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ABSTRACT — The spatial and spectral treatment of
electromagnetic fields express an essential operation
regarding, e.g., the functionality of dense integrated
optical devices. Such molding of fields can hardly be
handled without sophisticated heuristic optimization
tools. By means of five design examples we have
demonstrated that evolutionary algorithms (EA) are
highly qualified to solve “real world” inverse problems
considering various applications in the field of planar
integrated optics, optical communication technology,
and dielectric material modeling as well. In com-
parison to other optimization schemes EAs are even
able to deliver structural and temporal information of
the device under optimization which is an important
feature when targeting computer guided engineer-
ing and virtual design platforms.

1. INTRODUCTION

Evolutionary algorithms (EA) [1] are computer
codes which emulate the search process of natural
evolution. This class of optimization algorithms rests
upon the collective learning process within a
population of individuals, each of which represents a
search point in the space of potential solutions to the
given problem. Because of an implicit parallelism in
the search behavior they avoid the common pitfalls of
local optimization algorithms, but hold the promise of
finding novel solutions perhaps not thought to exist.

The latter aspect — i.e., the structural optimization
feature — has successfully been applied to several
different types of design problems in planar integrated
optics [2], such as single longitudinal mode multi-
cavity laser diodes [3], [5]-[10], ultra-short non-
periodic segmented spot-size converters for highly

efficient  chip-to-fiber coupling [9]-[13] and
concatenated Bragg gratings for apodized add/drop
filters in wavelength division multiplexing (WDM)
network nodes [14]. In earlier contributions [15], [16],
evolutionary algorithms have also been considered as
very efficient regarding their parameter estimation
features in the context of speeding up costly
computational electromagnetics simulations. They have
also been applied when optimizing frequency channel
distributions in fiber optic SCM-links [17] and for the
determination of analytical dispersion models for
complex and highly lossy dielectric materials [18].

In the paper presented here, we will outline all
design examples mentioned above. Therefore, the
remainder of the paper is organized as follows: In
Section 2, we briefly explain our special type of
evolutionary algorithm which is then used for the
optimization of an active waveguide device namely a
non-periodic  coupled-cavity semiconductor laser
diode. Section 3 is dedicated to the design of realistic
apodized concatenated Bragg gratings as highly
selective add/drop filters for wavelength division
multiplexing (WDM) applications. The spatial
treatment of guided modes by a non-periodically
segmented waveguide structure leading to a very
compact and efficient spot-size converter is reported
in Section 4. Section 5 describes the optimization of
frequency channel distributions in fiber optic SCM-
links and the determination of an analytical dielectric
material model is given in Section 6.

After these elucidations, a brief outlook is given,
focusing on some algorithmic prospects (Section 7)
and tracing two aspects towards computer guided
engineering (Section 8) as well. We conclude our
contribution with a short summary in Section 9.

1054-4887 © 2000 ACES



2. MULTI-CAVITY LASER TOPOLOGIES

An economically priced monolithic GaAs/AlGaAs
laser diode with an emission wavelength around
852 nm represents an attractive light source for low-
cost high-precision time and distance metrology. Such
single-longitudinal-mode laser operation usually relies
on distributed Bragg reflector (DBR) laser topologies
or distributed feedback (DFB) lasers respectively.
Both utilize a fine-scale grating mostly having periods
on the orders of a few hundred nanometers. This puts
high demands even on the state-of-the-art lithographic
reproduction, resulting in very high costs.

In order to focus on simple laser processing, we
restrict our design to large-scale non-periodic per-
turbations in the form of multi-section cavity
structures. Such irregular topologies are now to be
optimized with respect to given laser specifications.

The type of breeder genetic algorithm (see also
[4]) presented here works on fixed-length bit-strings.
It starts by initializing a4 population of N = 50 bit-
strings randomly. Then the population evolves by
using probabilistic genetic operators for reproduction
purposes. Within this frame, two parent-strings are
selected by the fitness-proportional roulette-wheel
selection process. Two off-spring are then generated
using two-point crossover and mutation. Referring to
the forward problem a laser simulator is activated,
delivering all characteristic data needed for the quality
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Fig.1: Representation of the non-periodic multi-cavity
laser structure (phenotyp) by a 5-valued integer
string (genotyp) including contact electrodes for
current injection.

rating of each off-spring. After judging the quality
(fitness) of these new individual two advantageous
aspects of our implementation should be mentioned [5],
[6]: 1.) every new individual is checked whether it is
already included in the population. Allowing no
duplicates guarantees a certain diversity and avoids
premature convergence. 2.) only better individuals than
the worst enclosed in the population are inserted, e.g., a
strict breeding is done. The whole reproduction
process defines a loop which is carried out until the
number of calculated individuals reaches a certain
predefined value.

0.821-

850 851 852 853 854 855
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Fig.2: Best performing laser solution. a) The effective refractive index distribution along the cavity shows 59
sections at a total length of 730 um. The position of current injection is sketched by its corresponding electrode
(labeled as a bold line). b) Corresponding round-trip gain spectrum Gyy. Lasing occurs at the circle, all round-
trip phase zeros are marked with dots and the small cross indicates the material gain maximum. The distinct
mode selectivity should be considered in the context of the very low effective refractive index contrast of the

‘perturbed laser cavity.
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In order to judge the quality of each search point a
fitness value has to be defined, relying on the forward
solver’s specific output. As the main validation
criterion within all further simulations the round-trip gain
G is taken in terms of a potential mode-selectivity at
lasing threshold. The round-trip gain G,, represents the
oscillation condition itself. According to our laser
structure, the overall fitness is defined as a sum of
three different fitness numbers: one concerns the side-
mode suppression within the round-trip gain
spectrum. A second term validates the coincidence
between the position of the material gain peak and the
specified wavelength of 852 nm. The third term
measures the wavelength-difference between the lasing
point and this specification.

