
 ABSTRACT – In the framework of photonic crystal’s band 
structure calculations, we present a novel way – based on 
several advanced techniques for searching and tracing 
eigenvalues with the multiple multipole program – to compute 
these diagrams automatically, efficiently, and with a high 
accuracy. Finally, we validate the results for some well known 
test cases.
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crystal; eigenvalue analysis. 

I. INTRODUCTION

HOTONIC Crystals (PhCs) were proposed in 1987 by E. 
Yablonovitch [1] at the University of California, as an 

optical counterpart to semiconductors, i.e., PhCs should 
provide a photonic bandgap in the same way that a 
semiconductor possesses an electronic bandgap. In fact, PhCs 
are rarely found in nature. Exceptions are opals and butterfly 
wings. However, thanks to nano-technology it has become 
possible to fabricate artificial PhCs in the last decade. These 
PhCs essentially consist of a periodic assembly of dielectric 
scatterers, i.e., there is a strong link to the well-known 
structures of grating theory. One of the important differences 
between PhCs and semiconductors is the size of the unit cell. 
For a semiconductor, one has a 3D grid consisting of identical 
atoms, i.e., the lattice constant in all three directions of the 
crystal is in the order of the diameter of an atom, whereas the 
cell size of a PhC is in the order of half an optical 
wavelength, i.e., much larger. From this fact, one expects that 
the Photonic Integrated Circuits (PICs) based on PhC concept 
must be much larger than the traditional semiconductor ICs. 
But – because of the macroscopic size of the PhC’s unit cell – 
one has much more freedom in introducing and fabricating 
defects in a PhC than in a semiconductor. Note that a 
semiconductor becomes interesting from the technological 
point of view only when a few impurities or defects are 
introduced and the same holds for PhCs. Doping traditional 
semiconductors is a rather statistical way of introducing 
defect atoms in a semiconductor and therefore, the building 
blocks of semiconductor are relatively large blocks of material 
with a specific doping. These blocks obviously consist of 
many atoms. When designing a "doped" PhC, one can 
precisely position and fabricate all defects with a high degree 

of freedom – at least it is expected that this can be done in the 
near future [2]. 

Although the variety of PhC structures that might be 
fabricated one day seems to be almost infinite and although 
many interesting structures were already proposed (various 
types of waveguides, sharp bends in waveguides without any 
reflection, couplers, resonators, etc.) or even fabricated on a 
prototype level, one currently cannot say what kind of PhC 
structures will be favored. At the moment, one can neither 
know the materials that are best suited for PhCs – it is well 
known that a large dielectric contrast is required for obtaining 
a bandgap, which somehow limits the materials that may be 
used, but there is no unique choice at all – nor what kind of 
geometry (2D crystals or 3D crystals [3-5], symmetry, shape 
of the scatterers) is most appropriate. Thus, there is a strong 
need for theoretical investigations and simulations of 
potential structures. The first step of such investigations 
consists in the computation of the band diagrams of perfect 
PhCs without any defects. The goal is to find structures that 
may easily be fabricated and exhibit a broad band gap, i.e., a 
frequency range where no electromagnetic waves are allowed 
to propagate within the crystal. In order to find the band gap, 
one must compute the band diagram of the lowest order 
modes of the PhC. This is essentially an eigenvalue problem 
that exhibits several special cases that may cause difficult 
numerical problems, especially when one is designing a 
procedure for the automatic, efficient, accurate, and reliable 
computation of the complete band diagrams for arbitrary 
structures. 
Currently, the most frequently used approach is the Plane 
Wave Method (PWM) that mainly approximates the 
electromagnetic field by a superposition of plane waves [6-
10]. It is well known, that this method has a problematic 
convergence [11-13, 10]. Other methods that were used for 
PhCs are the Finite Difference Time Domain (FDTD) 
[14,15], the transfer matrix method [16], the Finite Element 
Method (FEM) [17], and the Boundary Element Method 
(BEM) [18]. In the following, we apply the latest version of 
the Multiple Multipole Program (MMP) [19] implemented in 
the MaX-1 software [20].  
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In order to obtain efficient, reliable, and accurate results, we 
carefully analyze the numerical problems that may occur and 
introduce several new techniques. For reasons of simplicity 
we focus on the 2D case.  
The remainder of the paper is organized as follows: A commonly 
used representation of PhCs in terms of their band diagram is 
elucidated in Section II. In Section III we briefly explain the 
core of our photonic crystal calculations, when MMP is 
considered. The proper framework of the eigenvalue search is 
reported in Section IV, whereas in Section V a successful 
automation of such search procedure is proposed. A 
validation of our band structure calculation by means of 
various test examples is given in Section VI. And finally, we 
conclude this contribution with a short summary in Section 
VII. 

