
 
 

Abstract—We presented a novel method for the accurate and 
efficient computation of the reflection and transmission coefficients 
of waveguide discontinuities within planar photonic crystals (PhCs). 
This method proposes a novel kind of field source that optimally 
excites the dominant waveguide mode and mimics procedures that 
are typically used for the measurement of reflection coefficients. 
This technique may be applied to arbitrary field simulators working 
in the frequency domain. The presented reflection compensation 
scheme is elucidated along the Method of Auxiliary Sources (MAS). 
In order to verify the results, we compare two test cases with the 
rigorous connection technique provided by the Multiple Multipole 
Method (MMP).  

Indexing Terms— method of auxiliary sources (MAS), multiple 
multipole method (MMP), photonic crystals (PhCs), waveguide 
discontinuities, boundary conditions. 

I. INTRODUCTION 

HOTONIC crystals (PhCs) have first been proposed as an 
optical counterpart to semiconductor crystals [1], i.e., in 

PhCs, the photon plays the role of the electron in semiconductors. 
In nature, PhCs are rarely observed, but nanotechnology allows 
one to fabricate PhCs as a novel kind of meta-materials. 
Although it is nice to know that perfect PhCs may exhibit band 
gaps, i.e., frequency ranges that do not allow electromagnetic 
waves to penetrate the crystal, this pure meta-material aspect 
does not sufficiently explain the current interest in PhCs. In fact, 
doping makes semiconductors attractive and virtually the same 
holds for PhCs. Despite of this analogy, doping of PhCs is pretty 
different from the semiconductor doping because the atoms in 
semiconductors are compared to rather large macroscopic cells 
of the PhCs. Nanotechnology may allow one to modify any cell 
of a PhC quite precisely. By introducing linear defects (line of 
vacancies or substitutional defects with different size or material) 
into the lattice structure, one can easily obtain waveguide 
channels in PhCs [2], [3]. One of the main drawbacks of 
standard waveguides for integrated optics is the fact that the 
bending radius must be large compared to the wavelength in 
order to avoid bending loss. This makes standard structures of 

integrated optics large compared to the wavelength. The PhC 
concept allows one to obtain sharp waveguide bends virtually 
without radiation loss and with zero reflection for some distinct 
frequency [4]-[6] or even for a wide frequency range [7], when 
some optimization procedure is subsequently added. For the 
analysis of PhC waveguide bends and PhC waveguide 
discontinuities, numerical techniques are required that allow one 
to accurately compute the S-parameters, i.e., the transmission 
and reflection coefficients at the PhC’s waveguide ports. Up to 
now, a variety of numerical techniques have been proposed [5], 
[8]-[10].  
During the investigation of numerous models for waveguide 
discontinuities fast and efficient methods are of great interest. 
This especially holds when the optimization of a whole PhC 
device is required, such as an achromatic waveguide bend with 
almost zero reflection over a wide frequency range within the 
photonic bandgap (PBG) [7]. It has been observed that such 
optimizations may lead to very critical cells in a PhC [7] that 
require a highly accurate numerical model. Thus an efficient 
but highly accurate method is required.  
After a short outline of the standard PhC modeling methods and a 
short introduction to the MMP-connection approach, we present 
three new procedures 1) for the excitation of the fundamental 
waveguide modes, 2) for the reflections compensation at the 
output ports, and 3) for the S-parameters computation. Together 
with the Method of Auxiliary Sources (MAS) [11] we can apply 
these procedures to the efficient computation of waveguide 
discontinuities in PhCs. Comparisons with the rigorous MMP-
connection approach demonstrate that the results are sufficiently 
accurate for being used within optimization procedures. 