Following [8], a representation scheme (Fig.I) of
the multi-cavity laser structures is obtained using a
fine-scale discretization. Assuming a maximal laser
length of L = 1000 pm and a discretization’s resolution
of &L = 5 um, the laser topology can be described as an
array with L/8L = 200 integers each representing one
segment within the potential laser cavity. Each segment
having an effective refractive index N, or N, is assigned
to an integer value of 2 or I respectively. A “don't
care” represented by an integer value of O does not
influence the decoding operation when mapping the
integer array (genotype) into its corresponding physical
representation (phenotype).

In combination with genetic operators such as
crossover and mutation the optimization procedure has
the ability to build up lasers with different lengths.
Further we allow the optimizer to “decide” how the
current injection into the laser structure has to be
performed when searching for appropriate numbers and
positions of contact electrodes. A contacted segment
may simply be marked by a reversed sign of its
corresponding integer (allele) leading to a 5-valued
genotype and therefore to a tremendous large search
space of 200° = 10" search points.

The performance of the multi-cavity laser structure is
evaluated by applying the well known transfer-matrix
analysis [19]. All material properties involved such as
material gain and the carrier induced refractive index
change are obtained from optical gain measurements and
are implemented as an appropriate spectral model [5].
The effective refractive index difference representing
the perturbation is assumed 1.92-10.

Our optimization scenario [8] after 33720
evaluated individuals yields a maximal performing
structure (Fig.2a) with a fimess of 1.056875-10°. The
spread of fimess values within the optimized population

is around 4%. It should be noted that good solutions
(fitness > 4-1 0°) are already achieved after less than 700
iterations. The round-trip gain spectrum G, of the best
performing laser structure (Fig.2b) shows the desired
distinct wavelength selectivity permitting single longi-
tudinal mode lasing operation at 852.10 nm. Here the
current injection reaches a threshold value of 11.98 mA
when lasing.

3. CONCATENATED GRATING FILTERS

Wavelength division multiplexing (WDM) at
wavelengths of 1520-1570 nm in optical fiber networks
for, e.g., 2.488 Gb/s data rates demands (integrated) optical
filters for adding and dropping single wavelength channels
at certain network nodes. Bragg grating based filters
become very attractive, when the requirements for intra-
channel crosstalk are stringent. Unfortunately, uniform
Bragg gratings suffer from poor sidelobe suppression in
their spectral response. If only a certain inter-channel
crosstalk, i.e. a certain sidelobe level at the neighboring
channel, is allowed the high sidelobe results in a large
channel spacing and thus in a small bandwidth utilization.
In order to circumvent this deterioration apodized grating
structures — i.e., gratings with longitudinally varying mode
coupling constants according to a bell-like weighting
function — are strongly recommended.

An obvious way to alter the coupling strength of
surface corrugated gratings consists of a correspond-
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Fig.3: Fitness evolution of different grating filter
optimization attempts as a function of evaluated
individuals. A discrete valued Hamming distribution
of the coupling constant acts here as a starting guess
for the initial SDH.
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Fig.4: Simulated spectral response of a concatenated
grating (solid line) and of the equivalent uniform
grating (dotted line). Both gratings are 11 mm long.

ing change in etch depth of the periodic ridge wave-
guide corrugation (another attempt using a direct UV-
writing technology [20], [21] to locally change the
planar glass waveguide’s effective refractive index is
still under investigation). However, to preserve
process reproducibility a binary grating, €.g., a constant
etch depth is preferred. One apodization method obey-
ing this constraint exploits the dependence of the
coupling coefficient on the grating duty cycle [22]. In
this approach the minimum coupling coefficient is

10
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Position on grating (cm)

Fig.5: Coupling strength distribution along the
grating for the optimized concatenated grating (solid
line) and several conventional taper functions
(Blackman function (dotted line), raised sine (dash-
double dotted line), sine (dashed line), positive
hyperbolic-tangent profile (dash-dotted line)).
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determined by the most extreme duty cycle that is
producible, i.e., the one deviating most from 50%, which
has to be found experimentally. We found a minimum
duty cycle of about 10% to be a typically achievable
value for glass waveguides with grating periods of about
500 nm [14]. In consequence, any apodization function
realized within our production technology will be
truncated. Classical windowing functions of, e.g., a
Hamming (or a raised cosine) shape, suppress all
sidelobes below a certain level (e.g. =50 dB) that is given
by the function itself and the accurateness of its practical
realization. Thus, all classical windowing schemes tend
to perform unsatisfactory when truncated (for the
Hamming window the sidelobe level raise up to —14 dB
when this apodization function has to comlpy with a
minimal available duty-cycle of 10%). We have there-
fore decided to look for apodization functions that are
optimized, taking experimental constraints into account
with the more pragmatic goal to just suppress all
sidelobes outside a certain bandwidth.

The choice of the optimization scheme was also
influenced by the discrete nature of the actual problem
representation: the gratings are usually implemented by a
vector scan electron beam lithography system with a
discrete address grid. The set of producible duty cycles
and hence the set of realistic coupling coefficients is thus
given once the writing field size has been chosen. The
only parameters that are available when optimizing the
coupling strength profile are the lengths of the different
grating regions. Furthermore, each length should be an
integer multiple of its corresponding grating period.
Therefore, finding an appropriate apodization scheme —
i.e., to trace an appropriate concatenation of different
subgratings — always represents a crucial combinatorial
optimization problem which is efficiently solved only by
a genetic algorithm [5], [6], [8].

