
A Frequency-Dependent Weakly Conditionally Stable 
Finite-Difference Time-Domain Method for Dispersive Materials 

 
 

Juan Chen1, 2, Jianguo Wang 1, 2 
 

1School of Electronic and Information Engineering 
Xi’an Jiaotong University, Xi’an 710049, China 

chenjuan0306@yahoo.com.cn 
 

2Northwest Institute of Nuclear Technology  
P. O. Box 69-15, Xi’an 710024, China 

 
 
Abstract - A frequency-dependent weakly 
conditionally stable finite-difference time-domain 
(WCS-FDTD) method for dispersive materials is 
presented. This method has higher computation 
efficiency than conventional FDTD method 
because the time step in this method is only 
determined by one space discretization. The 
accuracy of this method is demonstrated by 
computing the incident field at a planar air-water 
interface over a wide frequency band including 
the effects of the frequency-dependent 
permittivity of water.  
 
Index Terms - Dispersive materials, FDTD 
method, WCS-FDTD method. 
 

I. INTRODUCTION 
The finite-difference time-domain (FDTD) 

method [1] has been proven to be an effective 
scheme that provides accurate predictions of field 
behaviors for varieties of electromagnetic 
interaction problems. However, as it is based on 
an explicit finite-difference algorithm, the 
Courant–Friedrich–Levy (CFL) condition [2] 
must be satisfied when this method is used. 
Therefore, a maximum time-step size is limited by 
the minimum cell size in a computational domain, 
which makes this method inefficient for the 
problems where fine scale structures are involved. 

To overcome the CFL constraint on the time 
step size of the FDTD method, some 
unconditionally stable methods [3-6] and weakly 
conditionally stable (WCS) [7-21] schemes have 
been studied, among which, the WCS-FDTD 
method scheme, has been applied extensively 

[15-21]. In the WCS-FDTD method, the time step 
size is only determined by one space discretization, 
which is useful for problems with very fine 
structures in two directions. The accuracy and 
efficiency of this method have been well validated 
in [17] and [18]. 

In this paper, the WCS-FDTD method will be 
extended to frequency-dependent materials. The 
formulations of WCS-FDTD for a frequency- 
dependent complex permittivity are presented and 
an example calculation of the incident field at a 
planar air-water interface over a wide frequency 
band is showed. The extension of the WCS-FDTD 
method to frequency-dependent permeability is 
similar and straightforward. 

 
II. FORMULATIONS 

For this paper, we will assume that our 
materials are linear and isotropic, and only the 
permittivity is frequency-dependent. Extension to 
nonlinear or anisotropic dispersive materials 
should be possible. The displacement vector D is 
related to the electric field E in the time domain 
by the following equation: 

   

   
0
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D t E t

E t d
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 
    (1) 

0 is permittivity of free space,     is the 
electric susceptibility, and  is the infinite 
frequency relative permittivity. 

Using Yee's notation, we let t n t  in (1), and 
each vector component of D and E can be 
written as: 
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All field components are assumed to be 
constant over each time interval 2t . Therefore, 
we have, assuming  D t and  E t are zero 
for 0t  : 
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When (3) is substituted in (4), and (4) is 
substituted in (5), we find: 
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For simplicity, we let: 
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Then, we have: 
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The three scalar equations that relate the 
components of electric field E  can be readily 
obtained from the WCS-FDTD method: 
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It can be seen from these equations that  
equations (12), (13), (16), and (17) can’t be used 
for direct numerical calculation, because they all 
include the unknown components defined at the 
same time, thus, modified equations are derived 
from the original equations. 

Updating of 2/1n
xE  component, as shown in 

equation (12), needs the unknown 2/1n
yH  

component at the same time. In the nonmagnetic 
media, the updating for H component is 
unchanged. The equation of the 2/1n

yH  
component in the WCS-FDTD method is as 
follows: 
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Thus the 1 2n
xE  component has to be updated 

implicitly. Substituting equation (18) into equation 
(12), the equation for 1 2n

xE   field is given as, 
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where  01    . 2 24s t z   . 

The stability condition of the frequency 
dependent WCS-FDTD method is same as that of 
standard WCS-FDTD method, 

.yt
c


                 (20) 

Because in the frequency-dependent WCS-FDTD 
method equation, only a summation is added, it 
does not affect the stability condition.  