II. DEFINITION OF THE BAND DIAGRAM

As an introductory example let us consider the simple case 
of a 2D PhC consisting of dielectric rods arranged in a square 
lattice and embedded in, e.g., air. For periodic structures it is 
possible to apply some fundamental theorems from solid state 
physics. The original lattice for this crystal is given on the left 
hand side of Fig. 1. For the dielectric constant we can write 

)()( Rrr
r

rr += εε  where R
r

 is one of the original lattice vectors. 

According to Bloch’s theorem [6, 7] for the modal field inside 
the crystal we write: 

( ) ( ) ik r

kn kn
E E r u r e ⋅= = ⋅

r

r

r r

r r

r r r

                    (1) 

( ) ( )
kn kn

u r u r R= +r r

r

r r r r

                              (2) 

Note that (1) holds not only for the electric but also for the 
magnetic field. Bloch’s theorem may be proven in classical 
electro-dynamics [6]. Important consequences of this theorem are 
[6, 7]: 
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wave vector space (reciprocal space) is discrete, 
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 is one of the reciprocal lattice vectors. 

This allows us to define the so-called reciprocal lattice space, 
spanned by the reciprocal lattice vectors. We first define the 
original lattice vectors as follows: 
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where 
1e
r ,

2e
r ,

3e
r  are three independent lattice vectors and 

1η ,

2η ,
3η  are integer numbers. Note that 

3e
r  is missing in 2D 

crystals. Similarly, we write for the primitive reciprocal 
lattice vectors: 
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If we want to construct the reciprocal lattice, we can use [7]: 
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These equations are derived from the definition of the 
reciprocal lattice vector space. For 2D crystals (cylindrical 
geometry), the vector

3f
r

 is omitted and the vector 
3e
r  is the 

unit vector 
ze
r  along the cylinder axis. 

From the equations above, we can conclude that the discrete 
translational symmetry of a photonic crystal leads to the fact 
that modes with the wave vector k

r

 and modes with the wave 
vector Gk

rr

+  are identical, i.e., we have periodicity also in the 
reciprocal space. A special representation of the primitive cell 
for this periodicity is called the first Brillouin zone (1st BZ). It 
can be defined as a zone around any lattice point in the 
reciprocal space with points that are closer to this lattice point 
than to any other lattice point. 

The Brillouin zone construction (using Bragg’s planes – 
dashed lines) for the square lattice is shown in Fig. 2. 
Because of the high degree of symmetry, we need to analyze 
only a small part of the 1st BZ. This part is called the 
irreducible BZ (IBZ), [6, 7]. In the case of periodic structures, 

            
Fig. 1: The original (left) and reciprocal (right) lattice for a 2D photonic crystal 
(square lattice). Construction details for reciprocal lattice are given in the text.  

Fig. 2: Construction of the 1st Brillouin zone (solid square), its irreducible part 
(triangle Γ-X-M) and characteristic points for band structure computation (Γ,
X, and M). 
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it is sufficient to perform the modal field analysis in the area 
of the IBZ. As illustrated in Fig. 2 the IBZ for a square lattice 
is a triangle with the corners Γ, X, and M. Since the maxima 
and minima of the eigenvalues (resonance frequencies) are 
supposed to be on the borders of the IBZ, it is sufficient to 
trace the eigenvalues along the sides of the IBZ in order to get 
the photonic bandgaps. Therefore, the standard band diagram 
consists of three sections: Γ–X, X–M, and M–Γ (see Fig. 5). 
For other lattices, the procedure is essentially the same [21, 
22]. Assume that an arbitrary point in the reciprocal space is 
considered. This point essentially defines a wave vector. For 
the periodicity of (3) we then obtain for the field in the 
original space: 
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where F stands for the electric as well as for the magnetic 
field. In the MMP implementation of the periodic boundary 
problem C1, C2 are parameters that characterize the point in 
the reciprocal lattice space. As a consequence, it is sufficient 
to know the field in a unit cell (as an equivalent 
representation of the primitive cell) of the original space. Let 
us call this the original cell. Note that neither the shape nor 
the location of the original cell is unique, but for both the 
square and the hexagonal lattice we may simply use 
quadrangular original cells as shown in Fig. 3 and 4. 
For the square lattice, the relation between the periodic 
constants (C1, C2) and the position in the IBZ is very straight 
forward, i.e., these are the Cartesian components (Cx, Cy) of 

the wave vector k
r

. For the hexagonal lattice, the situation is 
a bit more complicated [23-25]. 