To evaluate the gratings we first have to define the
desired crosstalk levels, e.g., an intra-channel crosstalk
better than -30 dB within a bandwidth of 0.4 nm and an
inter-channel crosstalk of -25 dB outside a bandwidth of
0.8 nm. According to [23] the inter-channel crosstalk
requirements for neighboring channels is less strict and
amounts to —20 dB. We use the larger value to give the
optimizer a larger margin. In each iteration step the
grating response is calculated using the well known
transfer-matrix method [24]. According to the given filter
specification, the overall fitness is consequently defined
as a sum of two different fitness constituents: One
number validates the actual spectral filter response with
respect to the desired inter-channel crosstalk and a
second term measures the spectral deviation with regard
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to the given intra-channel crosstalk specifications. Fig.3
shows the fitness evolution for a grating consisting of 40
grating sections with corresponding duty cycles. In order
to compare our breeder genetic algorithm (solid line) with
alternative optimization schemes we have also plotted the
evolution when enabling a specific simplex downhill
(SDH) optimization working on discrete number spaces
(dotted line). As starting guess for the coupling strength
distribution we used a discrete valued Hamming function.
Referring to the corresponding trace in Fig.3 it is clearly
visible that the simplex downhill method gets caught in a
local optimum. Additionally, we have stopped our genetic
algorithm after a certain number of evaluated individuals
and have it followed by a simplex downhill optimization
(several dashed lines). The simplex downhill usually tends
to accelerate the down tracking of promising parameter
sets nearby a fitness landscape’s local optimum. But it is
noteworthy to realize that a prior global optimization
procedure is always mandatory.

After 2000 iterations (and additional 1300 down hill
simplex iterations) a representative design has led to 50
grating solutions where the best performing one has a
potential bandwidth-utilization-factor of 50% at an intra-
channel crosstalk of -30 dB and an inter-channel cross-
talk of -2] dB close to the Bragg resonance which
complies well with the requirements (Fig.4).

As shown in Fig.5 the 3 um wide ridge waveguide
Bragg gratings consist of 40 different subgrating sec-
tions having an overall length of /1 mm. All of them are
producible in an inexpensive planar SiO/SiON glass
technology with an available etch depth of 100 nm.
Comparing our design approach to, e.g., commonly used
thin-film interference filter synthesis methods [25], our
evolutionary optimization procedure potentially reveals
an objectionable computational effort. But from the
viewpoint of a realistic design, this sobering prospect
should be reassessed into a promising one especially
with regard to our design procedure’s feasibility while
including all critical nonidealities of the technological

production process.

4. ULTRA SHORT SPOT-SIZE CONVERTER

In the last two sections we described how our
evolutionary algorithm can be used to comply with the
spectral specifications within a design procedure of
integrated optical devices. The example being now under
consideration is dedicated to the spatial treatment of
optical fields regarding the functionality of such devices.
Because of its large refractive index difference (dn =0.02)
the planar SiO/SiON glass waveguide technology has the

Fig.6: Example of a planar spot-size converter. For
visualization purposes the upper cladding is not
shown. Only changes in the width and segmentation
are supported. Such structures can be manufactured
as simply as a normal waveguide.

benefit of allowing small bending radii on the order of
1 mm. Therefore, this inexpensive technology meets the
requirements for dense integrated optics. But such strong
waveguiding has inevitably its drawback considering the
mode mismatch at an optical transition between chip and
single mode fiber. Direct butt-coupling would cause losses
of more than 3.5 dB. In order to reduce these losses, the
modal shape of the integrated waveguide’s fundamental
mode has to be converted into a shape as close as possible
to the fundamental fiber mode.

7160 180

Fig.7: The fitness evolution through the converter is
shown here. The real structure will be cut at the
position where the highest fitness is obtained.
Therefore the implemented converter is usually
considerably shorter than the total structure. The
fitness is calculated after each BPM propagation
step. The best fitness ever encountered (here at about
110um, shown by the vertical line) is retained as the
overall fitness of the converter.
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5. FREQUENCY CARRIER DISTRIBUTION

Today, fiber optic links are substantial parts of
modern communication systems [28]. It is therefore
important to know their distortion and noise proper-
ties [29]. Systems with subcarrier multiplexing
(SCM), in which often equally spaced rf carriers with
different amplitudes lie within a narrow band, have
very low intermodulation-distortion (/M) specifica-
tions, as do common antenna television systems
(CATV). In optical transmission links with standard
fibers and directly intensity-modulated lasers at
1.3 um, the main contribution to the distortion is due
to mixed - static and dynamic — laser nonlinearity
[30]. In such communication systems only odd orders
of the nonlinearity have to be considered when a weak
nonlinearity is assumed.

It is rather the resulting 3™ order IM which is of
technical relevance [31]. Having, e.g., a transmission
band of f;,....f, equally spaced rf carrier frequency
channels, where M. is assumed to be the set of
operational carrier indices, then 3¢ order IM
generates mixing products of the following kind:
fitfd, fSftf, fi+fitf . V i, k, £ € Mc. All mixing
products which coincide with a frequency f, within
the transmission band obey i+k—¢ = ror i~k+£ = ror
—itk+{=r, Vi k L e Mc.

In order to propose Mc as an optimal carrier
distribution, one has to look for operational rf carrier
frequencies within the transmission band whose IM
products do minimally interfere amongst themselves
as well as with their engendering carriers, respec-
tively.

