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Abstract—This paper investigates the utilization of field pro-
grammable gate arrays (FPGAs) in the acceleration of numer-
ically intensive electromagnetics applications. We investigate
the speed improvement by employing FPGAs for two different
applications: (i) the optimization of a phased array antenna
pattern by amplitude control using the ant colony optimiza-
tion algorithm, (ii) implementation of the rigorous coupled
wave (RCW) analysis technique for the design of engineered
materials. The first application utilizes FPGAs as the only
processor; i.e., all functionalities of the algorithm reside on the
FPGA. The second one employs a hybrid hardware/software
approach where the FPGA serves as a coprocessor to the
CPU. The hybrid approach identifies the most numerically
intensive part of the RCW algorithm and implements it on
the FPGA. In both applications we demonstrate orders of
magnitude of improvement in speed proving that FPGAs
are highly flexible platforms suited well for the challenging
electromagnetics problems. An overview of available FPGA
platforms for scientific computing and how they compare are
also presented in the paper.

Index Terms—Field programmable gate array, Reconfigurable
computing, Electromagnetics applications, Rigorous coupled
wave analysis, Eigenvalue solver, Bio-inspired optimization,
Ant colony optimization (ACO), Phased array.

I. INTRODUCTION
The recent commercial and military applications for com-

munications, imaging and remote sensing demand high mobil-
ity and multi-functionality. For instance, military applications
require improved performance of their communication, radar
and tracking systems while reducing size, cost and radar
cross-section. Similarly, commercial communication devices
are expected to perform seamlessly on the move for both voice
and data exchange. In response, the research community has
been investigating the use of advanced and engineered electro-
magnetic materials. We have witnessed the emerging of new
classes of materials, such as meta-materials, photonic crystals,
and plasmonics, etc [1]–[5]. These are typically complex
heterogeneous mixtures of dielectric and metallic structures,

which require rigorous electromagnetic simulation tools for an
optimal design. Other applications involve smart antennas that
can steer a beam electronically. The combined performance
of the antenna with the beamformer can be a tedious task
to simulate as the structure can consist of fine features with
large overall dimensions, i.e., multiple wavelengths. However,
the computations for such complex materials are often very
cumbersome and time consuming. As a consequence, iterative
design of advanced materials and simulations of antenna
performance is often too slow to be of practical use.

There are many electromagnetic software packages that al-
low users to model complex 3-D structures. Many of these use
one of the full-wave solutions such as Finite Difference Time
Domain (FDTD) Method, Finite Element Method (FEM),
Method of Moments (MoM), or asymptotic techniques like
geometrical theory of diffraction (GTD), unified theory of
diffraction (UTD), etc. The full wave solutions are limited
to low-frequency applications or electrically small structures
since they involve discretization of the geometry and the
size of the problem becomes prohibitive for finer resolutions.
The asymptotic methods are based on the assumption that
the wavelength is much smaller than the finest part of the
geometry. However, many of the practical applications in-
volve modeling structures that possess fine details on large
surfaces. The finer details suit well for full-wave solutions
while the large surfaces are more appropriate for asymptotic
approaches. Some typical applications are antennas on vehicle
platforms, electrically large structures such as Rotman lens
beam-formers [6], advanced RF material such as electronic
band gap (EBG) and frequency selective surface (FSS) struc-
tures, and scattering properties of a medium with small and
large features with respect to the wavelength.

This paper investigates the utilization of field programmable
gate arrays (FPGAs) in the acceleration of numerically inten-
sive electromagnetics applications as described above. FPGAs
render themselves to parallel computing and can be cus-
tomized to optimally fit the problem at hand, creating a highly
efficient computing machine for the particular application.
With the advancement of semiconductor technology, FPGAs
have become mature enough to accommodate complicated
computations. Due to the intrinsic parallelism of hardware
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Fig. 1. The internal architecture of an FPGA device.

implementation on FPGA devices, it is possible to achieve
several orders of magnitude performance speedup compared
with the corresponding implementation in software [7]. There-
fore, FPGA devices have been integrated into the traditional
workstations as co-processors. Generally, these workstations
with addition of FPGA co-processors are called reconfigurable
computers. As opposed to the specially designed ASICs, the
functionality of the co-processor can be switched in millisec-
onds by downloading different configuration files (so the name
“reconfigurable computing”) into the FPGA device so that it
can perform different types of operations.

The basic architecture of an FPGA device is shown in Fig. 1.
FPGAs contain programmable logic components called “logic
blocks”, and a hierarchy of reconfigurable interconnects that
allow the blocks to be “wired together”. Logic blocks can
be configured to perform complex combinational functions,
or merely simple logic functions like AND and XOR. In
most FPGAs, the logic blocks also include memory elements,
which may be simple flip-flops or more complete blocks of
memory. The I/O blocks surrounding the logic blocks provide
the interface to communicate with the outside world. The
two leading FPGA manufactures as of 2010 are Xilinx [8]
and Altera [9]. FPGA devices from both companies are quite
visible in reconfigurable computers as co-processors.