III. THE MMP SOLUTION OF PERIODIC PROBLEMS WITH 

FICTITIOUS BOUNDARIES

Any software for computing band diagrams must handle both 
eigenvalue problems and periodic structures. The MMP 
implementation of MaX-1 contains a simple concept for 
handling arbitrary periodic structures: First, the structure is 

subdivided into cells by an appropriate grid of fictitious 
boundaries (dashed lines in Fig. 3 and Fig. 4). Assume that 
the field in one of the infinitely many cells is known, then, 
the field in all other cells is easily obtained from the 
periodicity conditions (5), i.e., the Floquet theorem [7].  
The geometric shape of the original cell depends on the 
crystallographic structure (i.e. the crystal symmetry), but it is 
not unique for a given crystallographic structure at all, 
because the fictitious boundaries we have introduced, are 
quite ambiguous. For example, in Fig. 3 we used straight 
lines between the circular rods. We could replace these lines 
by curved, periodic lines and we could move these lines to 
any other position in space. Since we will impose so-called 
periodic boundary conditions along the fictitious boundaries 
of the original cell, we have to minimize the numerical 
problems when we select the fictitious boundaries in such a 
way that the electromagnetic field along them is as well 
behaved as possible. Therefore, straight lines in the middle 
between neighbor rods are most reasonable when the rods are 
circular or rectangular. When the geometric shape of the rods 
is more complicated, it may be advantageous to use curved 
lines. 
Once, the original cell is isolated by introducing fictitious 
boundaries, we can derive boundary conditions for the field 
along them. In 2D PhCs, the original cell is bounded by two 
pairs of parallel lines. For example, when r

r

 is a point on the 
left border of the original cell in Fig. 3, 

1er
rr + is the 

corresponding point on the right border, where 1e
r

corresponds to one of the primitive lattice vectors. Because of 
the periodicity, we obtain from (5): 
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This condition holds for both the electric and the magnetic 
field in every point along the right boundary of the original 
cell. We call this the periodic boundary condition that is 
imposed on the right border of the original cell. Similarly, we 
can introduce a periodic boundary condition for the upper 
border. 

Fig. 3. The basic cell of the photonic crystal with dielectric rods 
and square lattice 

Fig. 4: The unit cell of the photonic crystal with dielectric rods arranged on a 
hexagonal lattice. 

Fig. 3: The unit cell of the photonic crystal with dielectric rods arranged on a 
square lattice. 
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Having defined the original cell and its periodic boundary 
conditions, one has to set up the MMP model of the scattering 
body in the lattice point: We approximate the field in each 
domain by a superposition of multipole expansions and some-
times by additional, analytic solutions of Maxwell’s equations 
(in the frequency domain). The amplitudes or parameters of 
the resulting series expansions are then computed with the 
generalized point matching technique, i.e., by minimizing a 
weighted error function defined along all natural and fictitious 
boundaries. For example, for the simple geometry in Fig. 4 
we use the following expansions: 
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where Jn is Bessel function of order n, Hn
1 is Hankel function 

of first kind and order n, κ is transverse propagation constant 
and (r,ϕ) are polar coordinates with respect to the origin at 
the position of the corresponding expansion. Expansion (6) 
(Bessel expansion) is used in the case of E-polarization and 
expansion (7) is used in the case of H-polarization. These 
Bessel expansions are used for the domain inside of the 
dielectric rod because these functions have no singularity at 
origin. Furthermore, these expansions are sufficient because 
the domain is simply connected. The background domain is 
not simply connected, because it contains a hole. Therefore, 

we need at least two different expansions, namely a multipole 
expansion (8) or (9) and Bessel expansion (6) or (7). Note 
that the moltipole expansion essentially accounts for the field 
scattered at the inner boundary, whereas the Bessel expansion 
accounts for the outer, ficitious boundaries. This means that 
the Bessel expansion simulates the field that comes from all 
rods outside the original cell. According to Vekua [24], our 
set of expansions is complete in the sense that the error of the 
field is below an arbitrarily small value ε provided that the 
highest orders are big enough and provided that the 
amplitudes (A, B, C, D in (6)-(9) ) are computed correctly. 