In an ideal case, where one simply wants to
prevent a carrier to overlap with those IM products
stemming from the remaining ones, all distances
between pairs of carrier frequencies should be
different like i~¢ # r—k. A set M¢ with such prop-
erties is also called “Golomb ruler” [17] when
containing O as an additional element. Therefore,
placing N operational carriers within a minimal
transmission bandwidth of » > N channels, means
nothing else than looking for a preferably short
Golomb ruler whose largest element should be as
small as possible.

Computational solutions are only available for
n >> 16 2 N. Thus, considering dense carrier distri-
butions inevitably leads to a combinatorial optimi-
zation procedure, where a minimal intermodulation-
to-carrier-ratio (IM/C) should be aspired for occupied
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Fig.9: Optimal distribution of 6 different carriers
within 15 equally spaced transmission frequency
channels. (Left) fitness evolution during optimization,
(right) transmission band with optimally placed
carriers (shown as bars).

channels as well. The optimization task becomes even
more severe when taking into account different carrier
amplitudes. There are

combinations of how to distribute N operational
carriers within n transmission channels. Assuming a
given set of N different amplitudes within each
distribution pattern additional M, = N/ permutations
of carrier amplitudes have to be taken into account.
As genotype of a particular carrier distribution, we
define a bit-string representation for a pair of ordinal
numbers (m;, my) ¥V m; € [1, M;], my € [1, M;], where
the first of them addresses the combination state of
the particular pattern and the second characterizes its
permutation state respectively. The fitness of a
particular pattern is then calculated with respect to the
worst IM/C of all occupied transmission channels
involved.



Our exemplary evolutionary optimization prob-
lem [17] includes a set of 6 given carrier amplitudes
to be placed within a transmission band of 15 equally
spaced frequency channels. As optimizer we use a
standard genetic algorithm (generation based genetic
algorithm: traditional one-point crossover, 60%
selection probability, 1% mutation rate) which
operates on a population size of 300 individuals. A
best performing solution was found after 30 of totally
60 generations. Fig.9 shows the optimal carrier
distribution leading to a minimal 3™ order IM distor-
tion of the fiber optic SCM-link.

The optimization problem presented here is also
of prime importance regarding the design of very
advanced optical WDM-systems. For high-speed
WDM-systems the simultaneous requirements of high
launched power and vanishing fiber dispersion lead to
the generation of new optical frequencies by four-
photon mixing. These generated waves can interfere
with system operation while degrading the system
capacity by intermodulation distortion and additional
noise generation in band limited erbium doped fiber
amplifiers (EDFAs). In order to prevent phase
matching of these waves one is tempted to allow a
small amount of fiber dispersion at an additional
expense of system capacity [32]. Hence, an optimiza-
tion of optical carrier distribution enables the
reduction of intermodulation distortion without need
of any dispersive fiber.

6. DIELECTRIC MATERIAL MODELS

In this section, we report an evolutionary
optimization based method for the determination of
the dispersive dielectric properties g(f) of natural
materials exhibiting high dielectric and ohmic losses
over a wide frequency range. Accurate information on
the dependence of dielectric properties of (mixtures
of) natural materials on content of, e.g., water or
hydrocarbons, and also on temperature is of con-
siderable importance in a number of applications, e.g.,
in environmental engineering, geophysics, mathematical
geology and chemical process engineering. The micro-
structure of such multiphase mixtures are generalized
by a structural material matrix representing the
characteristic distribution of its constituents. This
concept of structural units [33] — which is a picture
for capturing the microstructural and compositional
information of the randomly distributed constituents
within a dielectric host material — becomes particularly
attractive when linked to an accurate spectral dispersion
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Fig.10: (Top) relaxation spectra g,(f,") and (bottom)
Cole-Cole plot of &(f) for a volumetric water content
of (left) © = 0, and (right) © = 15% where the
relaxation frequency of free water is clearly repro-
duced by the proposed model. The frequency range of
the measured scattering data is f = 10 MHz...3 Ghz.

model in an effective medium approach. Hence,
disposing of such an accurate macroscopic description
of dielectric mixtures could even have a seminal
impact on advanced topics in physical optics such as
wave localization phenomena due to random
scattering, photon diffusion, coherent backscattering
and has yet led to the diffusive wave spectroscopy as a
new optical measurement technique in material
science and food engineering [33].

The analytical material model presented here is
extracted from electromagnetic scattering data of a
corresponding coaxial transmission line measurement
setup. Following the classical Debye model for the
relative permittivity we propose a weighted linear
superposition of N different Debye models

e()e (e —c) 32U Gu

n=1 1+i(#) B 2re, f

where € stands for the static limit, €. for the high
frequency limit, & describes the vacuum permittivity,
Ouiet accounts for the ohmic conductivity of the material
involved, £," represents the relaxation frequency of the -
th Debye model and g(f,') defines a normalized
relaxation weighting function which on itself is com-
posed by a finite set of G different Gaussian relaxation
functions. Choosing such a finite base of the relaxation
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spectra g,(.) mainly helps to circumvent the ill-posedness
of the model estimation problem. The genotype consists
of an appropriate binary representation of all parameter
values to be optimized. The parameters include the
weightings, the relaxation frequencies and bandwidths of
the numerous Gaussian relaxation components, the
conductivity Oy, and both limits, & and €. of the
permittivity model. We can define the fitness of a
potential solution as the quality of the approximation of
calculated and measured scattering spectrum respec-
tively. Referring to the matching of the scattering phase
between analytical model and measured data the
resulting fitness function behaves like a jagged multi-
modal landscape provoking serious pitfalls for common-
ly used optimization algorithms.

