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Abstract—To maximize light-trapping, the absorp-
tion of light in the solar cell is maximized. The ways
to increase light-trapping are to texture the surfaces
of the solar cell and to use anti-reflection coatings.
The power spectrum of sunlight also plays an im-
portant role in light-trapping. In géneral, a solar
cell consists of multiple layers of dielectric materials.
Each dielectric has a complicated surface texture ge-
ometry to increase light-trapping. This paper con-
centrates on solving Maxwell’s equations for the gen-
eral solar cell configuration under illumination from
the sun. The absorption and maximum achievable
current density are calculated and used to quantify
light-trapping in a given solar cell design.

Thin solar cells promise to yield higher current col-
lection than thick solar cells at a lower cost [1]. Low
cost solar cells are usually characterized by short dif-
fusion length semiconductors. Most minority carri-
ers created within the distance equal to the diffusion
length contribute to the electrical current of a so-
lar cell. Hence, the solar cell must be thin when
low quality materials are used. As solar cells de-
crease in size, the ray-trace model becomes inac-
curate as previously demonstrated in {2]. A full-
wave Finite-Difference Time-Domain (FDTD) light-
trapping model is demonstrated to accurately study
light-trapping of thin-film solar cells.

I. INTRODUCTION

Solar cells are semiconductor devices designed to
convert light into electrical power. In order to be
cost effective they roust be as efficient as possible.
Solar cell efficiency is related to the percent of the
incident sunlight converted into electrical power.
One goal in the design of solar cell devices is to
trap and absorb as much light as possible inside
the semiconductor. In the language of the solar cell
community, the goal is to maximize light-trapping.

One effective way to maximize light-trapping is
to coat the semiconductor with a thin film which
reduces reflection. This anti-reflective coating en-
sures a higher percentage of light enters the cell so
more light is absorbed. A second effective approach
to increase light-trapping is to texture the surface
of the solar cell [1], (3], (4], [5], [6], [7], (8], {9]. The
texture creates multiple reflections which will lead

to increased light-trapping. The specific design of
the textures is critical to maximize light-trapping.
All commercial solar cell designs include encapsu-
lation to protect the solar cell from nature. The
effect of encapsulation on light-trapping is not well
understood. The integration of the anti-reflection
coating, encapsulation, and texture into the solar
cell design determines the overall light-trapping ca-
pacity of a solar cell [10].

Historically, the solar cell industry did not have
a means to effectively and accurately predict the
light-trapping of a given solar cell geometry. Each
solar cell was manufactured and then its efficiency
was measured. This is expensive and time con-
suming. This research fills the need of the solar
cell community by quantifying and predicting the
light-trapping of a given solar cell design with the
aid of numerical models. The result of this re-
search provides industry a means to quantify the
light-trapping capability of many different three-
dimensional solar cell designs. By modeling light-
trapping, the expensive and time consuming step
of fabrication is streamlined. Only the promising
designs need to be fabricated and tested. This, in
turn, frees valuable resources which can be utilized
to design more efficient solar cells. The basics of nu-
merical solar cell analysis and the results of the ray-
trace analysis were detailed in a companion paper
j11]. A reader not familiar with solar cell analysis
is encouraged to read the cited paper first.

II. BACKGROUND

A full-wave model of light-trapping based on
the finite-difference time-domain method (FDTD)
method is designed to include three-dimensional
surface textures, encapsulation, anti-reflection coat-
ings, the energy spectrum of sunlight and the po-
larization of light. Unlike the ray-trace model, the
FDTD model explicitly includes the wave properties
of light. The FDTD model accounts for diffraction
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due to small surface textures. Small geometric fea-
tures are common on thin solar cells designed to
optimize light-trapping.