The rest of the paper is organized as follows. In Section II,
we provide an overview of the available FPGA based platforms
for scientific computing applications. Programming these de-
vices involve understanding of parallelized and pipelined com-
puting techniques. The details on how programming can be ap-
proached are provided in Section III, with a brief description of
the differences between the currently available platforms. We
discuss examples of electromagnetics applications and their
implementation on FPGAs in Section IV. Finally, Section V
concludes this work.

Vendor-Specific Service Logic

FPGA Device
Local Memory 

Bank 0

Local Memory 
Bank 1

Local Memory 
Bank n-1

Host
Memory Interconnect

Fig. 2. The general architecture of a reconfigurable computer.

 

Fig. 3. The execution model of a reconfigurable computer.

II. AVAILABLE RECONFIGURABLE
COMPUTERS FOR SCIENTIFIC

COMPUTING
Using FPGA devices as co-processors to microprocessors in

reconfigurable computers (RC) has been an industrial interest
and academic research topic for many years. Fig. 2 shows a
simplified architecture of a reconfigurable computer including
one FPGA and one microprocessor. The FPGA co-processor
is equipped with several local memory banks, usually SRAM,
acting as cache. An interconnect is used to transfer data
between the FPGA and the microprocessor. An application
implemented on reconfigurable computers is divided into two
parts. The main flow is executed on the microprocessor.
The computation intensive parts of the application can be
implemented on the FPGA device by taking advantage of
pipelining and parallelism, as shown in Fig. 3. FPGAs differ
from a single-core microprocessor in their ability to execute
thousands of operations concurrently. This is achieved by
programming the logic blocks in the device. A single-core
microprocessor, on the other hand, is only able to perform
one operation at a time.

The reconfigurable (or hybrid) computers can be divided
into two subcategories based on the different integration tech-
nology used. In the first subcategory, a PCI or PCI-Express
based FPGA expansion card is inserted into a conventional
workstation. In most cases, the FPGA card and the workstation
are from different vendors. For the second subcategory, the
same vendor will design both the FPGA board and the
workstation, and integrate them together using a proprietary
interconnect. Since these reconfigurable computers provide
more computing capacity than those in the first subcategory,
they are typically called high-performance reconfigurable com-
puters (HPRCs). In this paper, we will focus on the use
of HPRCs in the field of electromagnetics. Three example
systems discussed in this paper are Cray XD1 [10], SRC-6 [11]
and SGI RC100 [12].
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Fig. 4. The local architecture of the FPGA co-processor.

On the Cray XD1 platform, the FPGA co-processor resides
on the same board as the microprocessor. This layout is
different from the other two reconfigurable computers, which
consist of separate FPGA board and microprocessor board.
In spite of this difference, they share two similarities. (i)
Multiple local SRAM modules are directly connected to the
same FPGA device so that the hardware implementation can
access and process multiple data blocks simultaneously, as
shown in Fig. 4. On all three platforms, each memory access
port is 64-bit wide. However, on both Cray XD1 and SGI
RC100, the FPGA device has two separate read and write
ports for each memory bank. In other words, the user logic on
the FPGA device can read from and write to the same memory
bank concurrently. On the other hand, the user logic on the
SRC-6 platform has only one port for both reading from and
writing to the same memory bank. This single-port access will
degrade the performance for some applications. (ii) The FPGA
co-processor is connected to the microprocessor and the host
memory using high-speed interconnect in order to reduce the
transportation overhead. These interconnects generally provide
shorter latency and higher bandwidth for the data transfer
between the FPGA and the microprocessor.

For an application that needs to use multiple FPGA devices
at the same time in an RC system, different platforms deal
with it differently.

• The Cray XD1 is a cluster-based reconfigurable computer.
In other words, it may consist of dozens of FPGA co-
processors, each of which belongs to a separate worksta-
tion. As shown in Fig. 5(a), 6 workstations (i.e., nodes)
compose a chassis, which is the basic unit in a Cray XD1
system. If the user intends to use more than one FPGA
co-processor, it has to cross the boundary of the operating
system. One approach to use multiple FPGA devices in
a single application is to use MPI (Message Passing
Interface). Apparently, all the communication between
any two FPGA co-processors has to be handled explicitly
by software.

• The SRC-6 is a cluster-based platform as well. As
shown in Fig. 4(b), there are two FPGA devices in
one workstation. The user can program these two FPGA
devices simultaneously in one application. These two

FPGA devices can communicate to each other using the
dedicated 192-bit channel. Once the communication is
beyond the boundary of an operating system, MPI can
be used for data transfer among different systems.