As an evolutionary optimized example we present
the analytical description of Bentonite, a highly lossy,
very complex clay like material with and without
volumetric water content © [18] at a temperature of
23°C. The behavior of our estimated model is shown in
Fig.10, whereas the corresponding parameters can be
obtained from the following table Tab. 1.

©=0 ©=15%

# individual 217373 21’552
& [ 12.1236 304155
e [ 3.00012 2.18958
i [mS] 18.314 99.9847

Tab.1: Optimized parameter set for Bentonite at two
different humidity states.

To conclude we derived a very general analytical
material model for complex and highly lossy dielectric
materials which outperforms commonly used Debye
models in terms of flexibility and accuracy as well.
Our approach is able to cover different distinct
relaxation phenomena which are not easily tractable
within a straight forward ab initio dispersion formula.

7. PROBLEM-BASED ALGORITHMIC
PROSPECTS

We have demonstrated evolutionary algorithm’s
applicability to various optimization problems within
the field of computational optics and electromagnetics.

After all, this is because most of such real-world
problems could easily be transformed into
combinatorial problems as well, where evolutionary
algorithms and especially genetic algorithms are
claimed to belong to the best suited ones compared to
other heuristic optimization codes. In addition, this
kind of optimization scheme delivers much more
general information about what actually leads to a
good solution. Therefore, it permits us to implement
superior meta-optimization strategies which rely
on, e.g., a population based information gathering.
Such an information gathering procedure includes
structural information concerning typical patterns [8]
within optimized individuals as well as temporal
information [11] of the evolution process itself. In the
following, both types of information gathering will
be elucidated in the context of a corresponding
application.

7.1STRUCTURAL INFORMATION PROC-
ESSING IN THE CONTEXT OF MULTI-
CAVITY LASER DIODE OPTIMIZATIONS

All optimization scenarios presented in Section 2
appear to converge to an optimal laser structure and it
seems that not even a continuation of the optimization
process up to some higher iteration number enables
the generation of better performing individuals. In
addition, most of the statistically available informa-
tion concerning a “final” state of a population’s
evolution (e.g., the decreasing spread of fitness
values) usually lacks in reproducing the optimizer’s
potential for a further improvement.

Therefore a structural analysis of all individuals, i.e.,
searching for frequent and successful patterns within this
optimized population could probably answer two
questions: First, is such an information gathering
procedure capable of delivering a novel population
whose prospects look more promising within a further
optimization attempt? Second, is it also possible to
formally acquire insight as to what actually leads to well
performing laser structures?

The information gathering based on pattern analysis
[8] is simply done by evaluating the frequency of
appearance of characteristic Q bit-pattern (Q < L/dL)
within the population. By stepping a Q bit wide window
along each individual’s genotype a corresponding
number of different O bit-strings can be extracted. All
these strings are then sorted according to their pattern
label, thus assigning each pattern to its frequency of
appearance (Fig 11b). A similar procedure delivers the
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Fig.11: Pattern analysis considering the final population of the optimization scenario described in Section 2:
a) Distribution of characteristic 18-bit-patterns along the laser structure and ranked by its frequency of appearance.
b) Corresponding frequency of appearance of these patterns. For visualization purposes the pattern analysis has been
restricted only to the high and low refractive index segments of the decoded cavity structure (left). Typical cavity
refractive index pattern deduced from the 18-bit-pattern distribution (top right). The corresponding non-periodic
coupled cavity laser structure (bottom right) consists of 45 sections and has a total length of 700 pm.

most frequent position for every Q bit-pattern within this
ranking, leading to the distribution scheme shown in
Fig.11a). Finally, the distribution of characteristic Q bit-
patterns enables us to deduce a typical laser structure
which is believed to gather all the specific information
needed to qualify as a good solution. The typical laser
structure of Fig.1] is obtained by counting each specific
allele value of all pattern sequences at the considered
segment position. The counting procedure itself employs
a weighting which is proportional to the pattern’s
frequency of appearance. Therefore, the most frequent
parts of patterns will always obtain recognition.
Choosing pattern lengths between Q = 3 bit and Q = 90
bit up to 88 different typical laser structures can be
obtained contributing partly to a novel starting popu-
lation for a further optimization.

In order to validate a population’s diversity D a
particular non-binary definition of the Hamming-
distance [6] has to be specified. We therefore investi-
gate the distribution éD(m)

N-1

330 (B:(m). 5,(m))

i=1 j=i+l

0D(m) = N (N )

which measures the average number of appearance of
incongruous alleles at the m-th genotype position

considering all N integer strings of the population,
whereas py values the incongruity between string
b, and b at position m. The summation of dD(m)

over the total string length immediately yields the
diversity D mentioned above.

Within the optimization scenario presented in Sec-
tion 2 different population stages have been analyzed
according to the appearance of common patterns. As
an example, the information gathering procedure has
yielded 15 typical laser structures, forming a novel
population, with some individuals performing even
better, and whose diversity is around I3 bit. This
represents a distinct increase compared to the 8 bit of
the considered underlying population. Further details
of the re-optimization process including such typical
laser structures are elaborated in [8].

