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Abstract — In this paper, the three dimensional
vector potentisl magmetostatic problem is solved using
nodal and edge finite elements. The influence of the gange
condition Aw=0 in the characteristics of the edge-
element gemerated matrix is analyzed. Three gauge
conditions are studied: no gauge, the complete A.w=0
gauge and the incomplete A.w=0 gauge condition.

1. INTRODUCTION

The 3D nodal finite-clement magnetostatic
formulations are usually based on scalar potentials.
However, these formulations present some problems
such as the cancellation errors in highly permeable
regions and difficulties to treat multiply connected
regions [4]. These problems do not appear when the
magnetic vector potential is used. However, there are
also some computational drawbacks in this case, due to
the use of three unknowns per node and due to the
necessity of imposing a gauge condition.

A new kind of finite-element that is being
rowadays used is the edge element [1]. This element is
very interesting from the computational point of view.
Its degrees of freedom are line integrals of the vector
potential along the edges. These elements
automatically impose the tangential continuity of the
interpolated variable between clements and let the
normal component free. These clements are also
adeguate to impose the gange A.w=0, where w is an
arbitrary vector field that does not possess closed lines.

The main objective of this paper is to compare
the use of the edge and nodal finite clements in the
solution of 3D magnetic vector potential static
problems. The number of unknowns, the number of
non zero clements in the matrix and the number of
ICCG iterations are analyzed. The influence of the
gauge A.w=0, for edge elements is also analyzed.

II. MATHEMATICAL FORMULATION
The magnetic vector potential A, defined by

B=§X:4’, (1)

satisfies the following differential equation:
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where B is the flux density, v is the magnetic
reluctivity and J is the current density vector.

This probiem is not compietely defined yet. The
interface conditions between regions of different
material characteristics, the boundary and gauge
conditions must be specified. The interface conditions
are based on the tangential continuity of the magnetic
fieild H and on the continuity of the normal component
of the magnetic induction B on the interface between
regions of different characteristics, that is:

Ax(wVxA))=Ax(WVxAdj,)
(VxA), -A=(Vx4),-A 3)
Here n is a unit vector normal to the interface.

The boundary conditions can be specified as:

where

where B-A=0 @
where n is a unit vector normal to the boundary.

Using the Galerkin method and considering the
interface and boundary conditions, the following weak
form can be obtained {4]:

o VWxA-VxWdo=|o B-Jaa VYW (5

where W is a vector weighting function.

Equation (2) associated with conditions (3) and
(4) does not assure the uniqueness of the solution A. If
A] is one solution, other solutions can be generated
adding an arbitrary gradient function, that is:

B=Vx4,=Vx(4,+V$)=Vx 4, ©)
A gauge condition must be imposed so that the

magnetic vector potential is uniquely determined. The
strategy to apply this gauge is different if we consider
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nodal or edge clements. This is discussed in the
following section:

A. Nodal finite-elements

The Coulomb gauge is imposed to guarantee the
solution uniqueness, that is:

V-A=0 D

Now, the weak form becomes [4]:

j‘nv(ﬁxZ.GxW+v-2 iﬁ’/);iﬂ:jﬂ W.JdQ 8)

The magnetic vector potential is approximated
by nodal finite elements, that is:

NNOS . "
= Y (Al +Ay] + AK)N;

i=1

®

where NNOS is the number of nodes of the element,
(A Ay Ap) are the components of A at the node i,
and N; is the nodal shape function associated with the
node i.

B. Edge finite elements

The magnetic vector potential is now
approximated by vector shape functions, defined over
the element edges, that is:

(10)

where NAR is the number of edges of the element. The
A's are the line integrals of A along the edges and the
W,'s are the vector shape functions. The line integral of
W; along the edge where it is defined is equal to one
and along the other edges it is equal to zero{7].

As already mentioned, a2 gauge condition must
be imposed o guarantee the solution uniqueness. The
adopted gange for edge elements is A-w = § where w is
an arbitrary vector field without closed lines. In {2] it is
proved that this gauge guarantees the solution
uniquencss.

If the finite element mesh is seen as a connected
graph, there exists a very interesting way to apply this
gauge. The discretized version of A-w = 0 is obtained
choosing the direction w as an arbitrary tree of the
mesh graph [2]. Then, the degrees of freedom
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associated with the tree are zeroed and only the edges
corresponding to the co-tree must be evaluated,

As the tree is arbitrary, there are some cases
where it can generate an ill conditioned matrix and this
can resuit in a big number of ICCG iterations [5]. To
avoid this problem, an incomplete gauge condition has
been investigated. In this case, the edges that are
zeroed form an incomplete tree, that is, a path
connecting two arbitrary nodes cannot exist. In this
work, the construction of this incomplete tree is based
on the idea that the edges where A is significant should
not be zeroed [31.