• The SGI RC100 is different from the other two platforms.
On SGI RC100, different types of processing boards, i.e.,
microprocessor boards and FPGA boards, are connected
to a same network and are visible in one single operating
system, as shown in Fig. 5(c). However, as shown in
Fig. 4(c), there is no communication channel between
two FPGA devices on the same board. If the raw data
can be divided into independent pieces, each of which
is to be processed by one FPGA device, the user can
allocate multiple FPGA co-processors in one software
thread, and the co-processor driver will distribute the
data evenly across different FPGAs. On the other hand,
if the user wants to use multiple FPGAs and there
is communication among these FPGAs during the data
processing, a multiple-thread application is required to
deal with this scenario.

The implementation on the FPGA co-processor depends
on the available resources, e.g., the available logic blocks in
the FPGA device and the number of local memory banks.
One example in the electromagnetics domain is the matrix
multiplication, i.e., C = AB. Each element in C is the product
of a row in A and a column in B, i.e., ci,j =

∑M
k=1 aikbkj . If

matrix A and B are stored in two separate local memory banks
and the result matrix C is saved in another separate memory
bank, the user logic can read one pair of (aik, bkj) every
clock cycle assuming the multiplier and the accumulator are
both fully pipelined. Therefore, it would take approximately
M clock cycles to compute one element in matrix C no matter
how complex the multiplication and the accumulation are.

III. PROGRAMMING RECONFIGURABLE
COMPUTERS

An application implemented on a reconfigurable computer
consists of a hardware part and a software part as shown
in Fig. 3. The user needs to program both parts and then
integrate them together using vendor APIs (Application Pro-
gramming Interfaces). The typical programming language for
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Fig. 5. The architecture of three representative reconfigurable
computers.

the software part is the C language in most cases. The more
challenging part is the hardware part and it typically requires
some hardware design expertise to gain the full benefit of using
the FPGA co-processor.

It has been mentioned before that an FPGA co-processor is
capable of performing thousands of operations concurrently.
In order to achieve this concurrency, all the logic blocks in
one FPGA device have to be programmed into a specific
status by using a configuration file. Since the implementation
depends on the available hardware resources on the FPGA
device (e.g., memory, built-in multipliers, logic blocks), it
might be necessary at times to distribute the hardware part
into multiple FPGA configurations, each of which is called a
bitstream. At runtime, different configurations are downloaded
into the FPGA device following a pre-defined order in an
application.

There are two different approaches for the user to implement

// The block for source data reading
always @ (posedge clk) begin

if (reset) begin
mem_0_rd_cmd_vld <= 0;
mem_1_rd_cmd_vld <= 0;
mem_0_rd_addr <= 0;
mem_1_rd_addr <= 0;

end
else begin

if (mem_0_rd_addr == (MATRIX_RANK - 1)) begin
mem_0_rd_cmd_vld <= 0;
mem_1_rd_cmd_vld <= 0;
mem_0_rd_addr <= mem_0_rd_addr;
mem_1_rd_addr <= mem_1_rd_addr;

end
else begin

mem_0_rd_cmd_vld <= 1;
mem_1_rd_cmd_vld <= 1;
mem_0_rd_addr <= mem_0_rd_addr + 1;
mem_1_rd_addr <= mem_1_rd_addr + 1;

end
end

end

// The block for source data feeding
multiplier U1(.di1(mem_0_rd_data),.di2(mem_1_rd_data),

.di_vld(mem_0_rd_data_vld),.do(product),.do_vld(pro_vld));
accumulator U2(.di(product),.di_vld(pro_vld),

.do(ac),.do_vld(ac_vld));

// The block for result data writing
always @ (posedge clk) begin

if (reset) begin
mem_2_wr_cmd_vld <= 0;
mem_2_wr_addr <= 0;

end
else begin

mem_2_wr_cmd_vld <= ac_vld;
mem_2_wr_data <= ac;
if (mem_2_wr_cmd_vld) begin

mem_2_wr_addr <= mem_2_wr_addr + 1;
end
else begin

mem_2_wr_addr <= mem_2_wr_addr;
end

end
end

Fig. 6. Compute one element in matrix C using Verilog.

the functions running on the FPGA co-processor, i.e., hard-
ware description languages (HDLs) and high-level languages
(HLLs). The default languages to program the FPGA device
are HDLs, i.e., VHDL and Verilog HDL. In the meantime,
there are several HLLs available, e.g., Carte-C [11], Impulse
C [13], Handel-C [14], and Mitrion-C [15], bringing the ease
of use at the expense of efficiency.

If HDLs are used to design the bitstream, it will require
three parallel blocks to implement the matrix multiplication
example, as shown in Fig. 6.
• One block is to control the source data reading from two

memory banks saving matrix A and B. The functionality
of this block involves the generation of reading addresses
and reading commands.

• One block is to check the arrival of source data and feed
them into the multiplier and the accumulator.

• One block is to control the result data writing to another
memory bank for matrix C. The functionality of this
block involves the generation of writing addresses and
writing commands.
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Fig. 7. Implement an application on SRC-6 using Carte-C.