IV. THE MMP-MAS EIGENVALUE SOLVER

For obtaining the band diagram of a PhC, it is necessary to 
solve an eigenvalue problem, because there is no excitation 
like in scattering problems. This means that we only obtain 
non-trivial solutions (i.e. frequencies) for an arbitrary point of 
the IBZ (i.e., for a given set of complex values C1, C2). Thus, 
we essentially have a periodic resonator problem to solve. The 
search of resonance frequencies in the MMP code MaX-1 is 
somehow different from many other numerical methods 
because MMP uses a full rectangular system matrix obtained 
from the generalized point matching technique. For such type 
of matrix it is very demanding to obtain accurate results while 
avoiding problems with the condition number [25]. Note that 
condition number problems are especially crucial when one is 
solving eigenvalue problems. If this is not properly done, one 
can obtain a "noisy" behavior near the eigenvalues and this 
can heavily disturb the numerical eigenvalue search 
procedures. However, the standard MMP eigenvalue search 
procedure first defines a real valued, positive eigenvalue 
search function 

Fig. 5: The band diagram of the photonic crystal with dielectric rods on a square lattice (for H-polarization).The algorithms used within the 
eigenvalue search procedure are labeled correspondingly. 
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where e is the eigenvalue (i.e. the resonance frequency), E is 
the weighted residual, and A is an amplitude that may be 
retrieved from any field component in a specific test point (or 
an integral over some field profile). For the band gap 
computation, it is most reasonable to define A2 as the total 
electromagnetic energy within the original cell. According to 
(10) the desired eigenvalues are characterized by the minima 
of the search function η . Analyzing the shape of η  near the 

minima provides additional information on the accuracy of 
the solution.  
Although more reliable results are obtained when the 

amplitude is defined by an appropriate integral, the definition 
in one or a few test points is sufficient for most cases. Since 
the numerical intergration may be time-consuming, one 
usually prefers the simpler test point method. However, it is 
important to note that the definition of the search function is 
not unique. By defining different search functions, one can 
gain even more intrinsic information providing a good error 
estimation and for validation purposes. As depicted in Fig. 6, 
even for a single model (fixed amplitude definition and fixed 
multipole expansion), one can address the different minima of 
the same eigenvalue search functions simply by rearranging 
the columns of the MMP matrix. In fact, in the Givens update 
algorithm [25], which was used for solving the MMP matrix 
equation, the last expansion somehow plays the role of an 
excitation. When it happens that the spatial symmetry of such 
excitation is not contained in the symmetry of the searched 
eigenmode, this mode will not be "excited", hence, the 
corresponding minimum of the eigen-value search function is 
suppressed. Although, it may be desirable to suppress some 
modes in applications where not all modes must be 
considered, this is usually inconvenient for the automatic 
computation of the complete band structure. We therefore 
look for an alternative technique. 
Remember that we have introduced fictitious boundaries for 
handling the periodic problem. Similarly, we now can 
introduce a fictitious excitation that is defined in such a way 
that all modes are excited (Fig. 7). This concept mimics the 
measurement of resonance frequencies, where one always 
needs an excitation of the resonator and a test point (or port) 
where the signal is measured. By sweeping the frequency of 
the exitation, the peaks of the amplitude A in the test point 
can be readily assigned to the resonance frequencies of the 
different modes. This procedure was first introduced by the 
Method of Auxiliary Sources (MAS) [26] and a similar 
method was used by Sakoda [27]. Finally, the method was 
adapted to MMP by Moreno [28]. MAS uses eigenvalue 

Fig. 8: The “twin minima” phenomenon, behavior of the eigenvalue search  
function within the eigenvalue search procedure using a randomly located 
fictitious excitation. 

