ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, 5I: CEM & HPC

131

Optimisation and large scale computation in integral equation scattering analyses

SJ Dodson, § P Walker”, M J Bluck
Mechanical Engineering Department
Imperial College of Science Technology and Medicine
London SW7 2BX

Abstract : The kinds of difficuities posed by large scattering computations change as larger problems are
addressed. Unfavourable cost scalings make the performance of small, core, portions of code dominant, and
require that they, and the overall code structure, be optimised for large scale computation. This is
discussed in the context of res and scattering computations of multi-wavelength bodies using a time domain
integral equation treatment. Examples presented include the NASA almond evaluated at 25 wavelengths
long, and an assembly of 101 spherical scatterers of ~1/2 wavelength diameter each, occupying a volume of

side ~250 wavelengths.

1. Introduction

Many problems in CEM share the unattractive
characteristic of having computational costs
which increase sharply with problem
(electrical) size!, and transient scattering and
radar cross section computations, on which this
paper will concentrate, are a prime example of
this. Whilst ‘'small' problems are thus not
computationally difficult, something of a ceiling
in electrical size is quickly encountered when
tackling only slightly larger ones. Progress
requires a judicious combination of frugal
algorithm, recasting for large, and in practice
massively parallel, computers, and careful
coding and optimisation. Once very large
problems are tackled, additional difficulties
arise in what are otherwise peripheral issues;
the areas of mesh generation, and results
manipulation and display quickly become major
computational tasks in their own right.

In this paper we will describe attempts to reduce
the computational cost of integral equation time
domain (IETD) analyses’, using the above
approaches, but with particular emphasis o
practical techniques we have found effective in
optimisation. Additionally, the issues and

problems of mesh generation and results display
will be considered.

In the remainder of this introduction we will
summarise very briefly the algorithms being
employed. Section 2 will discuss the various
aspects of optimisation which arise in trying to
use these on large problems, section 3 considers
pre- and post-processing issues, and in section 4
we will give examples of the performance of the
codes.

For scattering from a perfectly conducting body,
subject to some incident wave, the surface field is

given by®
2zH(r,t)=4xH,_(r,1)+

iRc

j(n’ X H(r’,r*)) X

(1)

Q

R JH R
=i xZ=2 I’t* X — ds’
R (n dt (x)J R

where 1 and ' are surface locations, R=1 - 1,
wave speed is ¢, and time t and retarded time

to=t- R/c. Most of what follows in this paper
is independent of the details of the discretisation
of (1) employed, but here we will use an implicit

t Correspondence: s.p.walker@ic.ac.uk, +44 (0)171 823 8845 fax, +44 {(0) 171 594 7058,

htip://www.ic.ac.uk/mechanics

1054-4837 @ 1998 ACES

132

curvilinear isoparametric approach. Details are
rather tedious®, but eventually a matrix equation
for the field at the next timestep is obtained,
with the field expressed as a weighted sum of
surface fields over the rest of the body at times
up to one transit time (W timesteps) ago. For
discretisation with N nodesi and j, at timestep
k+1, this new field is given by

N
2nH" - D o) M = @)
=t

N W
k+1 w pyk+l-w
4nH; . + E E a H;

J=l w=l1

The coefficients « (3 by 3 matrices, later reduced
to 2 by 2 by application of pec boundary
conditions) characterise the influence of
components of the historical field at j on
components of the new field being sought at i.
Note that an explicit treatment is obtained if the
timestep is so small that the new fields at nodes
adjacent to i do not influence the field at i.
Otherwise, (2) represents a sparse matrix
equation:

A‘hk-ﬂ =ck+] (3)

where W+ is HM',.., H5)T, and the vector ¢
results from evaluation of the summations on the
right of (2).

The main components of the computational work,
our primary interest here, are clear from (2) and
(3). For a given discretisation, the mumber of
nodes will vary with f%, so the work of forming
the coefficients o will scale with f. Cost of
formation of each ¢ thus scales with f!, and with
typically the number of timesteps required being
roughly proportional to electrical size, we obtain
the usual f cost scaling of IETD approaches.
Storage costs of & scale with f*, and of the field
history (nodes x timesteps) with f°. Fuller
discussion of these scaling issues is given by
Miller in the paper cited earlier’.

Nlumination with a pulse which is short
compared to the body size results in fields which
are small over most of the body most of the time.