II. STANDARD PHC MODELING PROCEDURES 

In order to obtain a finite-size model for PhC waveguide 
devices most of the standard procedures truncate the planar 
PhC structure at some distance D from the discontinuity. After 
this, some fictitious excitation is introduced in order to excite 
an incident mode at the input port (see Fig. 1). Typically, plane 
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waves, monopoles, or dipoles are introduced as fictitious 
excitations. The proper positioning of the fictitious excitation 
is crucial because it often happens that a significant amount of 
the excitation energy does not couple into the desired wave-
guide mode. Furthermore, the fictitious excitation may also 
excite higher order or evanescent modes or even additional modes 
in the output ports. These undesired modes in the output ports 
can easily be suppressed by using appropriate excitations, i.e. a 
suitably confined field at the input port. Suppressing the 
influence of evanescent modes is much more delicate. The 
distance D between the PhC waveguide port and the waveguide 
discontinuity is limited only by the decay of the evanescent 
modes produced by the discontinuity itself. Since D may extend 
to large values, the truncated model may also become rather 
bulky, which leads to long computation times. 
An even more difficult problem is imposed by the residual 
reflections at the output ports. Generally speaking the interface 
between discrete and continuous translation symmetry (as 
present in any finite PhC structure) imposes a discontinuity, 
which causes a bunch of virtually reflected waves that travel 
back to the discontinuity. Such multiple reflections strongly 
interfere with a proper estimation of e.g. the S-parameters. The 
pedestrian way to avoid such undesired reflections at the output 
ports uses absorbing boundary conditions along the truncation 
lines (i.e. the fictitious boundary in the Fig. 1). Especially for 
time-domain methods like FDTD [14], truncation of the infinite 
space is very straightforward. Thus, many techniques have 
been developed for absorbing outgoing waves on such 
boundaries, i.e., at the truncation lines of the finite numerical 
model. Currently the best technique is PML [15]. Recalling 
now the special nature of the interface at the PhC boundary 
where spatial symmetry breaking occurs: Such discontinuity is 
nearly intractable when using conventional boundary conditions. 
Therefore, these absorption techniques become very sophisticated, 
although perfect absorption without any spurious waves is 
practically impossible.  
A laborious way to circumvent the impact of spurious 
reflections in (time-domain) models relies on time gating, where 
the distance D is increased accordingly to provide a temporal 
separation between all emergent signal pulses. As a result, such 
models are either not sufficiently accurate or very time-consuming. 
A well-known alternative to the truncated models with fictitious 

excitation and absorbing boundary conditions is offered by the 
supercell method that approximates the structure by a periodically 
continued one [10], [16], [17]. A simple example is given by the 
W1 defect waveguide (see Fig. 2 for example, where a sequence of 
point defects is forming the line-defect). The periodic 
continuation of a waveguide discontinuity is only feasible for 
relatively simple cases. Furthermore, it is hard to quantify the 
errors introduced by the periodic continuation, and finally, the 
supercell method is not efficient at all. 

III. MMP-CONNECTION PROCEDURE 

The most rigorous method for handling waveguide discontinuities 
in an almost analytic way uses a fictitious separation between 
the waveguide ports (see Fig. 3) and the area that includes 
discontinuity [10]. As outlined before along the truncation 
method, the fictitious separation lines are placed at some 
distance D from the discontinuity. If D gets large enough, the 
evanescent wave amplitude may vanish at the waveguide ports and 
the fields therein are fully described by the corresponding 
waveguide’s set of guided modes. Along the fictitious separation 
lines, the modal expansions in the different waveguides are 
matched with the fields that are excited by the discontinuity 
region. This is essentially the same procedure as carried out within 
the standard mode matching technique [18], [19] for the 
computation of waveguide discontinuities in the microwave 
regime.  
It is worth mentioning that the description of conventional 
waveguides assumes cylindrical symmetry along the z-axis. 
The longitudinal dependence of the electromagnetic field is 
then simply described according to 

 ( ) ( ) ( ){ }1, , i z t
T TF r z t Re F r e γ ω−=

G GG G
  (1) 

where a harmonic time-dependence of the form  

 i te− ⋅ ⋅ω  (2) 

 

Fig. 1: Schematic treatment of a waveguide discontinuity. The excitation, 
reflection and transmission of apparent electromagnetic waves are indicated 
by the corresponding arrows.  

 

Fig. 2: The supercell approach for a W1 (one line of vacancies) defect wave-
guide (left). The supercell is defined by its surrounding periodic boundary 
conditions (right).  
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has been assumed, and the propagation constant γ fully describes 
the propagation in z-direction. Along the direction of 
propagation, PhC defect waveguides are periodic rather than 
invariant. Since this is a lower symmetry, the description of the 
field becomes more complicated. When x is assumed as the 
direction of the PhC waveguide and dx stands for the periodicity 
of the PhC in this direction, we have for each mode 

 ( ) ( ) x xiC d
x xF r e d F r e+ =

G GG G G
  (3) 

where Cx is a complex number that plays the role of the 
propagation constant. Note that (3) only relates the electro-
magnetic field at one boundary of the PhC waveguide’s unit cell to 
the field distribution at the opposite boundary (which is separated 
from the first one by dx). Thus, Cx does not describe the 
propagation of the field within the unit cell. Furthermore, if the 
defect waveguide is confined by two PhC layers that have a finite 
thickness, in-plane radiation leakage inevitably occurs. This 
renders Cx to become complex valued even when no material 
losses are present. The resulting eigenmode analysis gets even 
more demanding [20], [21], but it does not prevent one from 
adapting the mode matching technique to PhC waveguides. 
The Multiple Multipole Program (MMP) [21] is a very flexible, 

