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Abstract 

Analytical solution is derived to the problem of scattering of 
electromagnetic plane wave by an array of dielectric spheres 
each coated with a dielectric shell. The incident, scattered 
and transmitted electric and magnetic fields are expressed in 
terms of the vector spherical wave functions. The vector 
spherical translation addition theorem is applied to impose 
the boundary conditions on the surface of various layers. 
Numerical results are computed and presented graphically 
for the radar cross sections of several configurations of 
spheres system with multi dielectric layers. 

1. Introduction 

Many authors have studied the scattering of electromagnetic 
plane wave by a dielectric sphere coated with a dielectric 
shell. Aden and Kerker [1] obtained analytical expressions 
to the scattering of electromagnetic plane wave by a 
dielectric sphere coated with a concentric spherical shell of 
different dielectric materials, while Scharfman [2] presented 
numerical results for the special case of a small electrical 
radius (ka<1) dielectric coated conducting sphere. It was 
found in those early studies that the presence of dielectric 
coatings leads to substantial increase in the backscattering 
cross section for an appropriate choice of the dielectric 
constant and thickness of the coating relative to that of
uncoated sphere. Further, Wait has extended the solution to 
the case of scattering by a radially inhomogeneous sphere 
[3], while a numerical solution using the method of 
moments obtained by Medgyesi-Mitschang and Putnam for 
the case of dielectric-coated concentric sphere [4]. More 
recently, an exact solution of electromagnetic plane wave 
scattering by an eccentric multilayered sphere was 
developed by Lim and Lee [5].  Numerous papers on the 
scattering from systems of spheres of various natures in 
close proximity have been treated by numerous researchers 
[6-11]. 
Up to now, there has been no analytical or numerical 
solution to the problem of scattering of electromagnetic 
plane wave by an array of conducting spheres each coated 

with a dielectric layer. In this paper, we extend the solution 
of scattering by two dielectric spheres covered with a 
dielectric shell [9] to the case of scattering by a system of 
dielectric spheres each covered with a dielectric shell. The 
solution to this problem has many practical applications 
since, for example, it may be used to study the scattering by 
complex objects simulated by a collection of spheres [12], 
and it may also be used to check the accuracy of numerical 
solutions.   
From the design point of view, the backscattering cross 
section of an array of N dielectric coated spheres can be 
controlled to exploit multiple resonances by optimizing the 
multivariables of the system. These include the size and 
location of each sphere, number of dielectric layers coating 
each sphere as well as the thickness and relative dielectric 
constant of each layer as already done for conducting 
cylinders [13].  

2. Formulation of the Problem 

 Consider a linear array of N dielectric spheres each coated 
with a dielectric shell and having different radii and unequal 
spacing with centers lying along the z axis, as shown in Fig. 
1. Electromagnetic plane wave of unit electric field 
intensity, whose propagation vector K  lies in the x-z plane 
and makes an angleα  with the z-axis, is assumed to be 
incident on the spheres. Its incident electric and magnetic 
fields are 

yeE rkj
i ˆ⋅=                                                                  (1) 

)ˆsinˆ(cos
1

zxeH rkj
i αα

η
−−= ⋅                                   (2) 

with k being the wave number, ,ˆ,ˆ yx and ẑ  are the unit 

vectors along the x, y and z axes, respectively, and η  is the 
surrounding medium intrinsic impedance. The incident 
electric and magnetic fields may be expanded in terms of 
spherical vector wave functions around the center of the pth

sphere as  
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where )1(
mnM  and )1(

mnN  are the spherical vector wave
functions  of the first kind representing incoming waves 
associated with the spherical Bessel function, while 

),( nmPp  and ),( nmQp  are the incident field expansion 

coefficients defined in [7-8,14]. The field in the region II 
can be also expressed in terms of the vector spherical wave 
functions of the first and third kinds. Hence the electric and 
magnetic fields may be written as 
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 where pEA' (m,n), pMA' (m,n), pEA '' (m,n), and 

pMA '' (m,n) are the field expansion coefficients, while 

)3(
mnM  and )3(

mnN are the vector spherical wave functions of 

the third kind representing outgoing waves associated with 
the spherical Hankel function.  The subscripts E and M
denote transverse magnetic (TM) and transverse electric 
waves (TE), respectively.  The field in region I of the pth 
sphere may be written in terms of the vector wave functions 
of the first kind, i.e.,  
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where EPA  and MPA  are the unknown transmitted 

coefficients. Finally, the scattered electric and magnetic 
fields from the pth sphere are expanded as 
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where AEP (m,n), AMP(m,n) are the unknown scattered field 
coefficients. To express the scattered fields from the qth

sphere in the coordinate system of the pth sphere, we apply 
the spherical vector translation addition theorem for 
translation along the z-axis [15], i.e., 
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where )( pq
mn
mv dA and )( pq

mn
mv dB are the translation 

coefficients of the spherical vector translation addition 
theorem. To determine the unknown scattered field 
coefficients, we apply the boundary conditions on the 
various interfaces, i.e., 
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),,(),,( pppIppppIIp aHraHr φθφθ ×=×          (16) 

Substituting the appropriate field expansion expressions in 
equations (13) to (16), and applying the orthogonality 
properties of spherical vector wave functions and  
eliminating the transmission coefficients we obtain  
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where )( pnv ρ and  )( pnu ρ are the electric and magnetic 

scattered field coefficients for a single dielectric sphere coated 
with a dielectric layer [1,9].  Equations (17) and (18) may be 
written in matrix form for the purpose of computing the 
scattered field coefficients, i.e.