Fig. 6: The behavior of the eigenvalue search function (in the Γ point) of one 
single model with four different “last” expansions (the order of the last 
expansion is labelled in the figure)  

Fig. 7: The behavior of the eigenvalue search function (for a k-vector in the Γ
point) using the fictitious excitation in a random and symmetric position 
respectively. 
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search functions µ such as the energy density A2 at the test 
point are used. The eigenvalues are then obtained from the 
maxima of µ. The analysis of µ near the maxima has yielded 
a strange "double peak" phenomenon that disturbs the 
numerical search procedure. The standard MMP-MAS 
eigenvalue solver searches for minima of the eigenvalue 
search function 21/ 1/ Aη µ= = , i.e., one obtains "twin 

minima" instead of double peaks, as shown in Fig. 8. The 
"double peak" phenomenon and the "twin minima" are caused 
by a very sharp peak of the residual E at the correct 
eigenvalue position. Note that this peak is not obtained in the 
standard MMP approach without fictitous excitations. Of 
course, the residual peak may also be used for defining the 
eigenvalues. Since these peaks are extremely sharp, it is very 
likely that one of the eigenvalues is missed by the rough 
search routine that searches for all eigenvalues. In order to 
overcome these problems, one can define more complicated 
eigenvalue search functions η  as proposed in Fig. 8. This allows 

one to suppress the double peak phenomenon. Unfortunately, 
one may encounter numerical underflow problems in some 
applications. Therefore, the current MaX-1 eigenvalue solvers 

uses three different "competing" eigenvalue search functions: 
1) A complicated one with user-definable exponent n, 2) the 
inverse of the amplitude, and 3) the proper residual. Using all 
of these three functions, the code is capable to detect the 
correct locations of the eigenvalues. An alternative to 
overcome the twin minima problems is the introduction of 
"fictitious losses" that smoothen the resulting search function 
η .

Since one often considers a broad frequency range, it is not 
reasonable to find the eigenvalues by plotting the eigenvalue 
search function over the entire range with a very high 
resolution. It is much more efficient to subdivide the search 
process into two steps: 1) Rough detection of all eigenvalues 
and 2) fine search, i.e., accurate computation of the 
eigenvalues. The first step seems to be trivial as soon as the 
problems mentioned above have been solved. The second step 
requires a fast minimum search procedure for real functions. 
The algorithm used in MaX-1 is mainly based on a parabolic 
interpolation because the search function near the minima is 
usually almost parabolic – provided that the double peak 
phenomenon has been removed. 

Fig. 9: The algorithm for the band structure computation using MMP. Fig. 10: The algorithm for band diagram computation written in the MaX-1 
script language. 
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Having a closer look to typical band diagrams (Fig. 3), we see 
different situations which can cause problems for both the 
rough search and the fine search. Mainly at the Γ and the M 
point we usually observe degenerate modes. Furthermore, we 
have areas with almost degenerate modes and points where 
different lines seem to cross each other, where the modes are 
(accidentally) degenerated. When the rough search is 
performed to degenerate points, it usually cannot detect all 
modes involved. Even if the search procedure is started in a 
close vicinity to such degeneracies, it will be too time-
consuming to iterate into all eigenmodes. In order to 
overcome these problems, it is reasonable to start a rough 
search in a domain where all eigenvalues could be easily 
tracked down (e.g. the interval between Γ and X in the band 
diagram of Fig. 5). Once this has been done, one can trace 
each eigenvalue by moving a small step either to the left or 
right side within the band diagram, and repeating this 

procedure until the border of the diagram is reached. For each 
such step, only a fine search must be performed. Depending 
on 1) the desired accuracy, 2) the step size, and 3) special 
properties of the model, several iterations are required. The 
number of iterations could be drastically reduced when using 
the Eigenvalue Estimation Technique (EET) implemented in 
MaX-1 [19]. This technique uses the information of previous 
eigenvalue solutions for the extrapolation of the current 
eigenvalue’s search interval. Typically, 4–12 iterations per 
step are sufficient for obtaining an eigenvalue with a high 
precision. For example, for tracing the first mode in Fig. 3, 
280 search steps were performed and 5 iterations per step 
were required in the average.  

V. AUTOMATIC EIGENVALUE SEARCH

Referring to e.g. Fig. 5 a standard band diagram consists of 
three different intervals corresponding to the three sides of 

Fig. 11: The band diagram of the photonic crystal with dielectric rods and square 
lattice, H-polarization, the first 6 modes. 

Fig. 12: The band diagram of the photonic crystal with dielectric rods and 
square lattice, E-polarization, the first 6 modes.

Fig. 13: The band diagram of the photonic crystal with dielectric rods and 
hexagonal lattice, H-polarization, the first 6 modes. 

Fig. 14: The band diagram of the photonic crystal with dielectric rods and 
hexagonal lattice, E-polarization, the first 6 modes. 