This research uses the basic FDTD algorithm first
developed by Kane Yee in 1966 to numerically solve
Maxwell’s Equations and then extended by Taflove.
Tt has been extensively documented so the basic
methodology will not be repeated here [12], [13],
[14]. The general solar cell geometry with surface
texture, encapsulation, and anti-reflection coating is
described based on the requirements of the FDTD
algorithm. A periodic boundary is introduced to
reduce the required computer resources. Sunlight is
incorporated into the FDTD model as an electro-
magnetic source. Finally, the light-trapping model
is completed with an explanation of the measure-
ment of light-trapping. The paper concludes with
a general discussion concerning the limitations and
capabilities of FDTD modeling for solar cells.

A. Optical Properties of Matter

The governing equations of light-trapping are
Maxwell’s equations
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where both the electric field and magnetic field (£
and H) describe the interaction between light and
the solar cell. The solar cell is described by its per-
mittivity, €, and permeability, u.

The parameters, € = e.¢g and o, describe the op-
tical properties of the solar cell. These properties
are quantified directly or through the optical pa-
rameters of refractive index, n, and the extinction
coefficient, k. The quantities are related by

e =n2 — k?

(3)
(4)

where ¢ is the speed of light, w is the angular fre-
quency of light and ¢ is the permittivity of free
space [15].

In actual practice, the light illuminating a solar
cell experiences dispersion. Specifically, the index
of refraction depends on the wavelength of the inci-
dent light. The extinction coefficient also depends
on wavelength and determines the amount of light
that is absorbed in the solar cell [16]. The index of
refraction varies over a wide range from 3.4 to 5.6

o = 2nkepw

which means dispersion effects are important. The
extinction coefficient varies by orders of magnitude.
The extinction coefficient becomes small as wave-
length increases which means little light is absorbed
at the higher wavelengths. The higher wavelengths
corresponds o lower energy photons. Solar cell de-
signs must accommodate dispersion to ensure ac-
curate light-trapping predictions. Solar cell designs
must also overcome the small extinction coefficient
by maximizing light-trapping.

B. Solar Cell Geometry

Defining the solar cell, or any object, in the
FDTD model requires that coefficients be calculated
at each field location in the FDTD grid based on
the material properties. The coefficients are cal-
culated based on the material parameters of per-
mittivity, permeability, and conductivity. Yee’s al-
gorithm imposes a Cartesian grid on the solar cell
and surrounding space. Consequently, the location
of a field relative to the Yee grid and the material
determines the values of the coefficients.

Similar to the ray-trace model, the FDTD model
defines the solar cell as a set of materials and in-
terfaces. Each surface separates different materials
within the solar cell. The surface normal is not ex-
plicitly required by the FDTD model. Unlike the
ray-trace model, the solar cell is not restricted to
using three-node planar elements. The interfaces
are defined as surfaces represented by an arbitrary
function of x- and y-coordinates, K (z, y)as shown in
Figure 1. The surface is confined to the rectangle
between Nzl <= { <= N22 and Nyl <= j <=
Ny2, For each field component, the correspond-
ing material parameter is defined. This definition
is generalized to multiple surfaces by defining N in-
terfaces; K1,K2,K3... KN as necessary.

The encapsulation layer and anti-reflection coat-
ings are incorporated into the FDTD model by
defining the necessary number of surfaces. One ben-
efit of using surfaces to define the solar cell is the
stmmplicity of defining a anti-reflection coating with
as many layers as needed. In contrast, the ray-trace
model only incorporated a two-layer anti-reflection
coating while the FDTD model is unlimited. There
is no difference between defining the solar cell and
the anti-reflection coating, or even the encapsula-
tion layers.

C. Periodic Boundary Condition

Scanning Electron Microscope pictures of chem-
ically etched textured solar cells show a periodic
structure [1]. This allows us to model the textured
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solar cell as an infinite grid. The infinite grid allows
us to use a periodic boundary condition which con-
serves valuable computer resources. In the ray-trace
model, the periodic boundary is simple to imple-
ment by checking when a light ray hits a periodic
boundary. On the contrary, the incorporation of
the periodic boundary into the FDTD algorithm is
complicated by the light interacting with the entire
periodic boundary simultaneously. The light is not
localized to a single thin ray at a single point on
the periodic boundary. Instead, the light interacts
along the entire periodic boundary. The FDTD al-
gorithm models the entire light wave. As a result,
the periodic boundary contends with the spatial dis-
tribution of power which is inherent to light travel-
ing in various directions.

