the punctual function

e=02p+002p°. (14)
On the contrary, the interaction between the nonlinear and
dispersive phenomena gives a cluster of points in the
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neighbourbood of the static constitutive relationship (14).
Since the smoothness of the solution is decreasing in time, at
the beginning the pairs (p.e) are close to the static
characteristic, whereas after a certain time, depending on the
pulse intensity, the points (p.e) are scattered all around the
characteristic. Despite the incident pulse being the same as in
Figs. 2 and 3, where the dispersion was negligible, the
nonlinear behaviour produces higher harmonics for which the
dispersion is relevant. Moreover we saw that the competition
between nonlinearity and dispersion does not allow solutions
with sharp discontinuities, as noted in [4]. When dispersion
is ignored, the equations have discontinuous solutions. As
the gradients become steep, just before breaking, the effects
of dispersion are no longer negligible.
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Fig. 5. Plot of p({,5) versus e({,7) for o = 0.1: {a) T = 25, and (b) t=175.
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