semi-analytic boundary method that allows one to accurately and 
efficiently compute not only classical waveguide modes but also 
the eigenmodes of a PhC waveguide using either the supercell 
approach or a direct approach that includes radiation leakage 
as well [20]. In addition the MMP implementation in MaX-1 
[22] contains a so-called connection feature. Within this 
description the data of previously analyzed problem solutions 
(e.g. the eigenmodes of the PhC waveguide) may be packed 
into connections that are then introduced as new expansions 
into the subsequent model of the PhC waveguide discontinuity. 
This means that the MMP-connection procedure consists of two 
different steps: 1) the computation of all relevant modes in the PhC 
waveguide ports and 2) the computation of the PhC waveguide 
discontinuity using the modes given by the connections. The 
former requires the solution of an eigenvalue problem, whereas 
the latter essentially defines a simple scattering problem. 
The main advantages of the MMP-connection scheme are that 
arbitrary high accuracy and reliability can be reached because 
of its affinity to mode matching and to analytic procedures. It is 
important to know that the eigenvalue problem associated with 
PhC waveguide modes is theoretically demanding, but the 
resulting matrices set up by the eigenvalue problem are small 

 

Fig. 3: Schematic description of the MMP-connection procedure: The eigenvalue search is performed as a first step making use of the supercell approach. All 
information concerning the resulting eigenfield is contained within the set of the waveguide’s multipole expansions, which is then packed into a connection. The 
connection is introduced as a representation of the input (i.e. excitation, E), the reflected (R) and the transmitted (T) electromagnetic wave into the PhC device model. 
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because only the unit cell of the waveguide must be taken into 
account. The scattering model for the PhC discontinuity region is 
theoretically simpler, but numerically much more demanding 
because it often involves a larger PhC volume than the wave-
guide’s unit cell, leading to a relatively large matrix equation. 
Referring to the eigensolutions that are provided as connections 
we are now able to introduce perfect matching conditions for 
PhC waveguide terminations. This allows us to significantly 
reduce the size of the simulation domain, i.e., to decrease the 
distance D. Thus, the resulting MMP matrix becomes relatively 
small. Consequently not only high accuracy but also short 
computation times are obtained. Therefore, the procedure is 
very well suited for any kind of optimization scenario such as 
the successful optimization of achromatic PhC bends [7] and 
PhC diplexers [23]. 
The main drawback of the MMP-connection procedure lays in 
the fact that the computation of guided modes and its embedding 
into corresponding connections may become quite demanding. 
Therefore, only experienced users are able to perform such 
computations. In the following, we present an alternative 
technique that does not explicitly requires the PhC waveguide’s 
eigenmodes. For the sake of simplicity only the case of single 
mode PhC defect waveguides are treated hereafter. 

IV. IWGA SOURCES 

The alternative technique relies on the following procedure: 
Instead of solving an eigenvalue problem for the PhC 
waveguide’s eigenmodes, we now search for a simple, fictitious 
excitation that mimics the mode profile at the fictitious boundary 
which accounts for the waveguide termination. In order to 
emblematize this approach one has just to envision the 
reciprocal scenario as depicted in Fig. 4 where a radiation field 
is excited at the termination of a W1 defect waveguide. Just by 
time-reversing this radiation field one would already get a beam-
like excitation for the corresponding PhC waveguide mode. 
Even without knowing the proper radiation field as shown in 

Fig. 4 one may expect efficient waveguide mode excitation 
while introducing a fictitious but suitably parameterized beam 
source. First, Gaussian beams [24] may be applied here, but the 
implementation of an excitation basis that rests on Gaussian 
beams is still not very straightforward. Furthermore, using 
complex-origin multipoles [25] or monopoles becomes more 
natural in the framework of MMP or MAS whereas for the 
latter only monopoles (i.e., zero order multipoles) are applied 
(for TM polarization):  

 { } ( ) ( )0Im 1 ω
0 0

,  kR i t

z
E A e H kR e− −=   (4) 

 ( ) ( )( )22

0 0
( cos ) sinR x x i y y i= − + β + − + βA A ,  (5) 

 ( ) ( )2 2

0 0 0
cos sinR x i y i= + β + + βA A ,  (6) 

with H0
(1)(kR) being the zero order Hankel function of the first 

kind, A0e
–Im{kR0} is a complex normalizing factor, β stands for the 

angle of maximal radiation direction, x, y is the observation point, 
whereas x0, y0 defines the source location, ℓ the source half-widths, 
and for the R and R0 arguments the principal ones are taken. From 

Fig. 5 we see that e.g. the modulus of the radiation field Ez 
provided by the complex origin monopole already gives a good 
approximation of the fundamental mode at the waveguide 
termination. Even the scattering field (as given in Fig. 4) is well 
reproduced by Ez . Hence we call this kind of beam excitation 
the Imitating WaveGuide Apperture (IWGA) source. 
On one hand, finding an appropriate IWGA source is obviously 
much easier then finding the waveguide's eigenfields by solving a 
complex eigenvalue problem. On the other hand as the IWGA 
source may also excite some undesired evanescent modes, the 
distance D associated to the port must be extended compared to 
the MMP-connection approach where, in principle, evanescent 

 

 
 

Fig. 4: The Ez-field at a W1 defect waveguide termination. 