ACES JOURNAL, VOL. 13, NO. 2, JULY 1938, SI: CEM & HPC

This can be exploited by (a)} integrating in (1)}
over only those portions of the body where the
field was significant at the relevant retarded
time, and (b} only evaluating the field at
locations where it is expected to be found to be
significant. With the fraction of the body surface
over which significant fields obtain declining
roughly with frequency, these two
approximations together reduce the scaling of
cost with frequency by up to two powers. A fuller
description of this, and an investigation of the
reduced accuracy and associated cost reductions,
has been presented earlier*. It is on the
implementation and optimisation of this
modified algorithm that this present paper will
concentrate.

2. Optimisations
2.1 Memory and operation tradeoffs

For the conventional IETD the main storage
requirement, the coefficients @, scales with f*.
These can be formed once at the beginning of the
job and then multiplied by historical values to
form the right hand vectors at every timestep.
This we will term the 'in-core’ method. The size
of this matrix is normally ~6 x 2 x2 x N x N
words. For example, for a 1,202 node NASA
almond’ (approximately 4 wavelengths long} the
matrix occupies 133Mb if stored (as it is) in single
precision. This is sizeable but not impossible on a
workstation. However, for say a ~25 wavelength
case (such as we will analyse later) the storage
required is about 327 Gb; ~ten times the entire
core of the largest of supercomputers.

This storage strategy would limit problem sizes
on say a 1 Gb workstation to ~3,200 nodes, or an
almond ~6.5 wavelengths long. This job would
however take only ~1/2 hour to form the matrix,
and ~1 hour to perform the timestepping, making
the storage clearly the limiting factor.

An alternative approach is to generate the
matrix coefficients afresh at every timestep, use
them and discard them. The overall scalings are
the same, but the costs are increased by a constant
factor of rather more than an order of magnitude

(the cost of forming the coefficient, relative to
'using' it in the multiplications of (2}). The
memory savings are considerable, with the now
dominant history scaling with f°. For the same
3,200 node almond this requires only ~34 Mb.

Repeated reading of the coefficients from disk,
where the provision of tens of Gb is no real
problem, is an alternative approach. For a
workstation this could be practicable and
quicker. However, large problems require large
computers, which in practice means parallel
computers, and the speedup in input of such
machines is generally far below their increase in
processing speed, making the recaiculation far
faster.

Similar arguments cause repeated recalculation
of the matrix coefficients to be the best approach
for the modified algorithm. This is reinforced by
the fact that the approximations in the
approach result in much of the matrix never
actually being used and hence never calculated.

History storage for the modified algorithm is
much reduced, as only the history of 'active'
periods is stored. Being a handful of pulse
durations worth at any one node, it has a cost
scaling with . This is the same scaling, and
indeed is lower in amount than, the storage
requirements of the mesh data itself. For
example, storage requirements of the 25
wavelength almond analysed later using this
approach were about 300 Mb. The history alone
in the conventional approach would have
required 200 Mb; the history in the modified
approach was ~50Mb.

2.2 Parallelisation

The whole area of parallelisation, covering
domain decomposition, minimising of
communications, and load balancing, is large.
There has been work on frequency domain
integral equation treatments®, but little has been
published'®"! on time domain integral methods.
This latter was for the conventional IETD
approach. There are significant changes required
to exploit massively parallel machines properly
using the modified algorithm. A paper detailing

DODSON etal: OPTIMISATION AND COMPUTATION IN INTEGRAL EQUATION SCATTERING ANALYSES 133

these has recently been written'?, and we will
summarise the approach here.

Storage of the same data on all processors must be
avoided, and this is done by partitioning the
mesh by elements, with their associated mesh
and history data, over processors. In the
modified approach only a subset of 'field’ nodes {
equation (2) are involved at each timestep, from
each of which integration is performed over a
subset (different for each 7, and differing at each
timestep) of 'boundary’ nodes j. Each processor is
caused to integrate from every relevant i over
such boundary nodes j as it is custodian of.
However, the nature of the propagation of the
pulse is such that both these groups of nodes tend
to be spatially fairly contiguous. Given the
careful node numbering optimisation schemes
built into most CAD packages, they tend also to
be fairly contiguous in terms of node mumber.
Deliberate randomisation of node numbering is
required to achieve good load balancing, but
when this is done very nearly equal work is
performed on each processor. With very little
interprocessor communication required, overall
parallelisation is very effective.