ATLA +=                                                                     (19) 

where A  and L  are column matrices for the unknown 
scattered and incident field coefficients, respectively, and 
T is a square matrix which contains the translation addition 
coefficients. 
Once the scattered field is computed from equation (19), the 
normalized bistatic cross section can be obtained as in [16]. 

92 ACES JOURNAL, VOL. 18, NO. 4, NOVEMBER 2003



3. Numerical Results 

In order to check the validity of our computer program, 
several numerical tests were conducted and the results 
compared favorably with previously published results [7-
8,11]. These tests included the limiting cases of (i) an array 

of dielectric spheres obtained by setting kb ≈ ka , IIrε =1 or 

IIrε = Irε  (ii) an array of conducting spheres each coated 

with a single dielectric layer obtained by setting Irε = ∞ and 

(iii) an array of conducting spheres obtained by setting 

Irε = ∞  and kb ≈ ka or IIrε =1.

In this paper, we presented numerical results for different 
sphere arrays to show the dependence of the radar cross 
section on various parameters characterizing the geometry,  
material properties, and incidence angles. Fig. 2 shows the 
normalized bistatic cross section versus the scattering angle 
θ  for a system of three identical spheres in the E- and H-
planes. The electrical radii of the outer and inner spheres are 
ka=2.0 and kb=2.5, respectively, while the electrical 
separation between successive spheres is kd=7.0, and the 
relative dielectric permittivity of the inner dielectric layer is 
3.0 and the outer is air. The purpose of this comparison is to 
check the accuracy of the computer code for the dielectric 
sphere case [8] as a special case of the dielectric spheres 
except the relative dielectric permittivity of the dielectric  
layer is set equal to unity. The parameters of Fig. 3 are 
similar to Fig. 2 except that the dielectric layer has a value 
of 2. We can see that the number of resonances in  E plane 
is increased.  Figs. 4 and 5 have the same parameters as in 
Fig. 3 except that the number of spheres is increased to five 
and eight, respectively.  We can see that the number of 
resonances also increases with the number of spheres.  
Fig. 6  shows the normalized backscattering  cross section 
versus the electrical distance (kd), which ranges from 8 
(touching) to 15.5 for end fire incidence and the number of 
spheres is five. The electrical radii of  outer and inner 
spheres are ka=4.0 and kb=3.0, repectively, while the 
relative dielectric permittivity of the inner dielectric layer is 
3.0 and for the outer layer is 2. Fig. 7 is similar to Fig. 6 
except the number of spheres is increased to 8. We can see 
that the location of the maximum peaks did not change by 
increasing the number of spheres for both cases. 
Furthermore, the magnitude of the normalized 
backscattering  cross section at the maximum peaks 
increased with increasing  number of spheres.  
In Figs. 8 and 9 we have plotted the normalized 
backscattering cross as a function of the angle of incidence 
α , which ranges from 0 to 90 degrees for a system of three 
and eight spheres. The electrical radii of the outer and inner 
spheres are ka=1.5 and kb=1.0, repectively, while the 
relative permittivity of the inner dielectric layer is 4 while 

for the outer layer is 3 and the electrical separation between 
the centers of the spheres is 3.0 (touching).   

4. CONCLUSIONS 

We have obtained an analytic solution of the problem of 
scattering by an array of dielectric spheres each coated with 
a dielectric shell. The boundary conditions are satisfied at 
various interfaces with the help of the vector translation 
addition theorem. The system of equations was written in 
matrix form while the scattered field coefficients were 
obtained by matrix inversion. Numerical results were 
presented for different numbers of spheres, angles of 
incidence, electrical separation, and relative dielectric 
constant.  For the general case of spheres orientation, the 
reader may find more details in [8].  
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Fig. 1: Geometry of the scattering problem. 
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Fig. 2:  Normalized bistatic cross section patterns for  
three identical dielectric spheres each covered with 
dielectric layer with ka=2.0, kb=2.5, kd=7.0, 

α =0, Irε =3.0, and IIrε =1.0. In the E-plane ( 2/πφ = )

and H-plane ( 0=φ ).

0 20 40 60 80 100 120 140 160 180
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Scattering angle (θ )

σ
/π

 a
2

E -Plane
H-Plane

Fig. 3:  Normalized bistatic cross section patterns for  
three identical dielectric spheres each covered with 
dielectric layer with ka=2.0, kb=2.5, kd=7.0, 

α =0, Irε =3.0, and IIrε =2.0.
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Fig. 4:  Normalized bistatic cross section patterns for five 
identical dielectric spheres each covered with a dielectric 

layer with ka=2.0, kb=2.5, kd=7.0, α =0, Irε =3.0, and 

IIrε =2.
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Fig. 5: Normalized bistatic cross-section patterns for eight 
identical dielectric spheres each covered with a dielectric 

layer with ka=2.0, kb=2.5, kd=7.0, α =0, Irε =3.0, and 

IIrε =2.0.
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Fig. 6: Normalized backscattering cross section versus 
electrical separation (kd) for end-fire incidence and a 
linear array of five identical dielectric spheres each 
covered with a dielectric layer with: ka=4.0, kb=3.0,  

0.0=α , Irε =3.0, and IIrε =2.0.
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Fig. 7: Normalized backscattering cross section versus 
electrical separation (kd) for end-fire incidence and a 
linear array of eight identical dielectric spheres each 
covered with a dielectric layer with: ka=4.0, kb=3.0,  

0.0=α , Irε =3.0, and IIrε =2.0.
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