 

Fig. 5:  Intensity plot of Ez (left) and of the modulus of Ez (right) in the X-Y plane 
 x = [–6.0, 6.0]; y = [–20.5, 0.5]; x0 = y0 = 0.0;  

 k = 2.0; l = 3.0; β = 270°. 
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modes are still tractable. Even if the present version of the 
proposed technique yet lacks in handling multimode 
waveguides it is important to see that besides MAS the IWGA 
source method is also applicable to MMP and all the other 
frequency domain methods. It should even be possible to 
develop a time-domain version of this technique. 

V. REFLECTION EXTINCTION AT THE OUTPUT PORTS 

The IWGA concept essentially handles the excitation problem of 
the PhC discontinuity in a pragmatic and thus more efficient way 
than conventional techniques, but it does not solve the problem 
of the spurious back-reflections at the output ports. This problem 
is much more demanding. Note that absorbing layers can also be 
introduced for MMP and MAS but such techniques are difficult 
and inaccurate for large model sizes. As elucidated earlier the 
connection concept of MMP removes the reflection problem in a 
rather rigorous way, but it is difficult to handle. An interesting 
alternative is obtained from the following consideration.  
Given an incident wave, which is transmitted through the 
waveguide discontinuity and propagates towards one of the output 
ports. When this mode (which is assumed being fundamental after 
traveling a sufficient distance in the single-mode defect wave-
guide) hits the waveguide port (i.e., the boundary of the scattering 
model associated with the finite PhC structure), it is partially 
reflected and travels back to the discontinuity (where it is partially 
reflected again, and so forth). One can now treat the reflected wave 
at any output port exactly in the same way as the incident wave at 
the input port. This means one may excite this reflected wave just 
by setting an IWGA source at the corresponding output port. 
Assuming a finite PhC structure where a waveguide discontinuity 
is interconnected to N ports (one input, N–1 outputs), we consider 
N models consisting of the same scattering model with N different 
excitations, i.e., N IWGA sources in the N ports. This model is 
described by a matrix equation with N right hand sides  

( ) ( ) ( ){ }1 2  , ,  , ,  ..., ,inc inc N inc

AS z q q z q q z q q
A x E x y E x y E x y=   (7) 

where the matrix A is obtained from the numerical method that 
handles the discontinuity region, M(xq, yq) are the collocation 
points on the interface surface [21], nEz

inc(xq, yq) denotes the 
electric field of the n-th IWGA source (with unit amplitude) 
placed at the corresponding n-th port.  
As an illustrative example (that will be scrutinized later) we 
analyzed the 90° PhC waveguide bend depicted in Fig. 6 using 
the MAS [11] simulation code. A standard MAS matrix is 
obtained 1) when approximating the electromagnetic field in 
each domain by means of auxiliary sources (i.e., monopolar 
field expansions), 2) by enforcing simple point matching on the 
domain boundaries, and 3) making use of an appropriate Tikhonov 
regularization [26]. The MAS matrix equation (7) is then 
efficiently solved with LU decomposition techniques. Note 
that the excitation (i.e. the IWGA source) is contained in the 
right hand side of the MAS matrix equations. Since we have N 
IWGA sources, we also obtain N right hand sides. Using LU 
decomposition the system is solved simultaneously for all N 
right hand sides, i.e. for all waveguide excitations involved. 

The outcome of (7) therefore consists of N field solutions 
according to the N scattering problems (each having an identical 
geometry but different excitations). Any superposition of these N 
fields  

 
( ) ( ) ( )

( )

1 1 2 2

2
,total scat inc scat inc

z z z z z

N scat N inc

N z z

E x y E E a E E

a E E

= + + + +

+ +

…
   (8) 

is again a solution of the entire problem associated with a linear 
combination of the corresponding excitations. The linear 
parameters ai are then computed in such a way that the 
amplitude of the incident mode becomes unity whereas the N–1 
amplitudes of all reflected waves are forced to vanish. This sets 
up an additional simple and small system of N–1 equations 
with regard to the parametrized total field 

 ( ) ( )( )
0

0

/16

1 /16

/ 4 0
m

m

LN
total total

z m z m m
n L

E L i E L dL
+λ

= −λ

+ + λ =∑ ∫   (9) 