2.3 Profiling

Code development, debugging and so on naturally
tends to be performed using small test problems.
Whilst different portions of the code may be
known in theory to have different cost scalings,
fixed overhead costs normally dominate till
sizeable problems are tackled. It is only on the
largest of jobs that the portions of the code
having asymptotically dominant costs become
clear. Equally, of course, it is only if the intent is
to use the code for such jobs that the effort of such
identification and optimisation is warranted. A
further discouragement is that the resulting
optimisations, to be of most use, are often
machine specific, driven say by the particular
pipelining and cache arrangements of a
particular processor.

The technique of 'profiling’ is invaluable in
identifying those portions of a code where most
effort is being expended. It is often the case that

134

a tiny fraction, by lines of code, is found to account
for the vast majority of the execution time.
Sometimes, an optimised library routine may be
available, for a 'generic’ activity such as matrix-
vector multiplication, and this can be substituted.
Alternatively, manual optimisation can bring
significant gains.

We would comument in passing that in our
experience such optimisation should be confined
strictly to those portions of the code which are
found to be truly costly. The kinds of optimisation
we will describe shortly almost invariably make
the code more complicated, and harder to read
and understand. Introduction of temporary scalar
variables, loop unrollings and so on, need copious
in-code documentation to be comprehensible even
to the developer himself only a short while
later.

In the conventional IETD, nm 'in core' it was
suggested above that repeated formation of the
right hand side of (2) was the dominant cost.
This is confirmed by the profile of figure 1. The
routine performing this (pecformrhs) accounts for
over 90% of the cpu cycles. The second most
expensive, amatmult, is part of the iterative
solver used in repeated solution of the sparse
matrix equation in (2). This profile was nm for a
1,202 node, 4 wavelength body. For the small test
cases on which the code was originally
developed things are markedly different.

What matters changes greatly when we move to
the modified algorithm, with repeated matrix
coefficient calculation, but only for node-element
pairs corresponding both to significant expected
field values and significant historical (retarded}
fields. Figure 2 shows the profile of this case, for
the same 1,202 node, 4 wavelength test body. We
see that the majority of the time is spent in a
routine 'ipecnsq9.": the routine which integrates
over a non-self element, on a pec body, discretised
with a 9 noded quadrilateral element. What was
dominant, the right hand side formation {routine
p3formrhs), is now an order of magnitude smaller
in relative importance.

ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, SI: CEM & HPC

Forms of profile like these are very atfractive
from the point of view of optimisation, with the
main computational cost so localised, such that
minor changes can provide significant gains. The
routine ipecnsq9 for example, comprises only some
~200 lines of code, some 10 of which in tum
account for the vast majority of ipecnsq? time, in
a package of ~14,000 lines.

2.4 Coding modifications

Modern optimising compilers themselves perform
a variety of optimisations to make the code nm
faster. The level of optimisation which results in
the best performance varies from program to
program, and changing this compilation option
can often result in run-time improvements.
However, if the algorithm is poorly organised,
any amount of optimisation is unlikely to result
in efficient code.

The profile of the modified code shows that the
majority of the time is spent in the non-self
element integration routine. This routine
integrates from a field node over on element by
performing the following summations:

P-3ITTsEn) 0

4 4z
L@ G [
R &R o Da:

These summations are over respectively the 9
spatial shape functions S , the three temporal
shape functions T, and the two sets of Gaussian
integration locations for the two dimensional
surface integral.

One obvious and classical optimisation
performed by compilers is to move expressions
which are 'loop invariant’ outside of the loop:

DODSON etal: OPTIMISATION AND COMPUTATION IN INTEGRAL EQUATION SCATTERING ANALYSES 135

(a) Original Code

dI=1, N
do J=1, M
A(J,I) = A(J, I}y + B(I) *C+D
*E
end do
end do

(b) Optimised Version

tamp =D * E
doI =1, N
tampl = temp + B(I} * C
doJ =1, M
AT, D) = A(TJ,I) + templ
end do
ernd do

For example, in (4) all the terms (except &) in
the above expression are dependent on Gauss
point locations g, and g,. Only 5, is dependent

on o and only T and 7;3 on f. Therefore, we can
rewrite (1) in a slightly different form as

n ’ 1
o = 22 [APE @0, 25)
9 492

T(t) Tp(1)
2 R * ot ;Sa(éq,,nz)

B

(with 1/R itself actually evaluated outside the
sumumation, but this becomes cumbersome to show
algebraically). For simple expressions most
compilers will perform this optimisation
automatically, and (we at least) commonly write
code to reflect the most natural form of the
algebra, assuming that the compiler will
optimise later. However, for more complicated
expressions such as (4) we have found it is much
more effective to separate the terms by hand.

