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Abstract  — In this paper we address an inverse 

scattering problem whose aim is to determine the 
geometrical as well as the physical properties of a 
perfectly conducting cylindrical body buried in a half-
space. We use cubic-spline method instead of 
trigonometric series to describe our shape and 
reformulated into an optimization problem and solved 
by the genetic algorithm. The genetic algorithm is 
employed to find out the global extreme solution of the 
object function. As a result, the shape of the scatterer, 
which is described by using cubic-spline, can be 
reconstructed. In such a case, fourier series expansion 
will fail. Even when the initial guess is far away from 
the exact one, the cubic-spline description and genetic 
algorithm can avoid the local extreme and converge to 
a global extreme solution. Numerical results are given 
to show that the shape description using cubic-spline 
method is much better than the Fourier series. 

Index Terms  — Inverse Problem, Cubic-spline, 
Fourier series. 

I.   INTRODUCTION 

Due to large domain of applications such as 
non-destructive problem, geophysical prospecting and 
determination of underground tunnels and pipelines, 
etc., the inverse scattering problems related to the 
buried bodies has a particular importance in the 
scattering theory. In the past 20 years, many rigorous 
methods have been developed to solve the exact 
equations [1]-[9]. However, inverse problems of this 
type are difficult to solve because they are ill-posed 
and nonlinear [10]. As a result, many inverse problems 
are reformulated into optimization ones and then 
numerically solved by different iterative methods such 
as the Newton-Kantorovitch method [1]-[5], the 
Levenberg-Marquardt algorithm [6]-[8], and the 
successive-overrelaxation method [9]. Most of these 
approaches employ the gradient-based searching 
scheme to find the extreme of the cost function, which 
are highly dependent on the initial guess and usually 
get trapped in the local extreme. The genetic algorithm  
(GA) [11] is an evolutionary algorithm that uses the 
stochastic mechanism to search through the parameter 

space. As compared to the gradient-based searching 
techniques, the genetic algorithm is less prone to 
converge to a local extreme. This renders it an ideal 
candidate for global optimization. Recently, 
researchers have applied GA together with 
electromagnetic solver to attack the inverse scattering 
problem mainly in two ways. One is surface 
reconstruction approach; the other is volume 
reconstruction approach. Chiu [12] first applied the 
GA for the inversion of a perfectly conducing cylinder 
with the geometry described by a Fourier series 
(surface reconstruction approach), while Takenaka 
[13], Meng [14] and Zhou [15] used the concept of 
local shape function to describe the conducting objects 
(volume reconstruction approach). Alternatively, 
Chien [16], Zhou [17] and Qing [18] used b-splines to 
describe the geometry of a perfect conducting cylinder. 
The 2-d perfectly conducting cylinders are denoted by 
local shape functions )(θρ F=  with respect to their 
local origins, which can be continuous or discrete. 
However, to the best of our knowledge, there are still 
no numerical results, which compared the cubic-spline 
and Fourier series, shape description with the genetic 
algorithm for the buried conducting scatterers. In this 
paper, we present a computational method based on the 
genetic algorithm to recover the shape of a buried 
cylinder. In Section II, a theoretical formulation for the 
inverse scattering is presented. The general principles 
of genetic algorithms and the way we applied them to 
the inverse problem are described. Numerical results 
for reconstructing objects of different shapes are given 
in Section III. Finally, some conclusions are drawn in 
Section IV. 

II. THEORETICAL FORMULATION 

Let us consider a perfectly conducting cylinder 
buried in a lossy homogeneous half-space, as shown in 
Fig 1. The media in regions 1 and 2 are characterized 
by the permittivity and conductivity ( ,1 1)ε σ  and ( ,2 2)ε σ , 

respectively, while the permeability 0µ  is used for each 
region, i.e., only non-magnetic media are concerned 
here. The cross-section of the cylinder is described by 
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polar coordinates in the xy  plane through the shape 
function ρ = F(θ). The cylinder is illuminated by a 
plane wave with time dependence exp )( tjω , of which 
the electric field is assumed parallel to the -axis (i.e., 
transverse magnetic or TM polarization). Let 

z
incE  

denote the incident E -field from region 1 to region 2 
with incident angle

1φ . Owing to the interface between 
region 1 and region 2, the incident plane wave would 
generate two waves in the absence of the conducting 
object: the reflected wave (for ) and the 
transmitted wave (for ). Thus the unperturbed 
field is given by 
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Note that each point can be expressed by ( yx,  in 
Cartesian coordinates or ( )  in polar coordinates. 
As the buried object is present, the scattered field can 
be expressed by 
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Here, )(θsJ  is the induced surface current density, 
which is proportional to the normal derivative of the 
electric field on the conductor surface. ,'; xyG  
is the Green’s function which can be obtained by 
Fourier transform [3]. Note that we might face some 