Where m = 1, 2,…,N and 2π/λ = h is the propagation constant 
in the waveguide arm, Lm indicates the centerline of the n-th 
channel, and L0

m is its midpoint. In fact (9) defines the matching 
condition for each PhC waveguide port considering any guided 
mode involved. Here we just used the spatial shift between real 
an imaginary part of any traveling wave to be a quarter of a 
wavelength, which is easily testable by direct substitution of 
such guided modes into (9). As a result, we obtain the field 
solution for the waveguide discontinuity but now without any 
reflections at the output ports 

 0( ) .total
z m mE L E const= =   

The reflection coefficient at the input port and the transmission 
coefficients for the output ports are computed mimicking the 
Standing Wave Ratio (SWR) measurement that is well-known 
from microwave techniques. Thus we define observation lines 
along the waveguides of the different ports where we compute 
the total field. Let E0

m denote the amplitude of the transmitted 
wave in each output port. The resulting error in fulfilling condition 
(9) can be determined as follows  

01
( ) .

m

total

m m m m

Lm

E L E dL
L

− = ∆∫  (10) 

The amplitudes of the incident and the reflected waves for the 
input port are determined according to the following standard 
procedure (for considerable input reflections) 

 

( ) ( )( )
( ) ( )( )

0 max min

0 max min

0 0

2 2

1

2

1

2

 ,  

inc total total

in in

reflect total total

in in

in in in

E E L E L

E E L E L

L L Lλ λ

= +

= −

∈ − +⎡ ⎤⎣ ⎦

 (11) 

where Lin stands for the input port’s centre line, and L0
in for its 

midpoint. Later it becomes adequate to normalize the electric 
field in the finite PhC according to E0

inc. For the output ports 
where the reflection is significantly lower, it is preferable to 
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determine the transmitted and reflected wave’s amplitudes 
using the relation given below 

 
( )

( )

0

0 0

1
 ,

1
.

m

m

transmit total

m z m m

Lm

reflected transmit total

m m z m m

Lm

E E L dL
L

E E E L dL
L

=

= −

∫

∫

 (12) 

It should be noted that the evanescent waves being excited at 
the waveguide discontinuity and at the waveguide ports as well 
may interfere with the proposed measurement procedure. The 
waveguide arms must therefore become sufficiently long 
resulting in a scattering model that is usually larger with respect 
to the MMP connection approach (but it’s still competing well 
against model sizes required for techniques using imperfect  
absorbing boundary conditions for the outgoing waves). 

In order to illustrate the procedure outlined before, we now 
consider two simple examples, namely a 90° PhC waveguide 
bend and a filtering T-junction, which have been previously 
analyzed along the MMP-connection approach [7], [23].  

VI. 90° BEND 

Our first test model is a 90° waveguide bend whereas the 
underlying 2D-PhC consists of dielectric rods arranged in a square 
lattice and embedded in air. The lattice data are as follows: the 
radius of each dielectric rod is r/a = 0.18 (with a = 1 µm being the 
lattice constant), and the rod’s dielectric constant is ε = 11.56. The 
normalized operation frequency is a/λ = 0.416. In Fig. 6 the gray 
rectangle outlines the truncation region of the MAS model. It 
contains a finite section of 199 rods. Since we know that the 
PhC structure has a complete band gap only for TM-waves, we 
only consider z-component of the electric field, where z is the 
direction of the cylinder axis. Without lack of generality this 
considerably simplifies the numerical model.  
The electomagnetic field inside each rod is now approximated 
by a set of M auxiliary sources, i.e., monopoles located on  
 
auxiliary lines around the rod. Since the rods are circular, it is 
reasonable to use a concentric circle as auxiliary line for each 
rod and to distribute the auxiliary sources uniformly on these 
circles. Similarly, we introduce a circular auxiliary line inside 
each rod and uniformly distribute M auxiliary sources for 
modeling the field outside the rods. Since we are considering 
the TM-polarization, all auxiliary sources are E-type monopoles 
with unit amplitude. Furthermore, we select M = 12 being equal 
for all rods because the rods have the same shape and size. 
Thus, we obtain a model with 199 × 2 × 12 = 4776 unknowns. 
These unknowns are then computed by a simple point matching 
or collocation method on each rod’s M = 12 uniformly distributed 
matching points by enforcing there two boundary conditions, 
namely the continuity for the longitudinal component of the 
electric field and for the tangential component of the magnetic 
respectively. As in conventional scattering problems the structure 
is illuminated by a well-defined incident wave. In our case the 
IWGA sources are located in the center of both input and 

output ports as shown in Fig. 6. Thus, we obtain a linear system 
of 4776 equations with 4776 unknowns and two right hand 
sides. The computation time for this problem on an Athlon 
1200 PC is approximately 180 seconds when using the LAPACK 
LU-decomposition routine for the matrix solution. 
 