Another and often more important reason to
breakdown each term into its dependencies is to
determine the loop ordering. This is relevant in

optimising memory references. For multi-
dimensional arrays in FORTRAN, iterating the
first subscript in a loop gives fastest memory
access, with unit stride (sequential assessing of
adjacent memory locations) optimising benefit
gained from the cache. Therefore, we order the
dimensions of our arrays according to the loop
ordering in the routine which dominates the run-
time. This means if an array requires (Gauss
point, B,@) subscripts we then order the
subscripts A(c, f.9,,9,) if optimisation requires
the loops to be ordered as shown in (2). It is a
farsighted developer who can foresee the details
of loop ordering of dominant-cost routines at the
early stage at which data structures are
specified, and such optimisations can then
require considerable retrospective book-keeping
code modifications. This provides another strong
incentive to confine them to truly costly code
portions.

RISC workstations, such as the DEC alpha, can
perform multiple instructions per clock cycle and
can pipeline operations. This can allow further
optimisations to be made. A classic example is
the unrolling of loops to allow calculations from
different iterations to be executed together.

These optimisations are well known and can be
applied to a number of codes across platforms.
Any tuning of a program will have to invelve a
combination of optimisations. For example,
unrolling of loops, use of temporary scalars and so
on. These slight changes to the code can result in
the compiler interpreting the code differently.
Some optimisations will be general, while others
will work best on certain platforms. Clearly,
there is a trade-off between run-time gained in
optimising a code and time spent performing the
optimisations. However, knowledge of the
concepts of compiler optimisations can help in
producing fast code and if the majority of the run-
time is spent in a few lines of code, optimisation
can be quick and effective.

2.5 Results of optimisations

In this section we present the results obtained by
the optimisations discussed above. All

136

optimisations were made on the non-self
integration routine ipecnsq9. Relative timings for
an entire nm using the modified algorithm are
shown in Table 1.

TABLE 1
Relative CPU time for two different NASA
Almond meshes with different code

optimisations.

Code Options 1,202 5,282

{see key for code descriptions) Nodes Nodes

1. Qriginal code 2.536 3.661
2. Unit stride in inner loop array 1.585 2.070
3. Optimum compilation level 1.526 2.034
4. Loop invariant calculations 1.136 1.130

removed

5. Inner loop unrolled 1.000 1.000

1. Original ipecnsq® compiled with the default
optimisation level (-O4).

2. As 1, with the subscript ordering of the array which
holds the integration weights modified for unit stride
in the inner loop of the integration routine.

3. As?2, with a compilation level which should provide
fast run-time (-O5 -fast)

4. As 3, with loop invariant calculations of § and «
terms manually removed from the inner loop.

5. As 4, with inner loop (3 x 3 matrix scalar multiply)
unirolled manually

This table shows clearly the benefits of
progressive code optimisations; approaching a
factor of four on the larger problem. In all cases
only a few lines of the routine where altered. The
most beneficial of all the optimisations was
modification of the array in the inner loop to use
unit stride lengths. The benefits of the
optimisation increase with problem size, as an
increasing fraction of total cost is incurred in the
subject routine.

ACES JOURNAL, VOL. 13, NO, 2, JULY 1998, 5t: CEM & HPC

3. Pre- and post processing

Mesh generation is performed using commercially
available CAD packages, primarily MacNeal
Schwendler's Patran, and SDRC's Ideas. In both
cases, the prime use of the CAD suite is for
mechanical design, but the capabilities they
offer are well suited to electromagnetic
modelling. The families of elements we employ,
such as 8 and 9 noded quadratic quadrilaterals,
and 6 noded quadratic triangles, are supported as
a matter of course. Facilities such as automatic
mapped and paved mesh generation, mesh
seeding, and local mesh refinement are of
considerable use. Display of results is done in
much the same way, with (say) the time
dependent vector surface field fed back into the
CAD package.