I, NUMERICAL RESULTS

The problem shown in Fig. 1 has been solved to
compare the two finite element types. The problem
consists of a cube with relative permeability equal to
1000. A magnetic induction of 1 T is applied in the z
direction. Hexahedral clements are used to discretize
the geometry. The solution of the generated matrix
system is obtained by the ICCG method. The
convergence criterion for the ICCG is reached when
the Euclidean norm of the residual is less than 1E-7.
The problem does not present an analytic solution. So,
B is evaluated at the point x=y=z=10mm so that the
calculated valaes can be compared with the values
presented in [5].

Different meshes are used. The discretization
characteristics are presented in Table I. Table If shows
the results obtained using nodal elements. Tables III,
IV and V show the results obtained with edge clements
without using any gauge, using the A.w=0 gauge and
the incomplete A.w=0 gauge, respectively. In this case,
the incomplete gauge was applied zeromg ali the edge
unknowns in the z direction.

100 mm
z
100 mm
Yy
X

Fig. 1:A magnetic cube in an uniform field




Table 1.
Discretization Characteristics
Divisions | Number of | Number of | Number of
Elements Nodes Edges
4xdxd 64 125 300
6x6x6 216 343 882
8x8x8 512 729 1944
Table II.
Nodal Elements
Divisions| Matrix {Equations{ ICCG | BT
coeffic. iterations
4x4x4 3630 177 2 2.5860
6x6x6 | 16224 615 3 26114
8x8x8 | 43826 1477 3 2.6288
Tabie II1.
Edge Elements without gauge
Divisions| Matrix {Equations ICCG B[T|
coeffic. iterations
4x4x4 1680 156 b3 2.6007
6x6x6 7294 570 10 2.5912
Rx8x8 | 19356 1400 13 2.5963
Table IV.

Edge Elements with the A-w =0 gauge.

Divisions| Matrix [Equations] ICCG | BT|
coeffic. iterations
4x4x4 851 111 31 2.6009
6x6x6 3475 395 80 2.6040
8x8x8 3971 959 131 26116
Table V.
Edge elements with the incomplete A-w =0 gauge
Divisions| Matrix [Equations ICCG B [T}
coeffic. iterations
4x4x4 892 120 10 2.6007
6x6x6 3592 420 16 2.5914
8xBx8 9204 1008 21 2.5964

The results were obtained through an Object
Oriented Program written in the C++ language [6]
using a 486, 530 MHz, PC.

When no gauge is applied, edge eclements
generate a mattix system with  dimension
approximately equal to the dimension of the nodal
elements generated matrix. However, the first matrix is
much more sparse.

The nodal elements' system has a very fast
ICCG convergence, as compared to the edge elements.
It can be seen in Table IH that the formulation without

gauge presenis the lowest number of ICCG iterations
for the edge eclement formulations. However, the
number of equations and non zero elements is much
bigger than the ones presented in Tables IV and V.
Comparing the data in Tables IV and V, it can be seen
that the incomplete gange formulation reduces
significantly the mumber of ICCG iterations, as
compared to the complete gauge formulation. It can
also be seen that the oumber of unknowns and of non
zero coefficients is only a little greater than in the
complete gauge formulation.

The number of ICCG iterations can be reduced
if the “Shifted Incomplete Cholesky Factorization™ [8]
is used. In this method the standard Incomplete
Cholesky Factorization is modified including a shift
factor v to scale the diagonal elements. The case of y=1
corresponds to the Standard Incomplete Cholesky
Factorization. The effectiveness of the preconditioning
method changes with v, Fig. 2 shows the influence of
this factor in the number of ICCG iterations for all the
edge element formulations.
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Fig. 2: Number of ICCG iterations as influenced by the
Incomplete Cholesky Factorization Shift Factor

It can be seen in Fig. 2 that for the no gauge and
the Incomplete Gauge formulations the shift factor
does mot have a big influence on the ICCG
convergence and the standard ICCG can be used
However, for the complete gauge formulation, we must
use a shift factor greater than one.

The flux density B is almost the same for the
four different formulations and converges to the value
presented in {5]. Fig. 3 confirms this, showing the
values of B along the z direction evaluated with nodal
and edge elements with the complete gauge.
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Fig. 3: |B| in the z direction (x=y=0.01)
TV. CONCLUSIONS

In this paper we presented a comparison
between nodal and edge finite elements for 3D vector
potential magnetostatic formulations. From the results
presented in the previous sections, the following
conclusions can be obtained:

» Nodal elements present better convergence for the
ICCG method,

* The edge elements matrix is more sparse than the
matrix generated by the nodal elements matrix;

e The application of the complete gauge condition
reduces considerably the number of equations and
the number of non-zero clements in the system
matrix. However, it increases a lot the number of
ICCG iterations;

e The complete gauge formulation is very sensitive
to the value of the shift factor in the Incomplete
Cholesky Factorization. The standard factorization
{y = 1) must be avoided in this case, becanse the
number of ICCG iterations is very high;
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e The incomplete gauge seems to be the best of the
edge clement formulations if we consider the
analyzed aspects of memory requirements and the
number of ICCG iterations. However, it must be
emphasized that this conclusion is limited to the
simple structure treated in this paper. For more
complicated structures additional work must be
done to guarantee that this is still valid.
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