Since the FDTD algorithm calculates the values
of field components, the petiodic boundary is de-
fined relative to field locations in the Yee grid. Fig-
ure 1 shows the periodic boundary and the Yee field
locations at two different heights within the solar
cell. The views show two slices of the solar cell
which are perpendicular to the periodic boundary.
The first view shows a planar slice at a height of
k to coincide with the fields in the bottom half of
Yee's unit cell. The x- and y-components of the
electric field and the z-component of the magnetic
field are contained in the transverse electric plane
. (TE-plane). Note, the TE-plane has no relation to
TE modes in a waveguide. The TE-plane is de-
fined because the electric field components lie in
the plane and are transverse to the normal Z di-
rection. The field components are drawn as small
arrows for the x- and y-components of the electric
field and as a small circle for the magnetic field.
The periodic boundary surrounds the silicon and is
confined on the electric fields which are bounded
by the rectangle; Nzl <= i <= Nz2 4+ 1 and
Nyl <= j <= Ny2 + 1. The Transverse Mag-
netic plane (TM-plane) is shown in the second pla-
nar slice. The TM plane is a slice through the solar
cell at a height of k4 1/2 to coincide with the npper
half of a Yee unit cell. The TM-plane contains the
x- and y-components of the magnetic field and the
z-component of the electric field. Again, the field
components are drawn as small arrows for the x- and
y-components of the magnetic field and as a small
circle for the electric field. By alternatively stack-
ing TM- and TE-planes one on top of the other,
any FDTD model of the solar cell is defined. It is
sufficient to incorporate the periodic boundary into
both TM- and TE-planes separately and then ap-
ply the corresponding boundary condition to every
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planar stack in the entire FDTD grid.

Each field component in the Yee grid only
depends on its nearest neighbors. For exam-
ple, when calculating E.(i,j, k), the nearest sur-
rounding fields used by the update equation are
Hz(isjs k)s Hz(i,j—la k): Hy(iyjz k), and Hy(iﬂj’ k—
1). The nearest neighbors can be found graphically
by drawing the smallest contour path perpendicu-
lar to the field to be updated [13]. This graphical
interpretation of Yee's equations is true for all com-
ponent fields in the Yee grid. By drawing contours,
the fields whose contours do not overlap the periodic
boundary are known to be unaffected by the peri-
odic boundary. However, the fields whose contours
overlap the periodic boundary are affected by the
periodic boundary. The fields that are unaffected
by the periodic boundary are colored light grey in
Figure 1. While the field components colored dark
black in Figure 1 are affected by the periodic bound-
ary. The dark black fields correspond to Yee update
equations that need to be modified to incorporate
the periodic boundary. As an example, the E; field
along the boundary, j = Nyl, uses the surround-
ing fields; H, (4,7, k), H, (3,7 — 1,k), Hy(i,j, k), and
H,(i,j,k~1). The H(i,j—1,k) is not the “correct”
field to use because of the periodic boundary. In-
stead, the field to use is H,(i, Ny2, k) which comes
from “wrapping” the solar cell around the bound-
ary. The field outside of the boundary is replaced by
a field inside the geometrically opposing boundary.
In general, the periodic boundary is incorporated
into the FDTD algorithm by “wrapping” the inner
fields on the opposing boundary onto the outer fields
on the periodic boundary.