However, much as some optimisation issues only
arise on large problems, various additional
difficulties arise in the pre- and post-processing
for large problems.

Some of the surface meshes we have generated
approach 100,000 nodes in size. Since such CAD
packages are primarily designed to generate
three dimensional meshes for finite element
stress analysis, such mesh sizes are well within
their capability. They nonetheless require quite
powerful workstations to manipulate and
display them.

With quadratic modelling in both time and
space, a rational (normalised) timestep would be
equal to the largest nodal separation, and this is
the criterion we would generally employ m
modest sizes of problem. However, it became
clear that on large bodies, it was common to
generate (and indeed difficult not to generate)
meshes with a very small number of elements
rather larger than say 1/10 of a wavelength, or
whatever nominal target the analyst had
intended. The automated timestep selection was
modified to examine the profile of the nodal
separations, and to select a timestep
corresponding to typically the 95th percentile
nodal separation. Whilst a handful of percent of
elements with perhaps double the intended

nodal separations will not degrade the entire
calculation to any significant extent, a timestep
based on this would do so.

Sheer size of the results is also a problem. Using
the conventional IETD algorithm for a 25
wavelength almond, for the ~3 transits
necessary, generates an (ASCII} surface field
history comprising some 1.3 Gb. Manipulation of
files of this size is cumbersome, to say the least,
and getting a CAD package to read, manipulate
and display it is of itself a major computational
task. One major practical by-product of the
modified algorithm is that the results files,
containing as they do the history only for the
relatively brief active periods, are much
smaller. The same 25 wavelength almond, for
example, analysed thus generates a much more
manageable result file of only 74 Mb.

Similar difficulties arise in calculation of the
res. To do this efficiently requires that the
surface result be stored in core. For the modified
algorithm this is straightforward. For the
conventional approach in the 25 wavelength case
rcs calculation using the 1.3 Gb (ASCII) file
would require about 1 Gb of memory.

4. Example results
4.1 NASA almonds

We will show some example results and timings
for analysis of multi-wavelength NASA
almonds.

Meshes comprising from 2,962 to 41,266 nodes
were employed, each suitable for analysing
(down to) a particular pulse width, and the
extraction via fourier transform of results up to
some particular frequency. Head or rear-on
illumination was employed, but symmetry was
not exploited.

In figures 3(a) and 3(b) are shown VV rcs
calculations over a wide frequency range, with
the almond varying from 1 to ~25 wavelengths
long. The frequency range over which each mesh
was employed is indicated on the figures. Also
indicated on the figure are results computed

DODSON et al: OPTIMISATION AND COMPUTATION IN INTEGRAL EQUATION SCATTERING ANALYSES 137

elsewhere”™®" and measured results’, extracted

by manual measurement from the published
graphs. (This latter is practically a difficult
process, and there is additional uncertainty
introduced by this.) As is seen, the meodified
algorithm generally computes results in good
agreement with the experiments and other
computations, with reasonable consistency
between meshes.

Figures 4 (a), (b) and {c) show harmoenic surface
fields, extracted via fourier transform, at
different frequencies. As the frequency increases,
the fields on the downstream, shadowed portion
of the body are falling noticeably, as the regime
where optical methods become applicable is
approached. [These are colour figures; please
visit
www.me.ic.ac.uk/mechanics/CWP/CWPF_public
ations.himl or
www.emclab.umr.edu/aces/acesjrnl.htmito view]

With the CAD packages employed it is
straightforward to construct and mesh a 'cutting
plane’, for the display of near field results. This
is done in figure 5, for a fourier transform at a
frequency corresponding to the almond being 25
wavelengths long. Near field evaluation was
itself a sizeable computation, with 60,000
locations defined in the cuiting plane, from each
of which integration over the ~41,000 node body
had to be performed, taking some 24 hours on a
Dec alpha workstation. The near field results
show clearly the rearwards shedding of the
field, accounting for the low backscattered rcs.

