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Abstract

The exact eigenfunction solution for the electromag-
netic scattering from a perfectly conducting cone (or any
other sectoral body of revolution with a tip) requires the
solution in the form of spherical harmonics. The solu-
tion for the 8 variation of these harmonics is the associ-
ated Legendre polynomial. The boundary conditions for
the cone generate associated Legendre polynomials with
non-integer degree found for a specific cone angle. This
paper will discuss the derivation used to calculate the as-
sociated Legendre polynomial, the determination of the
eigenvalues, the incomplete normalization integral, and
a validation technique.

1 Imntroduction

To compute the exact eigenfunction solution to the cone
problem using spherical harmonics, we need to calcu-
late the associated Legendre polynomials P;*(z) for non-
integer degree v. A more complete discussion of the solu-
tion for the electromagnetic scattering from a cone can
be found in [1]-{18]. The boundary conditions on the
cone surface require solving

P (cosfp) =0 (1)

and

@)

for 8y = ® — o, where « is the cone half-angle. These
are solved as functions of the degrees v and v respec-
tively. For the case of the cone, these are generally non-
integer; therefore, special effort is required to determine
2 method to evaluate the associated Legendre polynomi-
als. We begin by determining the integral representation
used to calculate the associated Legendre polynomial for
particular values of m, v, and 4. This is integrated nu-
merically using Gaussian guadrature.
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2 Integral Representation

Solving boundary value problems in a spherical coor-
dinate system generates the differential equation

((1 - %)

for which one solution is PJ*(z), the associated Legen-
dre polynomial. Many papers have been published that
tabulate these. References include Siegel {2], Lebedev
[20], the Bateman Manuscript Project [21], Hobson [22],
Snow {23], Abramowitz and Stegun [24], McDonald [25],
Carrus and Treuenfels [26], and Siegel [27].

The basic definition of the associated Legendre poly-
nomial is given by

2

dy m
a;) + ("(”“)" —=
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d™ P, {cosb)

P™(cos ) = (sind)™ AcosB)™

4
There are different representations of the associated Leg-
endre polynomials. The difference between the various
texts entails a (—1)™ factor. This factor also modifies
the recursion formulas. The NBS Tables [19] do not use
the (—1)™ and neither does Siegel [2]. We have also
chosen not to use this factor.

From [21], the following integral is the starting point
L 1 y
V7 (sin@)™I[(1/2 —m)

9 /”' (cos @ + jsin@cost)+™
o (sint)®™

P™(cos 8) (5)

dt.

A change of variables and some manipulation yields

Freost) = /2 % (6)
cos(v +1/2)z

dx

2
:(f
s}

for 0 < 6 < =, integer m < 1/2, v real.

(cos z — cos §)m+1/2
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This expression is Equation (27) in [21]. The require-
ment for m < 1/2 keeps the argument of the gamma
function positive and is also required for convergence of
the integral. An improper integral of the form [ : r~Pdx
will converge for p < 1 and diverge for p > 1, thus to
avoid this problem the expression is evaluated by chang-
ing m into —m, vielding

—m( 7
B (cos ) \/- (sm gy F(m + 1/2) M
cos(v +1/2)x
' x o (cosz —cosf)l/2- = 4%
“‘We use the identity
T(v+m+ 1)
U = === P_™(cos#f 8
P (cos8) To—m+ 1) (cos@). (8)
Applying the above identity we write
2 1
P =4/= 9
" (cos6) \/; Tm 1+ 1/2)5m o)™ ©
Tr+m+1) cos(v+1/2)z
X dx
T(v—m+1) Jo (cosz —cos@)l/2—m

for 0 < # < m, m integer, v real.

This expression, which is identical to (7.12.32) in [20]
except for the factor of (—1)™, is used to calculate the
associated Legendre polynomials for real v; therefore,
we can evaluate both integer and non-integer degrees.
The integration is performed numerically using Gaussian
quadrature. This integral has no convergence problems.
When m = 0, the exponent is 1/2, which meets the
criteria for convergence. For m > 0, the denominator
moves into the numerator and it is no longer an improper
integral. The m = 0 case converges slowly; therefore, a
recursion formula found in [20] is used to calculate this
case. The recursion for P, (cos8) = P%(cosf) yields

1
v(v+1)

P,(cos8) = ( s BPI( cos 8) — P2(cos B))

(10)
Another important recursion relation is

sinf— d zr

prail (cos 8)

—(v +1)cos@ P (cos ).