D. Light Source

Sunlight is incorporated into the FDTD model
based on the standard total-field /scattered-field for-
mulation (TFSF) of a light source [13]. The stan-
dard TFSF defines a closed surface. Inside the
closed surface, an arbitrary plane wave is excited by
adding source fields on the closed surface. The mag-
nitude of the source fields determines the intensity
of the light. The direction of the source fields deter-
mine the polarization of the incident light. Outside
the surface, the source fields are removed so only
scattered waves exist outside of the TFSF surface.

The standard TFSF does not include the periodic
boundary. The periodic boundary removes the need
for a closed TFSF surface which makes the light
source trivial to implement in the FDTD model.
Instead of a closed surface, a single plane is used.
The TFSF plane is placed above the solar cell with a
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Fig. 1. The periodic boundary in the FDTD algorithm.

constant surface normal in the £ direction as shown
in Figure 2. Electric and magnetic fields are excited
on the TFSF plane which excite the propagation
of sunlight in the model. The periodic boundary

Z
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Fig. 2. The light source in the FDTD model with a periodic
boundary.

ensures that the wave propagates correctly. Light
only propagates in the +2 direction, parallel to the
periodic boundary.

E. Radiation Boundary Condition

As is the case with the ray-trace model, light
which escapes from the solar cell causes numerical
errors unless an effective radiation boundary con-
dition is implemented. Unlike the ray-trace model,
the radiation or absorbing boundary is dificult to
implement into the FDTD model. There are many
different solutions to the RBC but they all have
inherent limitations [17), [18], [19], {20], [21], [22].
None of the various RBC’s perfectly absorb all of
the light. Some fraction of the light is always re-
flected back into the model. The Berenger Perfectly
Matched Layer (PML) is the best algorithm for re-
ducing the reflection error [23], {24]. To incorporate
the PML into the light-trapping model, the PML
is modified to include the periodic boundary. The
periodic boundary in the PML is broken into two
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steps, just like the normal Yee periodic boundary.
First, the PML update is calculated. Second, the
fields are wrapped around the periodic boundary.

F. Measurement of Light-Trapping

Absorption is the measure of light-trapping. The
index of refraction and extinction coefficient vary as
a function of frequency via the relation Aw = 27c.
The frequency dependent material properties of the
solar cell dictate that a general method to calculate
absorption is required by the light-trapping model.
The FDTD model assumes a plane wave source with
a general amplitude modulation to represent light.
A common source modulation used is a Gaussian
modulated sinusoid because it has a wide spectral
content, is smooth, and is finite in duration. The
finite duration allows actual computation run times
to be reduced over a single sinusoid modulation.
Also, the FDTD algorithm is not compatible with
sources that are not smooth. The calculation of
A{w) is complicated by the frequency dependent so-
lar cell materials and the general input source mod-
ulation requirement.

Absorption is the time averaged fraction of power
absorbed to power incident which is given by

A= (Pabsorbed)

5
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and the time average power is
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The total power absorbed within the solar cell vol-
ume, V, is

Paseorsea(t) = & [ Ewp - BFEod (1)
v

and the total incident power for a plane wave source
is
Prowee®) = [ |EGOP/ods (9

where 79 = 3771 is the free space impedance .
Since the input source is a modulated sinusoid, di-
rect application of Equation 5 will give the total
fraction of light absorbed not the desired fraction
absorbed at the center frequency, we. Fourier Anal-
ysis is used to calculate the desired A(uwyp). Specif-
ically, Parseval’s Theorem is used to transform the
time average integrals to the frequency domain.
Parseval’s Theorem for a general function, f(#), is

[ roe=g [ iFrgure  ©

In words, the power contained in the source,
f(t), due to a single harmonic component, wp, is
|F(jwe)|?/2n. F(jwo) is Fourier transform of f(t)
evaluated at wy. It is a now simple matter to decom-
pose the total absorption into power due to each in-
dividual harmoric using Parseval’s Theorem to find