[This is a colour figure; please visit
www.me.ic.ac.uk/mechanics/CWP/CWP _public
ations.html or
www.emclab.umr.edu/aces/acesjrnl.htmlito view]

As an example of timings, the 25 wavelength case
took the equivalent of 2 1/4 hours on a 512
processor Cray T3D. Table 2 shows normalised
timings for the various almond cases. Times are
characterised by mumbers of integrations (as seen
earlier, by far the dominant cost), to eliminate
inter-machine differences, and the table gives
times relative the that for the 2962 case. The

138

size in wavelengths associated with each mesh
is the largest which can be extracted with
consistent criteria regarding discretisation and
timestep.

The 'scaling’ shown is the power of frequency
relating the time for the size in question to the
next size smaller. Normal IETD cost scaling is
with frequency to the fifth power. As is seen, in
all cases the scaling is below 4, and it is falling
as larger cases are considered. A knowledge of
how many integrations were performed allows
the cost relative to the conventional case to be
accurately assessed; taking the 25 wavelength
case as an example, the factor by which costs are
lower is about 50.

TABLE 2. Relative timing for various NASA
Almonds (meshes / lengths in wavelengths).

Nodes | w/l Tip on Tail on

Time | Scaling | Time| Scaling

2,962 6.9 1.0 1.0

5,282 9.2 3.1 385 | 29 3.73

10,866 | 13.2 | 11.9 3.77 |11.8] 3.85

21,522 | 185 | 38.7 346 | 427 3.97

41,266 | 256 | 11111 3.24 [1249] 3.30

4.2 Multiple bodies

One advantage of integral methods is the absence
of any need to discretise the free space between
different scatterers. A simple example is a
random assembly of 10 small spheres, each 2 units
in diameter, occupying a circumscribing box of
side ~100 units. These were illuminated with a
pulse making the 'box' and individual spheres
respectively about 25 and 1/2 wavelengths in size
in terms of the extractable frequency.

Figure 6 shows conventional and modified IETD
results for the surface field at an arbitrarily

ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, 8I: CEM & HPC

selected node on one sphere. Obviously there is ro
analytical result to compare this with, but the
modified and conventional approaches are both
seen to predict very similar fields. As the results
indicate, any one sphere is essentially quiescent
much of the time, awaiting the arrival of some
reflected wave from elsewhere. The major saving
of the modified approach in this case, which is
by a factor of about 32 here, arises because no
nugatory calculations are performed during this
wait.

Figure 7 shows a larger version of a similar test
problem, with now 100 spheres, and the box now
about 250 wavelengths in side, with a total of
~10,000 nodes. The modified algorithm needed
~70 Mb of memory, and took ~48 hours on a
workstation. This size of problem could not be nmn
by us with the conventional IETD approach. The
field history alone would have required about 1
Gb of memory, and the nmn would have taken
some 720 times longer. The surface field at the
three locations indicated in figure 7 is shown in

figure 8.

5. Conclusions

Efficient algorithms, coupled with use of large
parallel machines, and appropriate
optimisation of code to suit large problems and
large machines, have been shown together to
make significant reductions in the computational
cost of large scattering problems. This has been
demonstrated by analysis of much larger bodies
than has been reporied previously using time
dormain integral methods.

References

1. Miller, EK. A selective survey of
computational electromagnetics. IEEE
Transactions on Antennas and Propagation

36:pp1281-1305, (1988).

2. Gomez Martin, R, Salinas, A. and Rubic
Bretones, A. Time-Domain Integral Equation

Methods For Transient Analysis. [EEE Antennas
and Propagation Magazine 34(3):pp15-22, (1992).

3. Poggio, A.]. and Miller, EK. Integral Equation
Methods of Three-Dimensional Scattering
Problems. In: Computer Technigques for
Electromagnetics, edited by Mittra, R. Oxford:
Pergamon Press, 1973, p. 159-265.

4. Bluck, M.]. and Walker, S.P. Time Domain BIE

Analysis of Large Three Dimensional

Electromagnetic Scattering Problems. IEEE
Transactions on Antennas and Propagation
45:pp894-901, (1997).

5. Walker, S.P. Scattering analysis via time
domain integral equations; methods to reduce the
scaling of costs with frequency. IEEE Antennas
and Propagation Magazine 39:pp13-20, (1997).

6. Dodson, S.J., Walker, S.P. and Bluck, MJ.
Costs and cost scalings in time domain integral
equation analysis of electromagnetic scattering.
IEEE Antennas and Propagation Magazine
(submitted):(1997).