(v —m+1}P (cos8)
(11)

This formula enables the calculation of the derivative
of the associated Legendre polynomial using the poly-
nomials themselves. This expression is also used in the
determination of the eigenvalues satisfying Equation (2).
Also, from Equation (4), for m = 0, we have

cosf) =

—P}{cos§). (12)

d
dg l’(
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v|m 8 Calculated Published
[3, App A], 19]

1.0} 0 | 165° | -0.96593 -0.96593
1.5} 0 | 165° 0.40531 0.40531
251 0 | 165° | -0.00819 -0.09820
16.5 | 0 | 165° | -0.18075 -0.18075
3.0{ 0| 60° -0.43750 -0.43750
30| 1 60° 0.32476 0.32476
50| 0 30° -0.22327 -0.22327
50| 1 30° 2.16797 2.16797
100 | O | 45° 0.11511 0.11511
100 1 45° 2.88696 2.88696

Table 1: Comparison for P (cos 8)

There are no restrictions on the values of m, 8, and
v except those noted in Equation (9). This approach
calculates the associated Legendre polynomial for par-
ticular values of m, 6, and . Another software package,
written by Olver and Smith [28], uses power series ex-
pansions and recursion to generate associated Legendre
polynomials. The main goal of the Olver and Smith
package was to use extended-range arithmetic to enable
calculation of polynomial values for extensive ranges of
m and » without causing overflow or underflow. We
are primarily concerned with finding the # variation for
the cone’s eigenfunction solution, finding the eigenval-
ues generated by satisfying the boundary conditions on
the cone, and the calculation of the polynomial for these
specific non-integer eigenvalues. Moreover, their pack-
age calculates the polynomial for 0 < 6 < w/2, integer
mm and real v. For the cone problem, we need values for
0 < 8 < 7, especially n/2 < 8 < w, with integer m and
real v.

Table 1 and Table 2 show comparisons from [3] and
[19] for selected values. It is important to note that
all computations (including the Gaussian quadrature)
were performed on a 486-based PC. In the next section,
orthogonality is proven, and the incomplete Legendre
integral is determined.

3 Orthogonality & Normalization

The cone presents a special case in terms of orthogo-
nality and normalization. Orthogonality on the cone is
used to find the incomplete Legendre integral. As seen
in [1}, these incomplete Legendre integrals have the form

/ " [P™(cos 6)]?sin 8 d8. (13)
0

First we prove the original statement of orthogonality.
‘We begin with the original differential equation for dif-
ferent v and u. We will work with the form in terms of
the variable z, and then convert to cosf. Multiplying
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v|m é Calculated Published
3, App A], [19]

1.0 0 | 165° -0.2588 -0.2588
1.5 | 0 | 165° 2.8331 2.8331
25| 0 | 165° -2.9988 -2.9988

16.5 | 0 | 165° 5.3684 5.3684
301 1] 60° -5.4375 -5.4375
301 2 60° -3.2476 -3.2476
50 1 30° -10.4532 -10.4532
50| 2| 30° 11.4844 11.4844

10.0 | 1 | 45° 9.7753 9.7754

10.0 | 2 | 45° 325.569 325.569

Table 2: Compariscn for E%P;"(cos )]

the equations in v and p, then subtracting, we have

d (1-z%)
dz [(V—u)(V+u+1)

(Pm(m)—P'"(m) ~EP @) P (3))] '

P™(z) P (x) x (14)

Integrating this from 1 to zg in x (equivalent to 0 to &y
in theta) yields

_ (1 —z% y
(vt p+1)

Er@arre)|

When v # p, the integral goes to zero at the lower
limit because of the (1 —z?) term, and it goes to zero at
the upper limit due the boundary conditions. Therefore,
orthogonality has been shown. When v = p, we have a
¢ condition. Applying L'Hospital’s rule in v yields

fxo P {(z)P*(z) dz (15
1
« (PR P

1

(1 —=8)

2v+1 (16)

X

,/% [P (2)]? dz =
x [%PZ"(%)-‘%F:’(M) —“P,I"(xo)aaa r (iﬂo)]

Performing a change of variables such that z = cos @,
the expression has two forms depending upon which
boundary condition and eigenvalue is used. When the
boundary condition is P*(cosfp) = 0, the incomplete
Legendre integral is

é .
o 2 . sin 8o
fo [PP(cos6)sinddd = % an
8 _m 5}
XE—P (cosf?o)aa " (cos Bp).

For the boundary condition -{%P;“(cos 8o) = 0, the in-
complete Legendre integral is given by
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6o .
m 2 . B sin fg
[P (cos6)]“ sin 6 dé ] x (18)
xP;"(cosao)a agP""(coseo)

The derivative with respect to theta was done using re-
cursion formulas; whereas, the derivative with respect to
the degree was done using a double precision library sub-
routine. Equation (17) and Equation (18) match Equa-
tion {18.266) and Equation (18.267) given in [18]. More-
over, the results check with the tables given in [3]. In the
next section, the determination of the particular eigen-
values  and -+ will be discussed.

4 Eigenvalues

The determination of the zeros shown in Equation (1)
and Equation (2) is a very important aspect of the so-
lution to the cone problem. The solutions determine
over which values the eigenfunction series is summed.
There have been several articles published on this sub-
ject In [26], there are tables for both P;*(cos#) = 0 and

P’" (cos @) = 0. The results obtained in this derivation
compa.re very well with those published. Also, the val-
ues of v and <y used in the solution given in [3] compare
very well with ours. To find the zeros, we begin with
Equation (9). The leading coefficients will not be zero
in the specified range; therefore, the zeros of PI*(cosé)
occur where the integral is zero. That is,

[}
fl,m,6) = / cos(v +1/2)z

dr =
o {cosz —cos@)t/2—m =

0

(19)

as a function of v, for a given m and 6.