The stability condition of the frequency 
dependent WCS-FDTD method will be validated 
by numerical example in the next section. 

 
III. NUMERICAL VALIDATION 

In order to demonstrate the validity and 
accuracy of the above formulation, a small current 

source incident at a planar air-water interface is 
presented here. The geometric configuration of the 
numerical simulation is shown in Fig.1. The 
dimension of the perfect-electric-conductor box is 
15cm 3cm 3cm. The water with the height 
1.5cm is filled in the box. A small current source 
applied along y direction is placed at the upper 
part of the box. The time dependence of the 
excitation function is: 

2 2
0 1( ) exp[ 4 ( ) ]g t t t t        (21) 

where 0t  and 1t  are constants, and both equal 
to 0.610-9. The observation point B is set at the 
water, and 2.4 cm far from the source point A.  

 
Fig. 1. Geometric configuration of the numerical 
simulation. 

 
Applying the FDTD method to compute the 

time domain electric field component yE  at 
observation point B, the cell size is chosen as 

5 5y x z      0.5cm, so that the 
computational domain is 30 30 30 cells. To 
satisfy the stability condition of the FDTD 
algorithm, the time-step size for conventional 
FDTD [22] is t  2.33ps. For the WCS-FDTD 
scheme, the maximum time increment is only 
related to the space increments y ， that is, 

t  16.66 ps. 
For water, the complex permittivity  *   

can be described as 

     *
0 01s j               (22) 

where s is the "static" permittivity, and 0 is the 
"relaxation time" constant. The water parameters 
used here are s =81,  =1.8, and 

0 = 129.4 10 . 
The summation (convolution) term of equations 

(10) and (11) can be updated recursively by 
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utilizing equation (20) in [21], because the 
susceptibility function is an exponential. So, it 
does not require storing a large number of past 
time values nE , and the computational time is 
saved. Only one additional number needs to be 
stored for each electric field component at each 
spatial index.  

First, we validate the numerical stability of 
equation (19). Figure 2 shows the electric field 
component yE  at observation point B calculated 
by using the WCS-FDTD methods with the 
time-step size t =16.66 ps for a long time 
history. No instability problem is observed even 
for 5,000 time steps, which validates the weakly 
conditional stability of the WCS-FDTD method 
numerically. 
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Fig. 2. The electric field component Ey at 
observation point B calculated by using the WCS 
-FDTD method with the time-step size 

t =16.66ps for a long time story. 
 
To demonstrate the high computational 

efficiency of WCS-FDTD method, we perform the 
numerical simulations for an 8 ns time history by 
using the conventional FDTD, and WCS-FDTD 
methods, and compare the CPU times taken by 
using these two methods. In the conventional 
FDTD method, the time-step size is 2.33 ps, while 
in the WCS-FDTD method, the time step size is 
16.66ps. 

Figures 3 and 4 show the electric field 
component Ey in the time domain and frequency 
domain at observation point B calculated by using 
the conventional FDTD, and WCS-FDTD 
methods. It can be seen from these figures that the 

result calculated by the WCS-FDTD method 
agrees with the result calculated by the 
conventional FDTD method. The WCS-FDTD 
method has almost the same accuracy as that of 
the conventional FDTD method, while, the 
simulation takes 206.94 s for the conventional 
FDTD method and 56.79s for the WCS-FDTD 
method. The time cost for the WCS-FDTD 
simulation is almost 1/4 times as that for the 
conventional FDTD simulation. So, we can 
conclude that the WCS-FDTD has higher 
efficiency than the conventional FDTD method, 
due to the use of larger time step size. 
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Fig. 3. The electric field component Ey in the time 
domain at observation point B calculated by using 
the conventional FDTD ( t =2.33ps), and 
WCS-FDTD methods ( t =16.66ps). 
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Fig. 4. The electric field component Ey in the 
frequency domain at observation point B 
calculated by using the conventional FDTD 
 2.33ps ,t   and WCS-FDTD methods 
( t =16.66ps). 
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IV. CONCLUSION 
A frequency-dependent WCS-FDTD method 

for dispersive materials is presented. It is found 
that the technique is weakly conditionally stable 
and supports time steps greater than the CFL limit. 
Numerical example demonstrates that the 
computation efficiency of the WCS-FDTD 
method is higher than the conventional FDTD 
method, and the accuracy of the WCS-FDTD is 
almost the same as that of the conventional FDTD 
method. 
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