7. Woo, A.C, Wang, H.T.G. and Schuh, M.
Benchmark radar targets for the validation of
computational electromagnetics programs. IEEE
Antennas and Propagation Magazine 35:pp84-89,
{1993).

8. Davidson, D.B. Parallel matrix solvers for
moment method codes for MIMD computers.
Applied Computational Electromagnetics
Society Journal 8:ppl144-175, (1993).

9. Cwik, T. Parallel decompesition methods for
the solution of electromagnetic scattering
problems. Electromagnetics 12:pp343-357, (1992).

10. Walker, S.P. and Leung, C.Y. Parallel
computation of integral equation methods for
three dimensional transient wave propagation.
Communications in Numerical Methods in
Engineering 11:pp515-524, (1995).

11. Walker, S.P. and Leung, C.Y. Parallel
computation of time domain integral equation
analyses of electromagnetic scattering and res.
IEEE Transactions on Antennas and Propagation
45:pp614-619, (1997).

DODSON et al: OPTIMISATION AND COMPUTATION IN INTEGRAL EQUATION SCATTERING ANALYSES 138

12. Dodson, S.].,, Walker, S.P. and Bluck, M.].
Parallelisation issues for high speed time
domain integral equation analysis. Parallel
Computing submitted:(1997).

13. Volakis, J.L. Carlos-3D; A general purpose
three dimensional method of moments scattering
code. IEEE Antennas and Propagation Magazine
35:(1993).

14. Miller, EM, Andersh, D.J and Terzouli, A.].Jr
Target facetisation level and the effect an
Xpatch predictions. 9th Annual Rev Appl Comp
Electromagnetics pp610-617, (1993).

140 ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, Sl: CEM & HPC

Function %CPU Cycles 0% 50% 100%
pecformrhs_ 90.11 J :
amatmult_ 8.61 ___J :
pecrdmat_ 0.78
main_ 0.27
pecsoleg_ 0.21
incident_ 0.02
fdset_ 0.00
rwl008_ 0.00
rwi004_ 0.00
rwl005_ 0.00
Figurel

Profile for the conventional algorithm, 1202 node
problem, matrix stored in-core. The bar chart
shows the percentage of the CPU cycles spent in
different subroutines. The dominant routine
‘pecformrhs_' multiplies the matrix coefficients
by historical field values to form the right hand
side vector. The routine 'amatmult ' performs
the iterative solution of the sparse left hand side

[A] matrix.
Function %CPU Cycles 0% 50% 100%
ipecnsg9_ 81.00] :
p3formrhs_ 6.49 :
gethist_ 4.33
dsadl3_ 3.05
ipecsq9_ 1.50
chooseeles_ 1.14
amatfill_ 0.81
ipec_ 0.59
main_ 0.56
djacnor_ 0.14
Figure 2

Profile for the modified approach, 1202 node
problem, generating matrix coefficients as and
when needed. The first five routines (ipecnsq9_ to
ipecsq9_) form the matrix coefficients and
multiply them by historical field values. The
dominant routine, ipecnsq9_, forms the matrix
coefficients for a non-self node / element pair.
The optimisations shown in table 1 were
performed on only this routine.

141

DODSON st al: OPTIMISATION AND COMPUTATION IN INTEGRAL EQUATION SCATTERING ANALYSES

ydei8 sy; yo Lyue ayy saoxdwr oy psusyoys
are soysowr awos 1oJ sadues Louanbar "sased yjoq
ur (z+) peoniaa st uonesuejod g ‘uondaap (uo
-pua) x+ aw ur vogeSedoid (q) pue ‘voncanp (uo
-dy) x- a3 ur vonyededoid sjuasardar (e) -puowre
VSV N .9€6'6 9\ 10] 9Z1sApoq snsiaa 1a)jeasyoeg

¢ am3iy
(sy18uaaaem) ozrskpog (sy18usjaaem) sziskpog
oSz 00c 0'¢t 001 1Y 00 o0z 19| 001 o¢ 00
L e AL N A sy e — 9P T U L T 00L-
1 0°$9-
s 1 0Fb-

S3pON Q9Z1¥ - |

SIPON TCS1T ——— 4 009

SIPON 99801 - — — y

| SOPON T8T§ - .

SOPON 7967 ——— 7 0cr I
pandwio) ¥ 1088
PoINSEI o .