difficulties in calculating the Green’s function, since 
the Green’s function given by (3) takes the form of an 
improper integral that must be evaluated numerically. 
However, the integral converges very slowly when (x, 
y) and (x’, y’) approach the interface, for which the 
acceleration of converging speed is possible by 
rewriting the Green’s function as a closed-form term 
plus a rapidly converging integral (see Appendix). In 
(3b), )  is the Hankel function of the second kind of 
order zero. The boundary condition for a perfectly 
conducting object is 
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where is the outward unit vector normal to the 
surface of the scatterer. The boundary condition at the 
surface of the scatterer given by (4) leads to an integral 
equation for )(θJ : 
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The total field outE  in region 1 is given by 
2
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The direct problem is to compute the total field in 
region 1 when the shape function θF  is given. This 
can be achieved by first solving for J from equation 
(5) and then calculating outE  by equation (6). 
      For numerical calculation of the direct problem, 
the contour is first divided into sufficient small 
segments so that the induced surface current can be 
considered constant over each segment. Then the 
moment method is used to solve equations (5) and (6) 
with a pulse basis function for current expansion and 
the Dirac delta function for testing [19]. 
 Let us consider the following inverse problem, 
given the scattered electric field E  measured outside 
the scatterer, and determine the shape 

s

)(θF  of the 
object. 
(A) Using Fourier-series to describe the shape: 

Assume the approximate center of the scatterer, 
which in fact can be any point inside the scatterer, is 
known. Then the shape function )(θF  can be 
expanded as: 
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where , and C , are real coefficients to be 
determined, and 

n

1+N  is the number of expanded 
terms.  
(B) Using Cubic-spline to describe the shape: 

The geometry of the cubic-spline is shown in 
Fig. 2. First, we separate the boundary of the shape 
with  pieces and we have N  separated points. 
We denote the separated points by polarized-coordinate 
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Fig. 1. Geometry of the problem in (x,y) plane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                Fig. 2.  Geometry of the cubic-spline. 
 

Note that the discretization number of J  for 
the inverse problem must be different from that for the 
direct problem. Since it is crucial that the synthetic data 
generated by a direct solver are not like those obtained 
by the inverse solver, the discretization number for the 
direct problem is twice of that for the inverse problem 
in this study. For the inversion procedure, the genetic 

algorithm is employed to maximize the following 
objective function: 
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where TX  is the total number of measured points. 

exp (s )E rK  and ( )cal
sE rK  are the measured scattered field and 

the calculated scattered field, respectively. The 
minimization of ( ) 2

'Fβ θ  can, to a certain extent, be 

interpreted as the smoothness requirement for the 
boundary of ( )F θ . Therefore, the maximization of 

 can be interpreted as the minimization of the least-
square error between the measured and the calculated 
fields with the constraint of smooth boundary. Typical 
values of 

SF

β  range from 0.00001 to 10. The optimal 
value of β  depends mostly on the dimensions of the 
geometry. One can always choose a large enough value 
to ensure the convergence, although overestimation 
would result in a very smooth reconstructed image. 
Technically, we can let the value of β  decrease 
gradually during the course of convergence [4]. 
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Genetic algorithms are the global optimization 
methods based on the genetic recombination and 
evolution in nature [11]. They use the iterative 
optimization procedures that start with a randomly 
generated population of potential solutions, and then 
gradually evolve toward a better solution through the 
application of the genetic operators. Genetic algorithms 
typically operate on a discretized and coded 
representation of the parameters rather than on the 
parameters themselves. These representations are 
considered as the “chromosomes”, while the elements 
that constitute the chromosome are called “genes”. 
Simple but often very effective chromosome 
representations for optimization problem involving 
several continuous parameters can be obtained through 
the juxtaposition of discretized binary representations 
of the individual parameters. In our problem, 
parameters Bn , Cn, and ρi  are given by the following 
equation. As an example  is shown 
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where Bb , b , …and nB
1 1