/* Define three 2D arrays of 400x400 in three local *
* memory banks */
OBM_BANK_A_2D (A, double, 400, 400)
OBM_BANK_B_2D (B, double, 400, 400)
OBM_BANK_C_2D (C, double, 400, 400)
......
ac = 0;
for (k=0; k<400; k++) {

Multiplier(A[i][k], B[k][j], &product);
Accumulator(product, &ac);

}
C[i][j] = ac;

Fig. 8. Compute one element in matrix C using Carte-C.

On both Cray XD1 and SGI RC100 platforms, either VHDL
or Verilog can be used to generate the bitstream. In order
to reduce the complexity of communications with the local
memory, the vendor generally provides the service logic (as
shown in Fig. 2), which gives a simplified interface to access
the local memory as well as the interconnect.

On SRC-6, the vendor provides a high-level language, i.e.,
Carte-C, to implement the hardware part. Carte-C is a rich
subset of C, with non-standard extensions to control hardware
instantiation and parallelism. Each FPGA bitstream is defined
by a single Carte-C file, which is converted into HDL during
the compilation. For instance, in the case shown in Fig. 7, the
hardware part is distributed into two bitstreams, described in
two Carte-C files, i.e., cfg1.mc and cfg2.mc. A single Carte-
C file consists of multiple blocks, which are executed in
a sequence during the runtime. The Carte-C compiler will
maximize the parallelism within a single block to improve
the performance. It is difficult for the compiler to achieve
the maximum performance for complicated operations. In
this case a hand-written HDL module can be integrated into
the bitstream, leaving the main flow written in Carte-C. As
demonstrated in Fig. 7, two hardware modules are integrated
into the first bitstream file.

Fig. 8 shows a section of codes to compute one element
in the resultant matrix, in which Multiplier and Accumulator
are two pipelined HDL modules. If A, B and C are stored in
three separate memory banks, the Carte-C compiler is capable
of generating fully pipeline hardware codes for the maximum
performance.

Carte-C is a proprietary language used on the SRC-6
platform; i.e., it does not extend to other platforms. Other
HLLs can be used across different platforms. For example,
both Impulse C and Mitrion-C can be used to program Cray
XD1 and SGI RC100.

IV. DEVELOPING ELECTROMAGNETICS
APPLICATIONS ON RECONFIGURABLE

COMPUTERS
A. Background Information

Electromagnetics applications tend to be numerically in-
tensive, with most problems requiring memory intensive im-
plementations. Complex structures can be analyzed using
numerical methods by segmenting the structure into small
meshes. Often these meshes can be treated independently from
the rest of the geometry with the use of appropriate boundary
conditions. This allows analysis to be carried out in a parallel
fashion.

In terms of utilizing hardware acceleration in electromag-
netics applications, there is an increasing interest in the use
of general purpose graphics processing units [16], [17] mostly
due to their C-like implementation and relatively low cost.
The use of VLSIs has also been suggested in [18] and
[19]. However, the FPGA implementation of electromagnetics
algorithms has been very scarce due to the hardware ex-
pertise required on these platforms. One area of numerical
electromagnetics that has been investigated for the FPGA
implementation is the FDTD algorithm [20]–[23]. FDTD
expresses Maxwell’s equations in difference form and renders
itself to parallel implementation as each cell can be handled
separately from the others. A three dimensional FDTD model
on hardware has been reported in [24], where an FPGA-based
accelerator has been used in conjunction with a host PC and a
CAD interface. This algorithm has been applied to the analysis
of a Rotman lens in [25].

In the following sections we demonstrate the FPGA imple-
mentation of two applications: (i) optimization of a linear array
antenna pattern using the ant colony optimization technique,
(ii) implementation of the rigorous coupled wave analysis
algorithm. The first implementation utilizes the FPGA as the
sole processor with the CPU functionality being to call the
FPGA and retrieve the final result. The second implementation
uses a hybrid hardware/software approach where only the most
numerically intensive components of the algorithm resides on
the FPGA.

B. Ant Colony Optimization (ACO) Implementation
The utilization of FPGAs in the field of electromagnetics

was recently investigated by applying the ant colony optimiza-
tion (ACO) method in the design of phased array antennas
for multiple beam satellite communication systems [26]. In
this application, the amplitudes of the array elements were
optimized to reduce the co-channel interference in a multiple
beam satellite communication system. Potential gains in the
speed of the calculations in the order of 10,000 has been
demonstrated for the particular application. A brief overview
of the problem solved and how the FPGA was utilized is
discussed in this section.