_ok |E(F, juo)? dv
Js |E(F, jwo)|? /mo ds

The time averages are transformed from integrals
in the time-domain into a multiplication of the
Fourier transformed electric fields in the frequency-
domain. A(wp) in Equation 10 is one measure
of light-trapping. The maximum achievable cur-
rent density (MACD) is another measure of light-
trapping which takes into account the solar spec-
trum. The MACD, J,., is defined by

Afwo)

(10)

A
e=a [T FVAMS
0
where g is the charge of an electron, F(A) is the solar
spectrum (usually AM1.5) of the incident light, and
A(A) comes from the solution to Maxwell’s equa-

. tions. Once the absorption spectrum is known (as-

35

suming ideal internal spectral response), the MACD
is calculated from Equation 11. The ideal internal
spectral response makes it possible to study light-
trapping without reference to any specific semicon-
ductor material used in the solar cell. In this way,
silicon as well as any other semiconductor can be
studied based solely on optical considerations.
Both the absorption, A()), and the MACD are
used to quantify light-trapping. In the strict sense,
absorption is the pure measure of light-trapping.
Absorption quantifies how the incident light is ab-
sorbed as a function of wavelength but ignores the
spectral content of the sunlight. On the other hand,
the MACD integrates the effects of both the absorp-
tion and solar spectrum into a single quantity, J;..
The MACD gives a more telling characterization of
the real operational solar cell than absorption, with-
out limiting itself to any particular semiconductor.

G. Limitations end Capebilities

The primary limitation of the FDTD model of
light-trapping is due to limited computer resources.
For example, a modest silicon solar cell which is
1 um thick with a periodic boundary has a total
volume of 1um3. The total number of unit cells
is 1603. The total memory requirement is approx-
imately 188 megabytes. Today’s standard personal



computer has 16 megabytes of memory, much less
than required by the model. The FDTD model falls
short of the ray-trace model in this regard.

The FDTD model of light-trapping assumes
the geometric features of the solar cell are peri-
odic which reduces computer resource requirements.
The solar cell is described by multiple layers of
dielectrics. Each dielectric has a complex surface
structure, i.e. perpendicular slats, pyramid, tilted-
pyramid ...or any surface described by the func-
tion, K(z,y). Multiple layer anti-reflection coatings
are also included in the model. Modern solar cell de-
signs as thin as 0.5 um are potentially very cheap be-
cause of their low mass per unit of performance [23].
The combination of the FDTD algorithm, general
texture shapes, and anti-reflection coatings enables
the solar cell designer to model and design thin solar
cells based on light-trapping more accurately than
is possible with any ray-trace model.

I1I. FuLL WavE MODEL LIGHT-TRAPPING
ANALYSIS

In this section, the finite-difference time-domain
model is applied to the light-trapping analysis of
thin silicon solar cells. The thickness of the so-
lar cell is approximately equal to the wavelength
of light. The goal of the FDTD model is to accu-
rately predict absorption in thin films. The cost of
accuracy is the model’s dependence on powerful and
expensive computers. Unlike the ray-trace model,
the FDTD model is not able to execute on a per-
sonal computer with only one megabyte of memory.
All the light-trapping analysis presented in this sec-
tion are executed on Cray supercomputers.

A. Thin Cell

Figure 3 compares the accuracy of the FDTD and
ray-trace models. The absorption spectrum is cal-
culated for a thin, 0.75 pm, planar solar cell. The
ray-trace model calculates the average absorption.
The FDTD model correctly accounts for the wave
nature of light. The FDTD model successfully pre-
dicts the maxima and minima. Figure 3 clearly
_ demonstrates the FDTD model is more accurate
than the ray-trace model. Note, the analytic so-
lution is not valid for textured solar cells.