nB
Lb −

 (gene) are the L-bit string 
of the binary representation of Bn , and Pmin and Pmax 
are the minimum and the maximum values admissible 
for Bn. Similar expressions exist for the parameters Cn 
and ρi  and are omitted here for brevity. Here, Pmin and 
Pmax can be determined by prior knowledge of the 
object. Also, the finite resolution with Bn (Cn or ρi ) can 
be tuned in practice by changing the number of bits 
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assigned to it. The basic GA for which a flowchart is 
shown in Fig. 3 starts with a large population 
containing a total of X candidates. Each candidate is 
described by a chromosome. Then, the initial 
population can simply be created by taking X random 
chromosomes. Then, the GA iteratively generates a 
new population that offspring from the previous 
population through the application of the reproduction, 
crossover, and mutation operators. 
The new population contains increasingly better 
chromosomes and will eventually converge to a 
population that consists of the optimal chromosomes. 
As soon as the cost function (CF ) changes by <1% in 
two successive generations or exceeds 1000 
generations, the genetic algorithm will be terminated 
and the final solution is then obtained.  

 
Fig. 3. The flowchart of GA. 

III.   NUMERICAL RESULT 

Let us consider a perfectly conducting cylinder 
buried in a lossless half-space ( 021 ==σσ ). The 
permittivities in region 1 and region 2 are characterized 
by 

01 εε =  and 02 56.2 εε = , respectively. A TM 
polarized plane wave of unit amplitude is incident from 
region 1 upon the object in region 2 as shown in Fig. 1. 

The frequency of the incident wave is chosen to be 
3GHz, of which the wavelength 0λ  in free space is 
0.1m. The object is buried at a depth a ≅

0λ  and the 
scattered fields are measured on a probing line along 
the interface between region 1 and region 2. Our 
purpose is using the Fourier-series and cubic-spline 
shape expressions to reconstruct the shape and 
comparing which is better in the inverse problem. The 
object is illuminated by three incident waves from 
different directions, while 20 measurement points at 
equal spacing are used along the interface y a−=  for 
each incident angle. There are 60 measurement points 
in each simulation. The measurement is taken from 
x =0 to 0.2m for incident angle 

1φ =− , from °60 x =-
0.1 to 0.1m for incident angle 1φ =0 , and from ° x =-0.2 
to 0m for incident angle 1φ =60 . To save computing 
time, the number of unknowns is set to be 7, and the 
population size is chosen as 300 (i.e. X =300). The 
binary string length of the unknown coefficient, B

°

n (Cn 
and ρI ), is set to 20 bit (i.e., L=20). The search range 
for the unknown coefficient of the shape function is 
chosen to be from 0 to 0.1. The extreme values of the 
coefficients of the shape function can be determined by 
some priori knowledge of the objects. Here, the prior 
knowledge means that we can get the approximate 
position and the size of the buried cylinder by first 
using tomography technique, and then get the exact 
solution by the genetic algorithm. The crossover 
probability pc and mutation probability pm are set to be 
0.8 and 0.1, respectively. The value of β  in equation 
(6) is chosen to be 0.001.   

( θ3F

/12 (F2)]i )}i/(FDR θ
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In the first example, the shape function is given by 
) ( )θ cos015.003.0 += m and we use Fourier-

series and cubic-spline expressions to recover it. The 
reconstructed shape function for the best population 
member (chromosome) is plotted in Fig. 4(a), 
respectively, with the error shown in Fig. 4(b). Here, 
DR, which is called shape function discrepancies, is 
defined as 

2
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where N  is set to 60. The quantities DR provide 
measures of how well )F  approximates F . From 
Fig. 4, it is clear that reconstruction of the shape 
function is quite good for both Fourier-series and 
cubic-spline expressions. To investigate the sensitivity 
of the imaging algorithm against random noise, two 
independent Gaussian noises with zero mean have been 
added to the real and imaginary parts of the simulated 
scattered fields. Normalized standard deviations of 

510− , 410− , 310− , 210− , and 10  are used in the 1−

(10)
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simulations. The normalized standard deviation 
mentioned earlier is defined as the standard deviation 
of the Gaussian noise divided by the rms value of the 
scattered fields. Here, the signal-to-noise ratio (SNR) is 
inversely proportional to the normalized standard 
deviation. The numerical result for this example is 
plotted in Fig. 4(b). 

In the second example, we selected cubic-spline 
to describe the shape m, 1 0.02ρ = 2 0.02 3ρ = m, 

3 0.02 3ρ = m, m, 4ρ 0.02= 5 0.02 3ρ = m, 

6 0.02 3ρ = m. We can see that the 7-terms Fourier-
series expression cannot recover the shape. The 
purpose of this example is to show that cubic-spline 
method is able to reconstruct a scatter while the 
Fourier-series fails. Both the shape results are shown in 
Fig. 5(a) and the relative error of Cubic-spline expand 
is shown in Fig. 5(b). 