Fig. 6: MAS simulation of the 90о W1 defect waveguide bend. The gray 
rectangle outlines the truncation boundary of the finite PhC model. The 
underlying PhC consists of a square lattice with a/λ = 0.416, ε = 11.56, 
and r/a = 0.18.  

(i) MAS simulation; relative error of E and H: 0.3%; 
 Transmission T1 = 91.15%; Reflection Rin = 8.58%. 

(ii) MMP simulation; relative error of E and H: 0.45%;  
 Transmission T1 = 91.26%; Reflection Rin = = 8.56%. 

IWGA source feeding 

Balancing IWGA source 

Lin 

L1 

Fig. 7: Electric field Ez along the line L1. At the low SWR value in the 
waveguide arm the Lsh-value (i.e. the phase-shift between Re{Ez} and 
Im{Ez}) determine the propagation coefficient: h = 2π /(4Lsh).  
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Fig. 9: Poynting vector field distribution within the 90о W1 defect wave-
guide bend achieved with MMP. The model data are the same as in Fig. 6. 

 
As soon as the linear system for the two right hand sides is 

solved the superposition of the corresponding two solutions is 
computed in such a way that the reflected wave at e.g. the output 
port (or the reflected field in the horizontal arm) vanishes. 
Fig. 7 shows the resulting dependence of the electric field along 
the observation line L1 in the center of the horizontal arm (as 
defined in Fig. 6). It is clearly visible, that this function shows 
some oscillatory behavior (instead of being constant) due to 
inaccuracies in the matching procedure at the output port. It is 
reasonable to assume that the amplitude of the transmitted wave 
lays somewhere between the maximum and minimum of the 
oscillating envelope. We therefore define power transmission 
according to the mean ⎜ Ez ⎜ value along L1: 

( )

( )

01 1 1

1

2

1 01

1
 0.9547;

100% 91.15% , 

m

transmit total

z

L

transmit

E E L dL
L

T E

= =

= =

∫  (13) 

Furthermore, the mean ⎜ Ez ⎜ deviation form the average value 
(i.e. the difference between the maximum and minimum value) 

 ( )1 01 1 1

1

1
0.01

m

transmit total

z

L

E E L dL
L

∆ = − =∫  (14) 

gives us some information about the accuracy of reflection 
suppression in the output ports with regard to our MAS 
simulation scenario. Fig. 8 shows the behavior of the electric 
field in the vertical arm, i.e. near the input port. As one can see 
this mimics a nice standing wave pattern from which one can not 
only obtain the reflection coefficient but also an approximation of 
the propagation constant, or more precisely of the guided mode’s 

characteristic constant C as given e.g. in equation (3). It is easy 
to understand that C is complex valued due to the inplane 
radiation leakage [20] of the waveguide but since these losses 
are usually extremely small C becomes almost real. 

In addition to the error estimated for the reflection suppression, 
we can also consider energy conservation. Neglecting radiation 
leakage we obtain T1 + Rin  ≈ 91.15% + 8.58% = 99.73%. These 
internal error checks already show an acceptable accuracy of 
the proposed MAS model. In order to obtain even more 
information on the quality, we compare these results with those 
of a model based on MMP-connections. The comparison is 

  

a/λ 

100

 80 

 60 

 40 

 20 

   0 
0.32 0.34 0.36 0.39 0.41 0.43 

Rin, T1,% 

Rin 

T1 

Fig. 10: Comparison of the MAS (circles) and MMP (dashed lines) model 
for a 90о W1 defect wave-guide bend as a function of the normalized 
frequency a/λ. The discrepancy is less than 1%.  

 Lin 

 Ez(Lin) 
1.32 

0.81 

0.30 
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-1.23 
0.00 1.70 3.40 5.10 6.80 8.50 

|Ez|min 
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Im{Ez} 
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0 
λ 

Fig. 8: Electric field along the line Lin in input port. The propagation 
constant is h = 2π /λ = 2.068 and the amplitude of the reflected wave 
E0

reflect = ½(⎜ Ez ⎜max – ⎜ Ez ⎜min) = 0.2928; thus, power reflection becomes 
Rin = (E0

reflect)2100% = 8.58%. 
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visualized in Fig. 10. 
As one can see from e.g. Fig. 6 and Fig. 9, the MMP model is 
considerably smaller and consists of only 89 rods. Here, the 
field inside each rod is approximated by a Bessel-type expansion 
whereas the field outside is represented by a multipole expansion. 
The total number of unknowns per rod is 22, that is almost the 
same as in the MAS model. Thus, we only have 22 × 89 = 1958 
unknowns, i.e., less then half of what we have for the MAS model. 
But now, the handling of the output ports with connections 
requires the introduction of a fictitious boundary that separates the 
region of the PhC discontinuity from the PhC waveguide problem. 
Along these fictitious boundaries, additional multipoles must be 
placed together with the connections that describe the waveguide  