1) ACO Algorithm: The ACO is a nature inspired optimiza-
tion algorithm that utilizes heuristic search principles carried
out simultaneously by agents and their collective intelligence.
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The ACO mimics the behavior of ants in their search for the
shortest path between their nest and the food. Despite being
nearly blind, ants demonstrate the capability to establish the
shortest path between their nest and food. They achieve this
by depositing a chemical substance called pheromone on their
paths, which is used later on by other ants in their search
process. During this process, the most traveled path is marked
with the highest level of pheromone. This positive feedback
behavior allows more ants to choose the path with the most
pheromone amount [27]. The random search is iteratively
applied by the ants until one of the chosen paths satisfies the
required convergence criteria. The intelligence is introduced
to the random search process via the cost function, which
measures how far off an ant is from the desired solution. Since
each solution is represented by a path in ACO, the optimization
space is discretized into binary strings where a path is defined
by the choice of 1 or 0 for the bit value at each bit position
as shown in Fig. 9 [28].

Each path represents a possible solution and a number of
ants sample the solution space at each iteration. Once all
ants decide on their paths, the cost function is computed
for each path. The cost is a measure of how satisfactory a
solution is, with low cost values implying a “better” solution.
The pheromone amount to be laid on each path is inversely
proportional to the cost value associated with the path. The
probability of a zero for each bit position is then calculated
for all the ant paths as a function of the total pheromone levels
on the path as follows:

p0 =
τ0

τ0 + τ1
(1)

where τ0 and τ1 correspond to the total pheromone levels
accumulated at the bit position of interest for bit value of zero
and one, respectively. The probability for bit value of one is
then calculated as 1− p0 for each bit. A block diagram of the
algorithm is shown in Fig. 10, where each ant is processed
iteratively on a typical software implementation.

2) Application - Linear Array Optimization: The ACO
algorithm is used to optimize the radiation from a linear array.

Ant 
#j

Ant # 
j+1Ant # 

j+2Ant # 
j+3
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# M
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FPGA

Iteration # k

CPU

YES

// //
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Parallelize…

Fig. 11. Implementation of ACO on FPGA - parallelized and
pipelined.

Nulls are placed at certain positions to reduce potential inter-
ference in a multiple beam satellite communication system.
To achieve the desired radiation, the amplitudes of the array
elements are optimized.

This implementation is unique in the sense that the FPGA
has been utilized as the sole processer for the entire implemen-
tation. This avoids any overhead of communication between
the microprocessor and the FPGA, and uses the FPGA to its
full potential. The CPU is only used to call the FPGA and
retrieve the results for processing. In short, an ACO machine
has been implemented with this application. While this enables
the ultimate parallelization and pipelining of the algorithm,
there are limitations due to the problem size that can be
handled by the particular FPGA at hand. The implementation
was carried out on the SGI Altix 450 platform utilizing the
Xilinx Virtex4LX200 FPGAs as demonstrated in Fig. 11.

Paths are produced using 8 bits for each optimization param-
eter (i.e., the amplitudes of the array elements), 40 parameters
in each ant path (i.e., the number of array elements), 40 ant
paths per iteration (i.e., 40 ants carry search for a solution
simultaneously in each iteration), and as many iterations as it
takes to converge, with an upper limit set by the user. With this
implementation, increasing the number of bits per parameter
will increase the FPGA resource requirement for this function,
but will not increase the processing time. The number of nulls
that can be achieved is also run in parallel, i.e., has no impact
on the processing time as long as there are sufficient FPGA
resources. We were able to carry out 8 bits and three nulls in
parallel at a clock rate of 100 MHz for the optimization of a
40 element array on the Altix platform.

As observed in Fig. 11, there are three major sections in the
algorithm: Path Generation, Cost Calculation and Pheromone
Update. The details of the implementation of these sections
on FPGA is given in [26].

As a test, only three null positions were required to be
below -30 dB. When the algorithm was run on a standard
PC (CPU: Intel Pentium M, 3 GHz and RAM: 1 GB) using
Matlab, the time per a single iteration took about 0.47 seconds.
The same algorithm when implemented on C and run on the
same platform ran about 53.4 times faster than the Matlab
version, roughly at 8.8 milliseconds per iteration. The VHDL
implementation on the Altix 450 system performed at 31.3
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microseconds for runs after the bit loading was completed,
resulting in a factor of 15,160 in speed compared with the
Matlab implementation.

C. Rigorous Coupled Wave Analysis Implementation
The previous application was small enough to be imple-

mented fully on FPGA utilizing the platform to its full poten-
tial and achieving very promising acceleration. The ACO im-
plementation was fully optimized to achieve this kind of accel-
eration. However, increasing the number of nulls or number of
bits per variable are not feasible as the algorithm would cease
to fit on the FPGA. The problems in electromagnetics are often
complex, and require flexibility in the range of the parameters.
The second application is one such example. The Rigorous
Coupled Wave (RCW) algorithm applies to diffraction prob-
lems from multiple layers with periodic gratings. It is based on
an extension of enhanced transmittance matrix approach [29]
and adopts Lalanne’s improved eigenvalue formalism [30]. A
detailed discussion on the RCW algorithm can be found in
these references. It has been used effectively in the design of
engineered materials, such as antireflective surfaces [31]–[33].
We provide a brief overview in this section in order to describe
our motivations for the hardware implementation.