 

 

( ) ( θθθθ 3cos005.02cos005.0cos005.003.0 +++=F

Fig. 4(a). Shape function for example 1. The star curve 
represents the exact shape by the Fourier-
series, while the curve of short imaginary line 
is calculated shape by the Fourier-series and 
the curve of long imaginary line represents 
calculated shape by the cubic-spline in final 
result. 

 
In the third example, the shape and conductivity 

function are selected to be 
)

m. Note that the shape function is not symmetrical 
about either x-axis or y-axis. Both Fourier-series and 
cubic-spline expressions can recover it. Refer to Fig. 
6(a) and Fig. 6(b) for details. 

In the fourth example, we selected cubic-spline 
to describe the shape ρ0 = 0.03 m, ρ1 = 0.02 m, ρ2 = 
0.01 m, ρ3 = 0.01 m, ρ4 = 0.01 m, ρ5 = 0.03 m, and 
slope is 5. Again 7-terms Fourier series expression 

cannot recover the shape. Both the shape results are 
shown in Fig. 7(a) and the relative error of Cubic-spline 
expand is shown in Fig. 7(b). 

 
 

 
 

 
 
 
 
 
 
 
 

Fig. 4(b). Shape function error in each represented 
method. The F-F means that the shape 
functions both in direct and inverse 
problems are described by the Fourier-
series. The F-S means that the shape 
function in the direct problem is described 
by the Fourier-series and in the inverse 
problem is described by the cubic-spline. 

 
 
  
 
 
 
 
 

Fig. 5(a). Shape function for example 2. The star curve 
represents the exact shape by the Fourier-
series, while the curve of short imaginary 
line is calculated shape by the Fourier-series 
and the curve of long imaginary line 
represents calculated shape by the cubic-
spline in final result. 
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Fig. 5(b). Shape function error in each represented 

method. The S-S means that the 
shapefunctions both in the direct and inverse 
problem are described by the cubic-spline. 

 

 
Fig. 6(a). Shape function for example 3. The star curve 

represents the exact shape by the cubic-
spline, while the curve of short imaginary 
line is calculated shape by the Fourier-series 
and the curve of long imaginary line 
represents calculated shape by the cubic-
spline in final result. 

 

 
Fig. 6(b). Shape function error in each represented 

method.  The F-F means that the shape 
functions both in the direct and inverse 
problems are described by the Fourier-series. 
The F-S means that the shape function in the 
direct problem is described by the Fourier-
series and in the inverse problem is described 
by the cubic-spline. 

 

 
Fig. 7(a). Shape function for example 4. The star curve 

represents the Fourier-series exact shape, 
while the curve of short imaginary line is the 
Fourier-series calculated shape and the 
curve of long imaginary line is represents 
the cubic-spline calculated shape in final 
result. 
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IV. CONCLUSION 

We have presented a study of applying the 
genetic algorithm to reconstruct the shape of a buried 
metallic object through the measurements of scattered 

 fields. Based on the boundary condition and the 
measured scattered fields, we have derived a set of 
nonlinear integral equations and reformulated the 
imaging problem into an optimization one. The 
contours of the cylinders are denoted by cubic-spline 
local shape functions in local polar coordinate instead 
of trigonometric series local functions to guarantee the 
nonnegative definiteness. Experiment results show that 
the variable searching ability of GA has its limitation, 
and Fourier-series expression cannot recover the 
arbitrary shape in finite terms. In our numerical results, 
it is shown that using cubic-spline expand to describe 
the shape in the half-space inverse problem is more 
suitable than Fourier-series expression. 
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Fig. 7(b). Shape function error in each represented 
method. The S-S means that the shape
functions both in the direct and inverse
problems are described by the cubic-spline.

 
APPENDIX 

 
To calculate the Green’s function, we can use the 
following formula, 
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γ  is Euler’s constant, i.e., γ =0.5772156649. Let us 
consider the following integral  
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In general, we choose α0 >> |ki|, i = 1, 2. From Eq. (A1), 
we get 
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Using the above relation, we obtain  
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     (A3) 
Now, the integral G1 is written as a rapidly converging 
integral plus a dominant integral, which can be easily 
calculated by means of Simpson’s rule. Similarly, we 
have 
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