 
modes. Finding an appropriate set of matching points for the 
resulting model is rather difficult. In order to overcome these 
problems, MMP works with a generalized point matching 
technique that leads to an overdetermined system of equations 
which is then solved in the least squares sense. In our example, 
we obtain 2181 unknowns for 8964 matching conditions. The 
solution of this system involves the QR decomposition routine 
of LAPACK and takes 177 seconds, i.e., almost the same 
computation time as the MAS solution. Note that the MMP 
system of equations is more than four times overdetermined. 
Usually two times overdetermined systems are still sufficient 
and in our special case, we could use even no overdetermination 
for the PhC lattice (i.e. the rods) and an overdetermination 
factor two for the fictitious boundaries. This would allow us to 
reduce the computation time of the MMP-connection model by 
a factor of three. Since this model serves only for comparison 
purposes and because the minimization of the computation 
time in the framework of MMP could become quite tricky, we 
did not optimized the model with regard to speed-up. 
Fig. 10 shows the comparison of MAS and MMP results where 
we can see an excellent agreement between these two results. 
Furthermore, we observe our error estimation to be quite 
reliable. In conclusion, the simulation of complicated PhC 
waveguide discontinuities is now reduced to the solution of a 
standard scattering problem. 

VII. FILTERING T-JUNCTION 

The analysis of filtering T-junction as depicted in Fig. 11 is 
more demanding than the 90° PhC waveguide bend for several 
reasons. First of all, it has two output ports where the incoming 
wave is guided to the left output port at an operating frequency of 
f = 1.038·1014 Hz and to the right output port for f = 1.23·1014 Hz. 
Within our analysis we must evaluate this model at least for two 
different frequencies, i.e., the computation time is doubled. 
Furthermore, wavelength selective power splitting is enabled, 

|Ez(L)| 

 L 
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Fig. 13: Distribution of ⎜ Ez ⎜ along the test lines at f = 1.038·1014 Hz: 
─── vertical arm;   –  –  –  –  right arm;    · · · · · · · · left arm 
 

Fig. 11: Geometry of the filtering T-Junction (diplexer).The radii of the rods 
are given in units of lattice the period a. For all of rods: µ  = 1.0; ε = 11.56. 
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Fig. 12: Distribution of ⎜ Ez ⎜ along the test lines at f = 1.23·1014 Hz: 
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by introducing corresponding dispersive elements (like e.g. 
substitutional defects) into the two output waveguides of the T-
junction. Such substitutional defects may consist of rods with 
different sizes compared to those of the underlying PhC lattice 

0.18; 0.35; 0.25.base large smallr r r= = =  

The numbers of auxiliary sources and matching points for these 
rods are slightly higher (we use M = 14 for the rods that constitute 
the PhC lattice and Mf  = 16 for the substituitional defects). 
The MAS model is described here by a matrix equation, which 
contains 6576 equations with 6576 unknowns and three right 
hand sides due to the existence of one auxiliary IWGA source 
per port (see Table 1). 

Table 1 
Source x0 y0 β l 
Input 0.0 8.5a 270º 3.5a 
Left -12.5a 0.0 0º 3.5a 

Right  12.5a 0.0 180º 3.5a 
 

The unknown amplitudes of the IWGA sources are determined 
according to condition (9), i.e. the reflections suppression 
condition at the cutoff slice x0 = ± (12·a + rbase). We shall not care 
about the matching condition at the input port y0 = 8·a + rbase 
because there is always a reflected wave present coming from the 
discontinuity (i.e. branching region) itself.  

Table 2 
 f = 1.038·1014 Hz f = 1.23·1014 Hz 

Source |A0| Phase |A0| Phase 
Input 1.0 0º 1.0 0º 
Left 0.2774 -35.4º 0.0058º -75.0º 

Right 0.0232 -22.1º 0.1370º -20.7º 

This wave will impact the incoming field accordingly but its 
influence is minimized when using the input field amplitude as 
normalization for all other wave amplitudes involved. In all other 
respects the procedure is the same as for the 90° PhC waveguide 
bend. The solution of the excitation problem (7) and the reflection 
suppression condition (9) for the given T-junction (Fig. 11) 
provide one with the values for the complex IWGA sources’ 
amplitudes (Table 2). Since we now dispose of the IWGA source 
amplitudes (and phase values) providing efficient wave matching 
at the output ports, we obtain almost constant field distributions 
along the two observation lines in the output arms of the T-
Junction for the two different frequencies (see Fig. 12 and 13).  