Coming back to the typical laser structure shown
in Fig.11 it can be noted that especially the regions
neighboring the two laser facets are strongly
correlated and imply a certain robustness against
optimization interferences. Thus, changing segments
from inner regions of the cavity has proved as a more
successful policy while tracking down well
performing laser topologies. This assumption is
clearly confirmed when investigating the distribution
O0D(m). Inspecting the configuration shown in Fig 12
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Fig.12: Diversity distribution éD (bold line) mapped
along a corresponding decoded cavity configuration
considering all genotypes of the underlying final
population i.e. of the optimization scenario. The shaded
sections indicate locations, where the congruence of all
genotypes tends to be exact and the optimizer’s
interference is therefore believed to be negligible
whereas the gaps stand for the position of distinct
incongruity within the genotypes involved. The
summation of 6D over the total string length z
immediately yields the diversity D.

one may be tempted to allocate the shaded regions to
resistant characteristic patterns. But, because of its
different algorithmic background neither the structure
given by the shaded regions in Fig.12 nor the typical
cavity topology of Fig.1] are rigorously comparable
to each other. The typical cavity topology is generated
when gathering the common pattern information
within a population whereas the structure given in
Fig.12 puts the focus on all its differences.

In conclusion, our characteristic pattern analysis
reveals a noteworthy feature: Nearly independent of
the state of a population’s convergence the proposed
information gathering procedure delivers mostly one
individual whose fitness exceeds that of the best
performing structure of the underlying population.
Therefore we suggest our information gathering be
used as a sort of meta-optimization strategy. Increas-
ing a population’s diversity without degrading the
corresponding fitness could be regarded as a useful
mean to revitalize a population’s prospect when
looking forward to a further optimization attempt [8].

7.2 TEMPORAL EVOLUTION ASPECTS IN
THE SPOT-SIZE CONVERTER DESIGN

Our evolutionary optimization scenario presented
in Section 4 also delivers temporal information which
may be reassessed in the framework of a superior
solution strategy. One of the main differences
between classical heuristic optimization procedures
such as, e.g., Monte Carlo or simple hill-climbing
methods and evolutionary optimization procedures is
their implicit parallel search mechanism. As it is
demonstrated later, any successful converter contains
characteristic substructures that significantly contrib-
ute to good performance. In our procedure it is
possible to keep track of such substructures during
evolution. In order to obtain the corresponding data of
the traces, substructures of 10 segments length were
compared using a sort of relaxed structural correlation
scheme: If no more than 3 segments of that substruc-
ture differ from one individual to another, both
individuals are considered to be part of the same
trace. The iteration index within the evolution process
and the fitness of all individuals taking part of a trace
are stored.

We can think of three different types of traces
questioning the following: (1) Traces from the initial
population: Are substructures of the initial population
still persistent in a later evolution stage? (2) Back-
ward traces from distinct fitness jumps: Which trace
is mainly responsible for the increase in performance,
or which characteristic substructure is part of this best
performing individual? (3) Backward traces from the
final population: How many traces and which
substructures constitute the final population?

Referring to the survivability of the initial
population’s substructures it is observed within our
specific example [11], that, even when most of the
patterns die out within the first 25% of the optimi-
zation process, there are still two traces that play a
major role during the overall evolution. This shows
that proper initialization — i.e., the initial population’s
quality of diversity — may have a considerable impact
on the evolution’s outcome. Different initialization
schemes (e.g., using deterministic or heuristic number
generators instead of standard pseudo-random
processes) are now under extensive investigation.

The history of substructures which provoke
distinct fitness jumps reveals the coexistence of
different competing patterns within the evolving
population. Some substructures will temporarily be at
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Fig.13: To observe if there are still different sub-
populations in the actual or final population, a trace
back to earlier stages of the population’s evolution
may be created. By doing so, it is possible to observe
how the evolution of sub-populations takes place.
Therefore the parallelism in the evolution is clearly
visible. For these examples, the backward traces are
shown for a population at 7300 evolution steps.

the top of the population’s fitness ranking, while
others are successful another time [11].

Considering the traces that constitute a final
population (as depicted in Fig./3) this competition of
patterns turned out to be a mean measure when
qualifying an optimizer’s potential termination state:
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Fig.14: Value of the evolution figure during the

optimization. Four phases may be distinguished where

the labelling is proposed for visual purposes only.
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qualifying an optimizer’s potential termination
state: Each substructure may be interpreted as a
part of a sub-population of individuals containing
this unique pattern, exemplifying as well that
parallel optimization of different structures takes
place even in a final evolution state. To dispose of
different sub-populations at such stages underpins
the impact of cross-over at the expense of
mutation, indicating the optimization being still in
an efficient operation mode compared to a purely
statistically driven random search process. Thus,
quantifying the vitality of a population after n
iteration steps a state variable may be defined as
follows [11]

1 N (n)

Y F¥(n)

F (n) i=1

Cr (") =

where F(n) stands for the temporal maximum
fitness, N°° represents the total number of sub-
populations and F’"(n) assigns the maximum
fitness within the i-th sub-population. Figl4 shows
the evolution of C,(n), whereas a categorization
containing four different phases in the evolution
process has been proposed. Here, C,(n) may be
viewed as a specific representation of the number
of competing patterns within the population
involved.

7.3 EPILOGUE

We believe, when provided with both structural
and temporal information of a population’s
evolution one should be able to define certain
measures [8], [11] concerning, e.g., the vitality of
the population or even a specification of its actual
state of evolution. In order to underpin such
ventured conjectures extensive statistical investi-

gations are strictly inevitable, including also a

much broader spectrum of examples than presented
here. However, a lack of generality considering
all attempts when formalizing the evolutionary
algorithm’s learning process will always remain.
Therefore, other promising combinatorial
optimization methods have to be compared when
relying on an evolutionary paradigm. For the
assessment of problem specific search space
characteristics, hybridization of evolutionary
algorithms with other methods should be
investigated as well.
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8. TOWARDS COMPUTER GUIDED
ENGINEERING

Apart from the algorithmic considerations
depicted in the previous Section 7 we will now briefly
sketch two lines, where our research on evolutionary
optimization in computational optics is about to
advance. Within both strategies we always rely on the
gathering of specific information regarding, e.g., the
actual shape of the structure involved, the simulator’s
peculiarities and even the functional dependencies on
the circuit level.