The stacked multiple layer in RCW algorithm can consist of
any number of gratings. However, all gratings must be periodic
with the same periodicity along a given direction on the plane.
The periodicity results in a spatially periodic permittivity (and
inverse permittivity) within each layer and can be represented
as a Fourier series expansion, as follows.

εl(x, y) =
∑
g,h

εl,gh exp
(
j

2πgx
Λx

+ j
2πhy
Λy

)
(2a)

ε−1
l (x, y) =

∑
g,h

Al,gh exp
(
j

2πgx
Λx

+ j
2πhy
Λy

)
(2b)

where εl,gh and Al,gh are the Fourier coefficients for the lth
layer in the stack for the permittivity and inverse permittivity
respectively. The electric field inside the layers can similarly
be expressed as a Fourier series in terms of spatial harmonics.
Maxwell’s equations for the layered structure can be written
in terms of the tangential components of the electric and
magnetic fields, resulting in a coupled equation set in (3),
where Sl represents the amplitudes of the spatial harmonics
of the electric field in the lth layer, with subscripts x and
y denoting the directions of periodicity in the plane of the
stack. The parameters B and D in (3b) are matrices given as
B = kxε

−1
l kx − I and D = kyε

−1
l ky − I .

Thus, the coupled wave equation can be solved by finding
the eigenvalues of the matrix Ωl, which is a function of the
stack properties. The rank of this matrix is M ×N , where M
and N are the number of spatial harmonics retained along the
two dimensions of periodicity in the plane of stacked layers.
Ideally an infinite number of them are needed for an exact
solution but truncation with minimal error is possible. Despite
this truncation, the rank can be in the order of magnitude
of 400 or more for a typical application of AR surface

Algorithm 1: Hessenberg Reduction
Input: A square complex matrix A with rank n
Output: The reduced Hessenberg matrix H
for k=0 to n− 3 do1.1

vk = House(Ak+1:n−1,k); /*Step 1: See Alg. 2*/1.2

Ak+1:n−1,k:n−1 =1.3
Ak+1:n−1,k:n−1 − 2vk(v∗kAk+1:n−1,k:n−1); /*Step 2:
PkAk+1:n−1,k:n−1, Pk = I − 2vkv∗k*/

A0:n−1,k+1:n−1 =1.4
A0:n−1,k+1:n−1 − 2(A0:n−1,k+1:n−1vk)v∗k ; /*Step 3:
A0:n−1,k+1:n−1Pk*/

Algorithm 2: House(x)
Input: A complex vector x
Output: The Householder vector v
α = −eiϕ‖x‖; /*ϕ is the argument of x1*/2.1

u = x− αe1 = x+ eiϕ‖x‖e1; /*e1 = [1, 0, ..., 0]T */2.2

v = u
‖u‖ ;2.3

design. Hence, the most numerically intensive component of
the RCWA algorithm is this eigenvalue computation.

1) QR Eigenvalue Algorithm: Given a square matrix A ∈
Cn×n, an eigenvalue λ and its associated eigenvector v are, by
definition, a pair obeying the relation Av = λv. Equivalently,
(A − λI)v = 0 (where I is the identity matrix), implying
det(A − λI) = 0. This determinant can be expanded into a
polynomial in λ, known as the characteristic polynomial of
A. One common method for determining the eigenvalues of a
small matrix is by finding the roots of its characteristic poly-
nomial. However, a general polynomial of order n > 4 cannot
be solved by a finite sequence of arithmetic operations and
radicals. Therefore, many numerical iterative algorithms have
been proposed [34] to solve the eigenvalue problem of high-
rank square matrices, such as Power Method, Inverse Iteration,
Jacobi Method, etc. Among these, the shifted Hessenberg QR
algorithm [35]–[37] is accepted as a practical solution adopted
in most applications to deal with general square matrices.

There are two phases in the practical QR algorithm, as
described in (4). In the first phase, the original matrix A is re-
duced to the upper Hessenberg form H using the Householder
transformation [38]. The second phase involves applying the
implicit QR iteration with shifts on the unreduced Hessenberg
matrix H until it converges to a triangular matrix, i.e., the
Schur form S. The eigenvalues of a triangular matrix are listed
on the diagonal, i.e., the ⊗s in (4), and the eigenvalue problem
is solved once this form is achieved.