The determination of the zeros of %P (cosf) em-
ploys the recursion formula in Equanon (11). The in-
tegral from Equation (9) is substituted into the recur-
sion expression. After manipulating the integrals, ap-
plying several gamma function identities, and factoring
out common terms, we have

iP’"(cosé') 1 \/g T(v+m+1)
dae (sin@)™+1Y 7 [(v-—m+1)T(m+1/2)
X[(v+m+1L —(v+ 1)Ipcosf] = 0,
(20)
where ] )
_ cos(v + 1/2)z
fo= ,/u {cos T — cos g)L/2-m (21)
and , /
cos(v + 3/2)x
= dz.
h ./(: (cosx — cos g)1/2-m L (22)
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ijm 6 ~; Calculated | -; Published
in [3, App B]

11 )165° 1.03163 1.03163

20 17 165° 2.08443 2.08443

3| 1 165° 3.14992 3.14992

411 | 165° 4.22309 4.22309

511 165° 5.30108 5.30108

Table 3: Eigenvalues for PJ*(cosf) =0

i|m [ v; Calculated | »; Published
\ in [3, App A

111 | 165° 0.9671 0.9673

2] 1] 165° 1.9189 1.9189

3] 1 |185° 2.8871 2.8890

411 ] 165° 3.8879 3.8900

511 | 165° 49171 4.9180

Table 4: Eigenvalues for ;.{%P,Z" (cos®) =0

As before, the leading coefficients are not zero; therefore,
finding the zeros only requires the solution of

(v+m+ 1L —(v+1)Hcos8=0 (23)

as a function of v, for a given m and 6.

These results also compared very well with the pub-
lished values. All the integrals were performed using a
32 point Gaussian quadrature routine and the roots were
extracted using existing library subroutines. Compari-
son of calculated values and published values are shown
in Table 3 and Table 4. The published values for -;
and v; are from (3, App B] and (3, App A] respectively.
Qur calculations support Siegel’s contention in [27] that
the first few eigenvalues given in [26] are incorrect. In
the next section, the method employed to validate the
associated Legendre function routines is discussed.

5 Validation

In [18], 2 Wronskian result is given. A more general
form of this expression is

P™(cos 61) sin B3~ P™ (cos 6z) (24)
dbo
— P™(cos63) sin 61— P (cos 83)
dé
2 D(v+m+1)
= ;1" sm[(u - m)ﬂ]m
For 85 = 7w — 8, we have
d P (cosfs) = ———d—Pm(—cosﬁ ) (25)
g, v A '
and
PN (cos Bp) = P*(—cos by). (26)
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m g v LHS RHS
0} 165° | 1.03163 | .2440 | 0.2440
0 | 165° | 0.96714 | -0.2535 | -0.2535
1 | 165° | 1.03163 | -0.5114 | -0.5114
1 | 165° | 0.96714 | 0.4882 | 0.4882
1| 165° | 1.9189 | -3.4723 | -3.4723
1 | 165° | 2.08443 | 4.1456 | 4.1456
1 | 140° 0.6 0.9043 | 0.9043
0 | 110° 4.5 -0.6775 | -0.6775

Table 5: Calculated (LHS) vs Exact (RHS)

Substituting the preceeding equations into Equation (24)
and eliminating the subscripts provides the Wronskian
relationship we use for validating our calculated values.
The Wronskian relationship is given by

d
B (cos H)EP;”(_ cosf} + P*{—cos 9)%1’3‘(&3 ?)

2sin[(v — m)r] (v + m + 1)
sin 8 y—-m+1)

- (27)
This Wronskian provides an alternative method of check-
ing the accuracy of our integral calculation. Whenever
possible, routines were checked against existing tabu-
lated results; however, for non—tabulated parameters,
Equation (27) was used for validation. This validation
only works for non-integer ». In effect, the Wronskian
checks the P (cos§) and & P7*(cos #) routines simulta-
neously. Example comparisons are shown in Table 5.

The Wronskian validation and comparison with previ-
ously published data are not meant to provide definitive
proof this algorithm will work for all cases; however, the
satisfactory comparison for these random cases is encour-
aging. Moreover, the Wronskian provides a spot check
(as required) for any non-tabulated parameters.

6 Conclusion

In order to complete the eigenfunction solution for the
cone, we derived a method to calculate the associated
Legendre functions for non-integer degree. Our inte-
gral formulation was also used to determine the eigen-
values required to complete the cone’s eigenfunction so-
lution. In addition, we derived expressions for the incom-
plete Legendre normalization integral. Excellent agree-
ment with previously published results was achieved us-
ing a 486-based PC to compute the associated Legendre
functions and the eigenvalues with our integral formu-
lation. The Wronskian validation method provided an-
other check of our results.
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