8.1IMPROVEMENTS WITHIN ADVANCED
DEVICE OPTIMIZATION PROBLEMS

At present we are strongly involved in the design
of complex smart planar optical transducer elements
for (bio-)chemical and physical sensor systems.
Within these activities we believe we will obtain a
deeper insight into the mechanisms of optical
coupling and for the design of new grating couplers
[35], especially of ultra-compact highly non-periodic
coupler topologies. A rigorous design of such dense
electromagnetic field coupling configurations usually
represents an inverse scattering problem, which can
only be solved with a combination of highly sophisti-
cated codes for computational electromagnetics
coupled to, e.g., an evolutionary optimizer.

When one links such optimization procedures
with such simulation tools, one faces several difficult

1AEE

Csir s

55

problems. As its main task the code for computational
electromagnetics solves a so-called forward problem
for the optimization procedure. Even when the time
spent for the forward problem is long, the results have
a limited accuracy. This may cause some noise within
the data, which considerably disturbs the search
process. Thus, the forward problem has to be solved
many times. Referring to these issues, three different
specifications should be respected when carefully
looking for an appropriate forward solver: 1.) The
simulation program should be as efficient as possible,
2.) it should maintain a complete robustness while
possibly treating solutions not even thought to exist,
and 3.) it is mandatory that the solver delivers an
error measure in order to guarantee a certain
accurateness of the search process.

The multiple multipole (MMP) method [34] is a
well-established, semi-analytical tool for solving
time-harmonic 2D and 3D scattering problems within
piecewise linear, homogeneous and isotropic
domains. It is based on the generalized multipole
technique (GMT). With MMP, the field fp within
individual domains D is approximated by a sum of N
cylindrical or spherical multipole expansion functions

Joj
N
o =fDO+2ADj'ij+Error
=1

which are themselves analytical solutions of the
Helmholtz equation, where fp, stands for the excitation.
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Fig.15: MMP calculation of a single slab waveguide perturbation pattern: (left) Intensity plot of the time-
averaged Poynting field for TE-excitation from the left side. (right) Distribution of the corresponding multipole
expansions (each multipole location is indicated by a small circle, boundaries are drawn as solid lines). The slab

waveguide system

consists of a TiO, core layer (thickness 150 nm), a H,0 upper cladding layer and

polycarbonate as lower cladding respectively. The two grooves (1: width 100 nm, depth 20 nm; 2: width 40 nm,
depth 30 nm) are separated by 200 nm. The operating wavelength is 785 nm (vacuum).



The origins for multipole expansions are usually set
along the boundary of the domains in which the field
is to be calculated. For the field around voluminous
domains Hankel-type expansions are used whilst
Bessel-type expansions are preferred inside. Other
special functions are included as well, e.g,
propagating and evanescent plane waves. The
coefficients Ap; are obtained by enforcing the
boundary conditions for the field components at
discrete matching points on the boundary. Since more
matching points are introduced than necessary, the
MMP method leads to an overdetermined system of
equations. This system is solved in the least-square
sense which is equivalent to an error minimization
technique. Thus, an adequate error measure is
inherently delivered by the method itself.

In order to maintain robustness during an optimi-
zation scenario, MMP should be insensitive to all
parameter variations involved. Here, the most
challenging task is to successfully adapt the
simulation to repeated changes of the coupler’s
grating shape. For that reason we have developed a
fully automatic pole-setting procedure which allocates
all multipole expansions needed along their cor-
responding boundaries. The proper setting takes into
account several properties of the actual shape as well

Fig.16: Non-periodic grating: Polar plot of the
radiated far-field (time-averaged Poynting field) for
TE-excitation from the left side. The inset shows the
7 fold concatenation of various single perturbations
as described in Fig.15.
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as it considers implicit portions such as, e.g., the
curvature and its context within the boundary’s
devolution. The MMP calculation shown in Fig.15 is
fully based on the automatic pole distribution proce-
dure and it concerns a preliminary perturbation
pattern which may constitute a grating coupler within
our typical sensor configuration.

Besides the semi-analytical nature of MMP, there
are further algorithmic potentialities when improving
the program’s efficiency. The parameter estimation
technique (PET) is a very powerful technique that can
be applied to numerical codes based on dense
matrices as a power booster for the computation of
the response of electromagnetical or optical problems
at, e.g., different frequencies. It is applied to the
multiple multipole (MMP) method in conjunction
with the method of conjugate gradients (CG) for
iteratively and efficiently solving the rectangular
MMP matrix. The general idea of the parameter
estimation technique (PET) is the evolutionary
recycling of knowledge. Since all the expansion
parameters ADj(k) (and functions fp;) are usually known
from previous I...k runs while, e.g., sweeping the
wavelength A, recycling of knowledge means nothing
else but a pertinent extrapolation technique for
estimating the parameters Ap**" to be computed in
the current run k. This speedup technique has already
been detailed in earlier contributions to ACES
publications [15], [16].