TABLE I
CONVERGENCE CHARACTERISTICS, COMPUTATION FOR 1ST

 AND 6TH EIGENFREQUENCY AT X POINT OF IBZ 

Eigenfrequency 1 Eigenfrequency 6 Number of 
unknowns 

Frequency (Hz) Error (%) Field mismatch. (%) Frequency (Hz) Error (%) Field mismatch. (%) 
20 1.0223585e14 1.473 9.620748e-0 2.3465308e14 4.194 2.306028e+1 
36 1.0095955e14 0.206 4.204639e-0 2.2567438e14 0.207 4.449937e+0 
52 1.0078338e14 0.032 0.288115e-0 2.2512072e14 0.039 0.824365e-0 
94 1.0074678e14 0.005 4.465747e-2 2.2519421e14 0.006 0.128581e-0 
164 1.0075153e14 0.000 4.729721e-7 2.2520785e14 0.000 3.551224e-6 
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the IBZ. When the rough search is started somewhere in the 
middle of such an interval (e.g. in the area between Γ and X 
in the band diagram), it must be repeated three times. After 
each rough search the fine search must be repeated for each 
obtained eigenvalue and, finally, the fine search routine must 
run for each eigenvalue once towards the left and once 
towards the right side of the band diagram, as depicted in Fig. 
5. MaX-1 contains a script language that allows one to define 
complicated procedures such as the search procedure mentioned 
above. The set of MaX-1 directives for the automatic 
generation of a band diagram from the point in the middle 
between Γ and X to the Γ point, is given in Fig. 10, and the 
complete algorithm for this procedure is given in Fig. 9. It is 
obvious that the algorithm is not simple and the overall 
procedure relies on fast computer resources. 

VI. NUMERICAL VERIFICATION

We have applied MMP to various PhC lattices. Internal tests 
show excellent convergence. Therefore high accuracy may 
easily be obtained. Table I shows the MMP estimate of the 
mismatching errors along the boundary for the model 
outlined in Fig. 3 with different maximum orders of the 
multipoles and Bessel expansions, i.e., with different numbers 
of unknowns. Note that the computation time typically is 
proportional to the cube of the number of unknowns because 
we use a brute-force full matrix solver (Givens update 
scheme). Despite of this, the computation time remains 
reasonably short because the matrices obviously are much 
smaller than the matrices used in other methods. For example 
Fig. 11 was obtained with 3 rough-search routines, 100 
frequency steps each. The total number of 1656 plotted points 
required were then computed with 8280 MMP evaluations of 
η , i.e. approximately 5 iterations per point in the diagram 

were performed. The total calculation time was 40 minutes on 
a Pentium 4, 2GHz. Because of the excellent convergence, we 
also can estimate the accuracy of the eigenvalues by 
comparing them with a very accurate MMP model. As one 
can see from Table I, one only obtains one more digit when 
doubling the number of unknowns.  
In order to validate this algorithm, several calculations were 
performed and results were compared with the results of MPB 
package developed at the MIT [29]. For the PhC with square 
lattice and dielectric rods (Fig. 3), a band diagram calculation 
was performed for different field polarizations and the results 
are given in Fig. 11 (H-polarization) and Fig. 12 (E-
polarization). The results for the hexagonal lattice case (Fig. 
4), are depicted in Fig. 13 (H-polarization) and Fig. 14 (E-
polarization). These two types of PhC rely on the same lattice 
data: A dielectric rod with radius ar 3.0=  and a dielectric 
constant of 56.11=ε , the lattice is embedded in air and the 
lattice constant is )(10 6 ma −= . From Figs. 11–14 we deduce a 

perfect agreement with the MPB results documented in [29].  

VII. CONCLUSION

We have presented an efficient method for band structure 
calculation for 2D dielectric PhCs. In this framework a fully 

automatic algorithm was developed and evaluated along 
several examples. The eigenvalue searching procedure in the 
frequency domain has been performed using a fictitious 
excitation. Optimal eigenvalue search functions have been 
found while evaluating the total eigenvalue spectrum for k-
values at three preferable points on the IBZ. The three 
resulting sets of eigenvalues are evolved into a full band 
diagram using a highly efficient Eigenvalue Estimation 
Technique (EET). The overall algorithm performs photonic 
band diagram calculations at a very high level of accuracy 
and at reasonable computational costs. This algorithm is 
easily extendable for applications involving localized defect 
mode analysis [30], various PhC defect waveguide types 
(supercell approach [31]) and photonic waveguide 
discontinuities [31], as well. 
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