®]
9]
by 4 00p- nnw 1 0°0¢-
22]
S
4 0°Sp-
4 08¢~
SOPON 99Z1F -
L ¥ w@ﬁcz NNW.~N - 3 OOW:
v SIPON 99801 - — —
] SOpON T8ZE -
a v 1 09" SOPON 7967 ——
panduioy v 14 0'sg-
poInseaN @
i " 1 i 1 1 | - . i n N O.VM: | " n 1 " 1 N 1 O.OMI

(sgp) SOY

142

ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, SI: CEM & HPC

MSCAPATRAN Varn £ 2 70 a0 171 48 22
FRINGE. Hamonk, k= 0., ' Fl-umplas, surince currant [VEG MAT) Hate 1500l

MSC/PATRAN Vearson 6.2 30-Jul-87 12:49:08
FRINGE: Harmonc, ke 0., - FO-Compiex, surtace current (VEC-MAG) -Hebe 1.500 |

g

MSC/PATRAN Varson 8.2 30-Jul-87 13:50:45
FRINGE: Hammonic, ke .. : FD-Complex. surtace current [VEC-MAG) -Habs 1500

=

pvas

Figures 4(a), (b) and (c)

Surface |H| extracted at (a) 5.67GHz, (b)
14.9GHz and (c) 30.4GHz, on the NASA almond.
Propagation is #x (broad end on), E vertical.
Electrical lengths 4.77, 12.5 and 25.7 wavelengths
respectively.

[These are colour figures; please visit
www.me.ic.ac.uk/mechanics/CWP/CWP_public
ations.html or
www.emclab.umr.edu/aces/acesjrnl.htmlto view]

143

DODSON et al: OPTIMISATION AND COMPUTATION IN INTEGRAL EQUATION SCATTERING ANALYSES

90

80

0l

¥l

91

0¢

[Mata 03jHIJY [UAISIIB/SIDV/ NP AN V] IWS MM
40 HY'SUOLIY

a11qnd~ dM D/ dMD/SIIUBYIIW/YN I D1 JUL" MR
s asvajd ‘2an8yf anojoo v sr spyL]

"$9POU £60'78
ysauwr pya1y Jeau ay) pue ‘sapou 997’ 1§ sesuduiod
\SauI adeINs aY] 'ased yyBusesem £ Gz ‘puowr|e

VSVN @4 J0} |H| Py Jedu pue aoejmg

Ggoam3uy

ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, SI: CEM & HPC

144
05 T T r T ' T T T
» Modified Approach
------------ Conventional
0.0 ‘&‘h P PO S -
¢ 5.0 A B e
%]
z 05 % .
* g
1.0 | .
100 .
!
i -15.0 ; | L | . i . : .
0 200 400 600 800 1000
Timestep Nurmber
-1.5 L 1) ! . L . ! .
0 200 400 600 800 1000
Timestep Number
Figure 6

y-component of surface H field versus timestep at
anode on the array of 10 randomly positioned 98
nede spheres, for the conventional and modified
approaches. The inset shows this
logarithmically.

145

DODSON etals OPTIMISATION AND COMPUTATION IN INTEGRAL EQUATION SCATTERING ANALYSES

0001 .

‘Aerie 3 jo jxed e Jo dn-asopd
e smoys josur agp Ajuo sasodmd asanensni
10§ s1 sazeyds oy} punore umelp xoq ayJ, -sasayds
apou gg pauomsod Apwopuer g jo Aexre ayj

£ an3yg

0001

0601

_ 8GOS 9poN

T86L SPON

@/

T56T PPON

148 ACES JOURNAL, VOL. 13, NG. 2, JULY 1998, St: CEM & HPC

0.5 1 | w T

0.0

W
»
v
[
®
Dﬂ——ﬂt‘zﬂ-pnm

¥
-;\D‘.

S S N SO - SEER

o>

s—s Node 2952
_1-0 | *—— NOde 4418
o - - Node 5098

= W, | | o it n B 8

0 1000 2000 3000
Timestep Number

-1.5

Figure 8

y-component of surface H field versus timestep at
3 nodes an the array of 101 randomly positioned
spheres shown in figure 7. Propagation is in +x,
and E polarisation is +z. The nodes’ locations are
indicated in figure 7.