2) Implementation on SGI RC100 Reconfigurable Com-
puter: The RCW algorithm in the most general sense creates
a square matrix with complex values. Both real and imaginary
parts of a matrix entry are represented in double precision (64-
bit) floating-point format. In the hardware implementation of
QR eigenvalue algorithm on FPGA device, we combine the
two physical local memory banks into a 128-bit wide logical
memory bank so that each memory entry can store one com-
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[
∂2Sl,y/∂z

′2

∂2Sl,x/∂z
′2

]
= Ωl

[
Sl,y

Sl,x

]
(3a)

Ωl =
[

k2
x +D[αεl + (1− α)A−1

l ] ky{ε−1
l kx[αA−1

l + (1− α)εl]− kx}
kx{ε−1

l ky[αεl + (1− α)A−1
l ]− ky} k2

y +B[αA−1
l + (1− α)εl]

]
(3b)


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


A

Phase 1−−−−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×


Hessenberg H

Phase 2−−−−→


⊗ × × × ×
0 ⊗ × × ×
0 0 ⊗ × ×
0 0 0 ⊗ ×
0 0 0 0 ⊗


Triangular S

(4)

Table 1. Calculation breakdown of iteration k in Hessenberg reduction.
Step Sub-step Calculation Number of clock cycles for computation∗

1

1.1 ‖x‖, ‖x1‖ n− k − 1

3k2 − 9nk + 6n2 − 3n− 2

1.2 x1 r + ‖x‖ cos ϕ, x1 i + ‖x‖ sin ϕ 1
1.3 ‖u‖ n− k − 1
1.4 u/‖u‖ n− k − 1
2.1 m = v∗kAk+1:n−1,k:n−1 (n− k)(n− k − 1)

2 2.2 N = vkm (n− k)(n− k − 1)
2.3 Ak+1:n−1,k:n−1 − 2N (n− k)(n− k − 1)
3.1 m′ = A0:n−1,k+1:n−1vk n(n− k − 1)

3 3.2 N ′ = m′v∗k n(n− k − 1)
3.3 A0:n−1,k+1:n−1 − 2N ′ n(n− k − 1)

∗Ignoring all latencies.

plete matrix entry. Therefore, the real part and the imaginary
part of a complex variable can be accessed simultaneously.

As described earlier, there are two phases in the QR
algorithm. These phases are implemented in two separate
FPGA configurations. The first phase, Hessenberg reduction, is
carried out by applying the Householder reflection for n − 2
iterations (see Alg. 1), where n is the rank of the original
matrix A. Each iteration comprises three steps, as shown in
Table 1. Each step further includes multiple sub-steps. In our
hardware design, Steps 1, 2 and 3 comprise 4, 3 and 3 sub-
steps, respectively. All iterations, the steps in each iteration,
and the sub-steps within every step have to be carried out
sequentially due to the data dependency among them. The
advantage of hardware implementation comes from the parallel
processing within each sub-step. For example, Sub-step 1.1
involves multiplication, addition, accumulation and square root
operation to calculate the norm of a vector. If all the basic
operators, e.g., multipliers and adders, are fully pipelined, it
will take roughly n−k−1 clock cycles to finish this sub-step
(if we ignore all potential latencies). By putting everything
together, the total number of clock cycles required to reduce a
matrix of rank n to its Hessenberg form can thus be computed
as:

n−3∑
k=0

(3k2 − 9nk + 6n2 − 3n− 2) =
5
2
n3 − 9

2
n− 11. (5)

The second phase of the QR algorithm is to convert the
upper Hessenberg matrix to its upper triangular form, which

Algorithm 3: Francis QR Step (hardware part)
Input: A square complex matrix H with rank n
Output: Matrix H
for k=0:n− 5 do3.1

vk = House(Hk+1:k+3,k);3.2

Hk+1:k+3,k:n−1 =3.3

Hk+1:k+3,k:n−1 − 2vk(v∗kHk+1:k+3,k:n−1);
H0:k+4,k+1:k+3 =3.4

H0:k+4,k+1:k+3 − 2(H0:k+4,k+1:k+3vk)v∗k;

is implemented as a hardware/software co-design (see pp. 359
in [39] for a detailed description of the algorithm). The main
step of the second phase is the Francis QR Step, in which the
most computation demanding part is implemented in hardware
as a separate FPGA configuration. Its functionality is shown
in Alg. 3. By comparing Alg. 1 and Alg. 3, it can be found
that Alg. 3 is a shrunk version of Alg. 1. In other words, the
implementation of both algorithms will share the majority of
their logic such as the floating-point operators and the control
flow. Some small modifications are required to reduce the
scope of the computation in Alg. 1 to match the functionality
of Alg. 3. In general, the computation in the Francis QR Step
is significantly less than the computation in the Hessenberg
reduction phase.

3) Results: The hardware implementation of Hessenberg
reduction occupies 56,520 (63%) slices on the target FPGA
device and runs at 100 MHz. The basic operators, i.e., mul-
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Table 2. Performance improvement of Hessenberg reduction.
Matrix Computation Time (s) Speedup Matrix Computation Time (s) Speedup Matrix Computation Time (s) SpeedupRank Hardware∗ Software Rank Hardware∗ Software Rank Hardware∗ Software

20 0.007 0.062 9.4 180 0.161 428.911 2663.3 340 1.019 5476.617 5375.0
40 0.008 1.020 123.4 200 0.217 654.289 3013.0 360 1.206 6964.269 5773.9
60 0.013 5.209 410.2 220 0.285 957.911 3355.5 380 1.415 8696.029 6144.3
80 0.021 16.553 789.6 240 0.367 1358.445 3696.9 400 1.647 10717.100 6505.7

100 0.034 40.516 1184.9 260 0.464 1870.955 4035.2 420 1.904 13055.131 6858.1
120 0.054 84.318 1574.2 280 0.576 2516.849 4371.2 440 2.185 15750.099 7207.7
140 0.080 156.366 1944.8 300 0.705 3318.075 4707.9 460 2.493 18859.268 7563.6
160 0.116 267.548 2309.5 320 0.852 4293.784 5038.9 480 2.829 22393.864 7914.8

∗Including data transportation time and data processing time.