B. The Mazximum Achievable Current Density and
Light-Trapping

The light-trapping capability of a thin silicon so-
lar cell is explored in this subsection. By varying
the front and rear surface textures of a 0.75 um
thick solar cell, the light-trapping capability of some
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Fig. 3. The absorption of light by a 0.75 pm untextured
solar cell.

promising designs is determined [1], [3], [4], [5], [6],
[7], [8], [9]. Figure 4 shows the geometric layout
of five solar cells analyzed with the FDTD model.
The height of all surface textures is a quarter of
the thickness of the cell (h = t/4). The peak an-
gle of all surface textures is 70.4°. All the cells are
illuminated by AM1.5 sunlight. Each cell in Fig-
ure 4 is 0.75 ym thick. For the planar solar cell, the
0.75 pm thickness is the distance between the front
and rear surface of the silicon slab. For the perpen-
dicular slat solar cell, the definition of thickness is
not obvious. Figure 4 has two parallel dotted lines
drawn thru each cell. The distance between the two
lines is the thickness. The thickness for the per-
pendicular slat solar cell is not simply the distance
between the front and rear surface peaks. Thick-
ness is defined such that different solar cells with
equal cross subsectional area, w?, and equal thick-
ness, £, have equal mass. This definition of thick-
ness ensures a valid comparison between textured
and non-textured solar cells always exists. Mass is
directly proportional to volume. Thickness is equiv-
alently defined using volume. Two solar cells that
are both ¢ microns thick have the same volume per
cross subsectional area. For the planar solar cell,
the volume of the unit cell is fw?. The thickness
for the planar solar cell is ¢ = v/w? In general,
thickness is defined as ¢t = v/w?. The volume and
cross subsectional area are the same for each of the
cells in Figure 4. The ratio between volume and
cross subsectional area remains constant such that
t = v/w? = 0.75 um. Figure 5 summarizes the re-
sults of the FDTD light-trapping analysis. All of
the textured 0.75 um solar cells increase the absorp-
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Fig. 4. The thin solar cells analyzed with the FDTD model { t = 0.75um h = t/4 and § = 70.4° }.

TABLE 1
Tue MACD OF DIFFERENT 0.75 uM THICK SOLAR CELL
DESIGNS.

Design MACD (mA/cm?)
Planar 10.4
Corrugated 15.8
Inverted Pyramids 16.9
Perpendicular Slats 17.3
Pyramids 18.1

tion compared to the planar solar cell. The corru-
gated slat and the inverted pyramid designs do not
perform as well as the perpendicular slat design.
The perpendicular slat and pyramid designs achieve
at least 50% more absorption than the planar so-
lar cell at the shorter wavelengths. The maximum
achievable current density (MACD) under AM1.5
illumination for each of the 0.75 ym designs is tab-
ulated in Table I. The perpendicular slat design
has a MACD which is 66% greater than the planar
solar cell. The ray-trace model predicts a 12% im-
provement when the perpendicular slat and planar
solar cells are 50 um thick. The effect of texturing
is more important as the solar cells thickness de-
creases. The solar cell with the front pyramid sur-
face texture has the highest MACD of 18.1 mA /em?.
This is contrary to the ray-trace prediction that the
perpendicular slat solar cell has the higher MACD.

C. Where are the Photons Absorbed?

The ray-trace model [11] shows that the MACD is
not the best figure of merit for light-trapping. Based
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solely on the MACD and the ray-trace model, the
best light-trapping design is a thick solar cell with
a front surface texture. The MACD makes the false
assumption that every absorbed photon contributes
to the net current of a solar cell. On the contrary,
the net current depends on where the photons are
absorbed and the quality of the semiconductor.

What is the generation rate for a thin textured
solar cell? The generation rate, G(F,w), must sat-
isfy

Flw)Aw) = ] G(F,w) dv (12)
v

where F(w) is the solar spectrum and the total ab-
sorption, A(w), is given by Equation 10. Substitu-
tion of Equation 10 into Equation 12 leads to the
generation rate of

o|E(F, jw)f?
Js B, 3w)? /o ds

In words, the generation rate is directly propor-
tional to the absorption density. From Equa-
tion 13 and Equation 10, the absorption density is
G(f,w)/F{w). The absorption density (the fraction
of incident light absorbed per unit volume) is cal-
culated directly by the FDTD model.

