Magnetic Diffusion in One Dimension

David A. Torrey, Peter L. Levin, and Raymond P. Langevin
Worcester Polytechnic Institute

Electromagnetic systems for which conduction currents are the only source of
magnetic field can be characterized by Maxwell's equations using the magneto-
quasistatic form of Ampere's law, where time varying D is neglected over a
surface of fixed identity [1].  The differential equation governing the magnetic
field in these applications takes on the familiar parabolic form that often denotes
a diffusion process.

A canonical problem that readily allows for demonstration of the diffusion
phenomena is shown in Figures 1 and 2. A conducting, non-magnetic bar is
placed between the poles of an electromagnet excited by a time-varying current
source. We wish to determine the magnetic flux density B within the
conducting bar, which is assumed to be very long in the y-direction. Thus, the
imposed x-directed B field will only be spatially dependent upon "z".

The analytical description presumes that the time varying magnetic field serves
as a source of electric field (as governed by Faraday's law), but the coupling
between E and B through Ampere's law is incomplete in the sense that
displacement currents do not play a role here. The magneto-quasistatic
approximation to Ampere's law is :

V XH=J (1)

where we take J here to be solenoidal. As already stated, the time varying
magnetic field will serve as a source of electric field within the conducting slab
as described by Faraday's law :

VXE=-% (2)
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It may be straightforwardly shown, upon application of a vector identity and
inclusion of the constitutive relationship between current density and the electric
field through the conductivity ¢, that the differential equation governing the
magnetic field in the slab may be written:
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Given a sinusoidally varying drive current, the magnetic field on either side of
the conducting slab can be specified as Re{Bgy exp(j®wt)}, and the analytic
solution to this problem may be found by direct application of phasor analysis.
The result is:

Bz, 1) = B(z)cos (ot + ¢(z) (4)
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and the skin depth { is defined to be:

¢ =55 (7)
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We have developed a numerical solution to this equation based on the partial
discretization method [2] (finite elements in space, analytical solutions in time).
The finite element method implemented for this problem uses linear basis
functions, and the inversion of the complex stiffness matrix is accomplished by
the bi-conjugate gradient iterative scheme [3]. The numerical results are in
agreement with the analytical solution of equation (4), as seen in figure 3.

References

[1] Herman A. Haus and James R. Melcher, Electromagnetic Fields and
Energy, Prentice Hall, 1989

[2] O. C. Zienkiewicz and K. Morgan, Finite Elements and Approximation,
John Wiley & Sons, 1983

[8] D.A.H. Jacobs, Generalizations of the Conjugate Gradient Method for
Solving Non-Symmetric and Complex Systems of Algebraic Equations,
Central Electric Research Laboratories, Lab Note #RD/L/N 70/80,
Leatherhead, Surrey

16



Ie

jot

»
>

5

Figure 1. A conducting slab is placed between the pole faces of a sinoidally
driven electromagnet. The x-directed B field will induce eddy currents inside
the structure that tend to "buck-out" the applied field. The extent to which the
magnetic field penetrates the slab is described by the a diffusion equation.
The slab is long enough in "y" that solenoidal eddy currents are bidirectional.
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Figure 2. The conducting slab between the pole faces is of "infinite" extent in the
"y" direction and the induced eddy currents are y-directed. The x-directed
magnetic field is a function of "z" only and is described by a one dimensional
parabolic differential equation.

18



0.5 _’r\*___/\i

Magnetic
F;ge:;d 0 analytic solution -
numerical, 10 nodes  c-rreceeee
-0.5 —
-1 : I | |
0 0.2 0.4 0.6 0.8 1

Zz in cm

Figure 3. A comparision between the analytical solution and the numerical solution
obtained by the partial discretization method. The conducting slab is aluminum with

d = 1cm, and material properties ¢ = 38.2 MS/m and [L = L. The frequency of
excitation is 800 Hz. The graph shows B as a function of "z" at the instant when

the phase angle of the excitation is equal to 60 degrees.
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