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0

4 0 0 0

8 0 0 0

1 2 0 0 0

1 6 0 0 0

2 0 0 0 0

2 4 0 0 0

Co
mp

uta
tio

n T
im

e (
s)

M a t r i x  R a n k

 S o f t w a r e
 H a r d w a r e

Fig. 12. Computation time of Hessenberg reduction.

tipliers, adders, subtractor, dividers and square rooters, are
generated using CORE Generator, which is a tool included
in the Xilinx ISE package. The rank of the object matrix is
passed to hardware design as a parameter through a register.
Before the FPGA starts processing, the original matrix as well
as its rank are transferred from host memory to FPGA local
memory. After the processing is finished, the upper Hessenberg
matrix is transferred back to host memory. We tested matrices
of different ranks and collected their corresponding hardware
computation times, as listed in Table 2 and Fig. 12. The
hardware computation time consists of both data transportation
time and data processing time. It is found that the measured
time matches the estimation using (5) in all cases.

For a comparison of acceleration over a pure software based
implementation, we coded the Hessenberg reduction phase in
C++ and ran it on a PC with Itanium 2 using a 1.6 GHz micro-
processor. The speedup between is in the order of thousands
(as shown in Fig. 12), which is mainly due to two factors. (i)
The hardware implementation is fully pipelined, which means
that multiple operations can be processed concurrently. On the
other hand, the microprocessor has to process these operations
in a sequential means. (ii) FPGA devices are equipped with
large amount of directly accessible local memory, e.g., 40
MB on Altix RASC RC100. The local memory of FPGA
devices can be compared to the L1/L2 cache of micropro-
cessors, which are much smaller in terms of capacity. As
we can see from Alg. 1, the Hessenberg reduction operation
spans on all the matrix, along both columns and rows. Since
the local memory of the FPGA device is quite large, it is
able to accommodate the whole matrix. On the other hand,

the Hessenberg reduction operation on the microprocessor is
accompanied by frequent data swapping among the L1 cache,
the L2 cache and the main memory, which contributes a lot
of overhead in the software implementation.

The hardware implementation of Alg. 3 takes almost the
same resources (i.e., 56,327 (63%) slices) on the FPGA device
and runs at the same frequency. The interface to the second
bitstream is the same as the first one. We applied the same
type of comparison between the hardware implementation and
the software version on the Francis QR Step. For a 480×480
matrix, the computation time is 0.450 s for software and
0.063 s for hardware, respectively. In other words, the hard-
ware implementation is able to outperform the corresponding
software version by 7.2 folds for those matrices we are
interested. The comparatively small performance improvement
is mainly due to the dramatic reduction of computation in
Alg. 3. For example, the computation in line 3.4 in Alg. 3
only involves 3k + 15 matrix elements. The corresponding
line (i.e., line 1.4) in Alg. 1 involves O(n2) matrix elements.
Therefore, the advantage of a deep pipeline is more evident
in the hardware implementation for Hessenberg reduction.

V. CONCLUSIONS
The potential use of FPGAs in electromagnetics has

been demonstrated in the context of two applications: (i)
the optimization of a linear array using the ant colony
optimization (ii) implementation of rigorous coupled wave
analysis method. The first application renders itself to
parellel computing as the ant colony optimization is based
on sampling of the optimization space simultaneously by a
set of “ants”. Like in many other heuristic search algorithms,
the simultaneous search is independent of each other in each
iteration while the agents gather collective intelligence. The
problem investigated was small enough to fit fully on a single
FPGA, enabling remarkable speed improvement (in the order
of 15,000). This application demonstrated the ultimate power
of FPGAs when the platform and problem are a perfect
fit. The second application involved a more challenging
task, where the FPGA was utilized as a co-processor to the
CPU, mainly carrying out the most numerically intensive
part of the algorithm. The task was the computation of
eigenvalues of a complex matrix with rank of 400 or more.
We have used the QR eigen value algorithm and implemented
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the Hessenberg reduction and Francis QR methods on the
FPGA. We have observed speed improvement in the order
of thousands, with increased efficiency as the matrix rank
increases. While FPGAs are finding their way slowly in the
scientific computing area due to the challenges in being able
to implement code using hardware description languages,
their potential in providing reconfigurable parallelism make
them an attractive platform.
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