The most powerful mean to economize computa-
tional effort can be achieved, when focusing solely to
characteristic portions of the overall coupler structure.
Hence, we have developed a near-to-far-field trans-
formation which allows the radiation field of a wave-
guide perturbation being approximated simply by a
single particular multipole expansion. Each partial
perturbation pattern can be analyzed within minutes
and is then at the optimizer’s disposal. Having
available a library of such generic far-field
expansions, the radiation field of the overall coupler
topology is immediately calculated when placing the
particular expansions accordingly. Fig.16 depicts the
far-field of a grating structure consisting of a seven
fold concatenation of the perturbation analyzed in
Fig.15. Within the scope of a realistic optimization
scenario, the scalability due to the problem’s
complexity may be less severe, inasmuch a speedup
of around two orders of magnitudes has become
achievable. Constituting the field solution of highly-
non-periodic grating structures as to the same degree
of simplicity like in periodic ones (treating the
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ry ("Waveguide2.wvg", 0,20,0,20);

istraight (5,3,20,3,0.5);

istraight (0,9,20,9,0.5):

Straight (0,15,15,15,0.5);

raper (0,3,5,3,2,0.5);

faper (15,15,20,15,0.5,2):
Pend(8,4,8,8,0.5,-1.9,-360);
pend (12, 10,12,14,0.5,-1.9,-360) ;

Fig.17: User interface of the developed design plat-
form. (left) Formal description of the waveguide
elements. (right) View of the corresponding planar
integrated optical circuit topology.

grating’s unit-cell with periodic boundary conditions)
[36] reveals an unique attractiveness especially when
targeting irregular topologies. This allows us to face
novel design scenarios leading probably to
unexpected topological coherence and implying
readjusted representation schemes.

8.2 MOVING TOWARDS THE CIRCUIT
LEVEL

On the system level, we are facing yet one of the
most demanding inverse problems: designing an
entire integrated optical circuit based solely on optical
specifications. Resting on the expertise of the
optimization examples presented earlier, our research
is now focused to the development of a design
platform for planar integrated optics devices. This

Inverse Problem Solver

Fig.18: General architecture of the developed design
and optimization platform.

design environment whose user interface is imaged in
Fig.17 relies on sophisticated representation schemes
for device geometries based on elementary waveguide
structures (e.g., straight waveguides, bends and
tapers). While performing a semantic analysis the
program is able to identify the potential functionality
of a combination of such elements leading to “auto
generated” optical circuits including, e.g., directional
couplers and splitters of different shapes. For a rapid
evaluation of each device topology under optimiza-
tion a fast scattering-matrix approach is primarily
used. Fig.18 shows the general architecture of our
optimization platform where the forward solver is
allocated by the hierarchical representation scheme of
the underlying problem.

As an optimizer we consider a kind of evolu-
tionary strategy (ES) scheme. In order to formalize
the optimizer’s interference during optimization
several interference operators have been designed.
Looking for appropriate schemes on how to distort a
circuit geometry or how to accordingly modify an
element’s functionality represents the most
demanding part of our implementation. Besides
translational and rotational distortion of the circuit
while maintaining connectivity other operators such
as scaling, and the introduction of predefined
functional building blocks are under extensive
investigation.

Some simple preliminary test cases like, e.g., the
optimization of a multi-stage resonant-coupler add-
drop device have clearly shown that the optimization
problem posed here reveals an enormous search
space. Even when assessing a 2D circuit topology to
its inherent functionality has major influence on the
problem’s complexity, we still rely on our approach:
Including semantic information like the circuit’s
intrinsic interrelations within an optimization process
seems the only way to keep the problem tractable.
Nevertheless, we believe our evolutionary design
environment [37] to be very flexible because it does
not necessarily require a preliminary design as a
starting configuration and even allows modifications
of the problem representation during the optimization
process itself.

9. CONCLUSION

By means of five design examples we have
demonstrated why evolutionary algorithms are highly
qualified to solve “real world” inverse problems
considering various applications in the field of planar



integrated optics, optical communication technology,
and dielectric material modeling as well. The modal
treatment of optical fields by an appropriate
underlying structure is an essential operation
regarding the characteristic functionality of the resul-
ting device. Therefore, we have presented examples
related to both the spectral shaping of the optical field
(single mode multi-cavity laser diodes and concatena-
ted Bragg grating filters) and the spatial molding of
the light (spot-size converter).

Leaving the field of structural optimization we
focused then on two examples stemming both from an
applied engineering background.

First, a purely combinatorial optimization prob-
lem solution has been drawn when improving the
performance of modern optical communication
systems (e.g., fiber optic SCM-links and high-speed
WDM-systems) according to a more adapted
frequency (or wavelength) carrier distribution. In the
second example we report the evolutionary
algorithm’s parameter estimation feature on the
determination of the dispersive properties of highly
lossy, very complex dielectric materials starting from
scattering parameter measurements.

After illustrating the various examples, the focus
of this paper has changed towards a more prospective
view where the evolutionary algorithm’s ability to
gather problem-related information during optimi-
zation is addressed. Here, we propose to benefit from
structural interdependencies within a population of
potential solutions as well as to trace different
temporal evolution aspects in order to establish
corresponding superior meta-optimization strategies.

One obvious area for future research on evolu-
tionary optimization has already been annotated by
the improvement of the forward solver with respect to
speedup, robustness and accuracy. Moving then to the
circuit level we tried to use the optimizer as a proper
design tool for planar integrated optics devices. Here,
we have faced one of the most demanding inverse
problems. It seems only tractable when including the
circuit’s intrinsic interrelations (by a semantic analysis)
within the problem representation as well as imple-
menting the optimizer’s interference operators accord-
ingly. Hence, extensive investigations are still
mandatory. Nevertheless, we propose evolutionary
algorithms being highly valuable candidates when
evaluating codes for computer guided engineering and
virtual design platforms. -
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