Even though it is beyond the scope of this re-
search to use the absorption density to solve the
continuity equation, valuable information is gained
by looking at the absorption density.

Figure 6 shows the calculated absorption density
in the xz- and yz-planes for the planar solar cell.
The wavelength of light is 0.35 um. The extinction
coefficient of silicon at this wavelength is large which

G(Fw) = F(v)

(13}
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Fig. 5. The light-trapping capability of different 0.75 um thick solar cell designs.

leads to the rapid exponential decay of absorption
seen in Figure 6. Figure 7 shows the absorption den-
sity for the same solar cell except the wavelength
of light is 0.70 um. The low extinction coefficient
leads to a uniform average absorption density. The
absorption density at the front and rear sides of the
solar cell is the same. The FDTD results shows
variations in the absorption density caused by the
interference of light. Figure 8 illustrates the loca-
tion of the xz- and yz-planes.

The calculated absorption density for the perpen-
dicular slat solar cell is shown in Figure 9. The
wavelength of light is 0.35 um. Unlike the planar
solar cell, the absorption density has an intricate
profile. Figure 9 shows most of the light is absorbed
near the front surface. The similar effect occurs in
the planar cell. Figure 9 shows a sharp peak in the
absorption density at the peak of the front surface
texture. Figure 10 shows the absorption density for
the perpendicular slat solar cell at a wavelength of
0.70 um. Light reaches the back surface of the solar
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(a) Absorption density in the xz-plane

(b) Absorption density in the yz-plane

Fig. 6. The absorption density for the 0.75 um planar solar cell with A = 0.35 um.

(a) Absorption density in the xz-plane

(b) Absorption density in the yz-plane

Fig. 7. The absorption density for the 0.75 um planar solar cell with A = 0.70 um.

yz-plane

Fig. 8. An illustration of the xz- and yz-planes.

cell. Unexpectedly, the back side of the solar cell has
the highest absorption density. The high absorption
density at the rear surface is not predicted by the

39

ray-trace model.

D. Summary of Results

The FDTD model is more accurate than the ray-
trace model for thin solar cells as shown in Figure 3.
Given a solar cell design, the FDTD maodel calcu-
lates the total absorption, the maximum achievable
current density, and the absorption density. Based
on these output parameters, different solar cell de-
signs are simulated and compared using the FDTD
model. The FDTD model indirectly calculates the
generation rate. The generation rate is the product
of the absorption density and the solar spectrum.



{a) Absorption density in the xz-plane

(b) Absorption density in the yz-plane

Fig. 9. The absorption density for the 0.75 um perpendicular slat solar cell design with A = 0.35 pm.

(a) Absorption density in the xz-plane

ol

(b) Absorption density in the yz-plane

Fig. 10. The absorption density for the 0.75 um perpendicular slat solar cell design with A = 0.70 pm.

The generation rate could be used to calculate the
expected current density of a solar cell instead of
the maximum achievable current density.

Due to the size and complexity of the FDTD
. model, only a few select solar cell designs are an-
alyzed based on their light-trapping capacity. The
MACD for the 0.75 ym thick pyramid solar cell is
18.1mA/em?. The MACD for the 0.75 um thick
perpendicular slat solar cell is 17.3mA/cm?. The
ray-trace model predicts the perpendicular slat so-
lar cell is better at light trapping than the pyra-
mid design. It is surprising to see the FDTD model
predict that the 0.75 um thick, pyramid design is

better. The front pyramid texture increased the
MACD by 74% as compared to the planar solar cell.
The planar solar cell has a MACD of 10.4mA /em?.
For thick solar cells, greater than 50 um thick, the
similar increase in MACD is 12%. Texturing be-
comes more effective at increasing light-trapping as
the thickness of the solar cell decreases.