   Table 3 
f = 1.038·1014 Hz, h = 2π /λ = 1.156 

Port |Etrans| T(%) |Ereflect| R(%) SWR 
Input 1.0 100 0. 6031 36.38 2.144 

Left 0.7982 63.71 0.0024 0.001 1.000 

Right 0.0652 0.42 0.0002 0.000 1.000 

 

Fig. 15: MAS analysis: Ez-field of the filtering T-junction at f = 1.23·1014 Hz. Fig. 14: MAS analysis: Ez-field of the filtering T-junction at f = 1.038·1014 Hz. 

 

 
 
Fig. 16: MMP analysis: Poynting vector field distribution within the filtering 
T-junction at f = 1.038·1014 Hz (left diplexer channel). 

 

 
 
Fig. 17: MMP analysis: Poynting vector field distribution within the filtering 
T-junction at f = 1.23·1014 Hz (right diplexer channel). 
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Knowing the field distribution in the two output channels the 
transmission/reflection coefficients, the propagation constants and 
a first estimate of the error can be obtained using equations (9)-
(12): 

a) Propagation constant: h = 2π /λ = 2.00 

b) Amplitude of the reflected wave in the output port 

 ( ) ( )( )z zmax min

1
 0.6002,

2
reflect

in in inE E L E L= − =  

the corresponding power reflection coefficient and the SWR 

 ( )2

100% = 36.02%reflect

in in
R E= ⋅ , 

 ( )
( )

2

2

1
2.125, 1.0;

1

reflect
in trans

in
reflect

in

E
SWR E

E

+
= = =

−
 

c) Amplitude of the transmitted wave in the right arm 

 ( )1
 0.7985,

right

transmit total

right z right right

Lright

E E L dL
L

= =∫  

and the corresponding transmission coefficient  

 ( )2

100% 63.76% ; transmit

right right
T E= =  

d) Amplitude of the reflected wave from the end of the right arm 

 ( )1
0.0075,

right

reflected transmit total

right right z right right

Lright

E E E L dL
L

= − =∫  

and the corresponding standing wave ratio SWR = 1.002;  

e) Amplitude of the transmitted wave in the left arm 

 ( )1
 0.0335,

left

transmit total

left z left left

Lleft

E E L dL
L

= =∫  

and the corresponding transmission coefficient 

 ( )2

0 100% 0.11% ; transmit

left left
T E= =  

f) Amplitude of the reflected wave from the end of the left arm 
 ,0.0003=reflected

leftE  

and corresponding standing wave ratio is SWR = 1.002.  

g) Energy balance: ∆W = Tin –  (Rin + Tlef t+ Tright) = 0.1% 

 
The solution of the initial boundary problem provides the 
continuity of the E- and H-field components along the boundary 
with the error of less than 0.1% Having such high precision of the 
calculation allows detailed investigation of the wave propagation 
characteristics in complicated finite PhC. For example Fig. 14 and 
Fig. 15 show the contour plot of the electromagnetic field com-
ponent Ez for the given diplexer geometry. The calculated 
amplitude of the electric field along the each waveguide channel 
for a frequency of f = 1.038·1014 Hz is depicted in Fig. 13 whereas  
 

the transmission/reflection coefficients are listed in Table 3. 
The overall simulation procedure and the degree of accuracy is 
comparable to the analyis of the 90° PhC waveguide bend. As 
shown in Fig. 14 and Fig. 15 accurate calculations allow a very 
detailed description of the complicated fields in finite PhC devices. 
In order to compare the results with MMP, we use a MMP-
connection model (see Fig 16 and 17) that sets up an over-
determined 2974 × 9126 matrix and requires almost the same 
computation time as the corresponding MAS-model. Comparable 
figures that result from the two methods are listed in Table 4. 
As one can see, there is an excellent agreement between both 
methods. 

VIII.  CONCLUSIONS 

We have presented a new powerful method for the accurate and 
efficient computation of PhC waveguide discontinuities. The 
method essentially proposes (i) the introduction of special IWGA 
sources that excite the guided modes in the PhC waveguides and 
(ii) it provides also a very straightforward technique for sup-
pressing reflected waves at the waveguide ports. Together with 
such excitation and matching conditions the method delivers an 
additional technique for the computation of the S-parameters in 
PhC devices. This rather intuitive way (i.e. when relying on the 
minimization of the SWR) will gain recognition especially when 
complicated waveguide structures in e.g. planar 3D-PhCs are 
involved and thus proper eigenmode calculation becomes too 
cumbersome. Even if the proposed technique was developed for 
the method of auxiliary sources (MAS) it will easily apply for any 
other frequency domain method. 
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