IV. DISCUSSION

In this research, two computer models have been
developed and used to analyze solar cell light-
trapping. The characteristic size of the solar cell
determines which model is useful. The ray-trace
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model is based on the laws of geometrical optics.
For this reason, the ray-trace model is limited to
thick solar cells [11]. The ray-trace model is inaccu-
rate when applied to the thin 0.75 ym thick planar
solar cell. The ray-trace model ignores the wave na-
ture of light and interference effects within the solar
cell. The Finite-Difference Time-Domain model is
based on solving Maxwell’s equations directly. The
FDTD model accounts for the wave nature of light.
The FDTD meodel accurately predicts the absorp-
tion spectrum for the thin, 0.75 um, planar solar
cell. The FDTD model is applicable to thin solar
cells where the characteristic dimension is on the
order of the wavelength of light.

The diversity and complexity of possible solar cell
designs based on light-trapping creates a large chal-
lenge to the engineer. Textured surfaces and anti-
reflection films are known to enhance light-trapping.
No simple analytical solution to Maxwell's equa-
tions exists for the different types of proposed so-
lar cell designs. This problem is relatively easy to
overcome by using numerical techniques. Once the
numerical model is translated into a computer lan-
guage, a textured solar cell is as easy to study as a
planar solar cell. Neither the ray-trace model nor
the FDTD model is limited to planar solar cells.
Both models are capable of analyzing the light-
trapping characteristics of solar cells with com-
plicated surface textures and anti-reflection films.
Both computer models are designed to model com-
plex light-trapping designs. The models also handle
dispersive and lossy materials, like silicon.

The solar cells which can be modeled are lim-
ited by the available computer resources. The peri-
odic boundary was introduced to partially reduce
some of these computer requirements. The ray-
trace model was designed to run on an inexpensive
personal computer, an Intel-386 based PC with one
megabyte of memory. The typical ray-trace analy-
sis of a solar cell requires half a megabyte of mem-
ory and about three hours of runtime. However,
some runs took as long as a week to analyze a sin-
gle solar cell. The length of time was dependent
on how many rays in the incident beam, the num-
ber of textures, and the number of wavelengths. To
model dispersion in silicon, a entire run has to be
run for each wavelength of incident light. The in-
dex of refraction and extinction coefficient are de-
pendent on wavelength. The FDTD model was de-
signed to improve accuracy. One consequence of
improved accuracy is the FDTD model cannot run
on a personal computer. The biggest limiting factor
for the FDTD model is the computer memory re-

quirements. Depending on the wavelength of light,
the FDTD analysis of the 0.75 pm thick solar cell re-
quired 770 megabytes at the wavelength of 0.35 pm.
This latge memory requirement is due tc the large
index of refraction (5.442) for silicon. At the high-
est wavelength of 2 ym, the memory requirement is
only 20 megabytes.

A planar solar cell 0.75 pm thick has a maxi-
mum achievable current density of 10mA /cm?. The
MACD is increased by 74% to 18.1mA /cm? by tex-
turing the front surface of the solar cell with pyra-
mids. The perpendicular slat solar cell configura-
tion increased the MACD by only 66%. The ab-
sorption density in the thin solar cell is more com-
plicated than the standard exponential decay seen
in thick planar solar cells. The absorption density
in a textured solar cell can be larger at the back
surface than at the front surface. Surface recombi-
nation may be most important at the back side of
a thin solar cell. Owverall, the FDTD model demon-
strates texturing has a large effect on light-trapping
in thin solar cells.

A. Topics for Future Research

There are several areas of light-trapping which
are of interest to the solar cell community and re-
quire further investigation. FDTD analysis was ver-
ified for planar solar cells, however, the surprising
result of the perpendicular slat solar cell FDTD
analysis necessitates that experimental verification
be done to confirm the modeling technique for tex-
tured surfaces. Future investigation could also in-
clude improving the FDTD model to analyzing new
light-trapping designs. The ability to accurately
model thin solar cells brings new avenues to study
andenhance light-trapping.
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