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Abstract ─  Accurate and stable analytical 
solutions for partial element calculation in partial 
element equivalent circuit (PEEC) modeling are 
desirable due to fast and simple usage. 
Conventional analytical formulae based on 
integral Neumann formula may give 
miscalculations when we compute the partial 
inductance of three-dimensional structures with 
large spacing. In this paper, a novel model-order 
reduction (MOR) method is presented for mutual 
inductance calculation in order to improve its 
accuracy and stability. Mutual inductances of 
higher order models are represented by relatively 
lower order models. The criteria for MOR are 
revealed and a code implementation routine is 
described. The numerical accuracy, stability and 
calculation cost are investigated comparing with 
conventional procedures. Numerical experiments 
show that the MOR method can guarantee 
numerical stability and reduce calculation 
complexity simultaneously, and it has advantages 
to be implemented in PEEC modeling for large 
complex electronic systems. 
 
Index Terms ─ Model-order reduction (MOR), 
numerical stability, partial element equivalent 
circuit (PEEC), partial inductance. 

 
I. INTRODUCTION  

A multitude of mixed electromagnetic and 
circuit problems of ever-increasing frequencies in 
complex electronic systems make electromagnetic 
compatibility (EMC) an increasingly troublesome 
issue, and numerical modeling techniques provide 
cost effective solutions. The partial element 
equivalent circuit (PEEC) method was first 

introduced by Ruehli in the 1970s [1] and now is a 
promising numerical method for electromagnetic 
(EM) modeling of various engineering problems, 
e.g., EMC, EM interference (EMI), and signal 
integrity (SI) of high-speed digital circuits [2-4]. 
The main advantage of PEEC is its ability to 
provide a circuit interpretation of the electric field 
integral equation in terms of partial elements, 
namely resistances, partial inductances, and 
coefficients of potential [3]. It is especially 
suitable for mixed electromagnetic and circuit 
problems for its ease to integrate the field solver 
with real circuit elements [5]. Different from other 
integral equation (IE) based EM modeling 
methodologies, PEEC is a full spectrum method 
valid from dc to the maximum frequency 
determined by the meshing [6]. 

The impact of partial element accuracy on 
quasi-static PEEC model stability has been 
discussed in [6], and the major sources of 
inaccurate partial element values were found to be 
the utilization of unsuitable calculation routines 
and poor geometrical meshing. The instabilities 
associated with a full-wave PEEC model is an 
important and complicated issue, and reasons for 
its instabilities have been revealed in [7-11] and 
several full-wave PEEC models attempts to 
improve the stability of time domain solutions 
have been proposed [8-13] in recent years. In this 
paper, we mainly focus on the stability and 
accuracy of partial mutual inductance calculation 
by analytical routines for quasi-static PEEC 
modeling. 

Closed-form formulae for mutual inductance 
calculations were first presented in Grover’s book 
[14], and Ruehli improved it for better computer 
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implementation. Ruehli used filament 
approximation to calculate mutual inductance of 
three-dimensional multi-conductor 
interconnection structures [15]. This 
approximation represented a conductor in terms of 
a set of filaments in the direction of current flow. 
Following this procedure, Ruey-Beei Wu further 
developed his approach later by quadrature 
formulae [16]. Hoer and Love derived a 
closed-form formula for the mutual inductance of 
any pair of parallel rectangular conductors [17]. 
However, the accuracy of these formulae depends 
much on the ratio of cross sectional size to 
segment distance and the aspect ratio of each 
conductor. 

A closed-form mutual inductance equation 
developed by Zhong and Koh [18] draws attention 
to the numerical stability. In the following 
discourse, we use “Zhong’s procedure” to refer 
strictly to this method. In their procedure, the 
mutual inductance between two parallel 
rectangular conductors was expressed as a 
weighted sum of the self inductances of 64 virtual 
conductors which are defined by one corner point 
of the first conductor and one corner point of the 
second conductor. This formula is numerically 
more stable than any others before, especially for 
large-aspect-ratio structures. Unfortunately, it still 
suffers from numerical stability problems in some 
particular cases, e.g., the two conductors with 
large spacing. 

The proposed method concerns the EMI 
modeling for large complex electronic systems 
with PEEC method, e.g., cable-cable and 
cable-component coupling behaviors in 
automotives. High accuracy and stable analytical 
solutions for partial element calculation in PEEC 
modeling are desirable due to fast and simple 
usage. Normally interfering sources and 
susceptive parts sometimes are localized far away 
(e.g., one or two meters) in the large systems, and 
the conventional mutual inductance formulae may 
give inaccurate values (see Fig. 3). In this paper, a 
model-order reduction (MOR) scheme is 
developed to improve the numerical stability of 
mutual inductance with analytical procedures. 
Mutual inductance of higher order models are 
represented by relatively lower order models 
according to compact MOR criteria. 
Reduced-order models can guarantee accuracy 
and reduce calculation complexity simultaneously. 

This paper is organized as follows. Analytical 
formulae for mutual inductance calculation of 
various structures are derived in Section II. 
Mathematic preliminary and the MOR criteria 
together with the working flow of a code 
implementation are described in Section III. 
Numerical experiments are discussed in Section 
IV. In this section, we represent the miscalculation 
phenomenon, and stable values obtained by our 
MOR method are, also, presented as a contrast. 
The numerical accuracy, stability and calculation 
cost are analyzed in this section, as well. Finally, 
Section V ends with conclusions and discussions. 

 
II. FORMULATIONS 

 
A. Mutual inductance of a primary PEEC cell 

Conventional discretization cells for 
large-scale PEEC modeling are three dimensional 
structures [19]. Figure 1 illustrates a calculation 
model of two rectangular conductors with relevant 
geometrical parameters. This is a general 
configuration without any restrictions on the 
alignment of the two conductors and we can 
calculate the mutual inductance by a closed-form 
analytical formula (1). 
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Fig. 1. Two rectangular conductors. 
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B. Mutual inductance of various structures 

Using primitive integral Neumann formula (2) 
[20], we can deduce closed-form mutual 
inductance formulae for various structures as 
Table 1 shows by the integration technique. In (2), 
a denotes the cross section which is perpendicular 
to the direction of current flow, and l means the 
length of cell. In Table 1, we express the multiple 
summations in the similar way as (1b) 

1

4km

k k m m

k m
p k m

k m kma l a l

dl dl
L da da

a a r

⋅μ=
π      .      (2) 

The model complexity can be measured by 
its degree of freedom, for example, the degree of 
freedom of two three-dimensional rectangular 
conductors is six, and is two for two filaments. In 
the following discussion, we use the notation nD 
to refer to the models with n degrees of freedom. 

It was shown in [6, 11] that the major source 
of errors in partial inductance calculation is the 
numerical dispersion due to high-order terms 
creating large numbers while the values of other 
lower-order terms are relatively small. From the 
expressions in Table 1, we see that the formulae 
corresponding to lower order models are more 
stable, and simpler inductance expressions usually 
result in less calculation cost. The main idea of 
our MOR method is to present the mutual 
inductance of a higher order model with a 
relatively lower order model. 

 
Table 1: Partial mutual inductance formulae of various structures 
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Table 1: Partial mutual inductance formulae of various structures (continued) 
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Table 1: Partial mutual inductance formulae of various structures (continued) 
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III. MODEL-ORDER REDUCTION 

METHOD 
 
A. Criteria for MOR method 

The lemma for order reduction in the 
appendix is the mathematical foundation of our 
MOR method. Regarding the mutual inductance 
calculation, a specific MOR criterion in one 
dimension with the size of a is as (3) describes 
according to the lemma. 
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1 2 1 2 1 2( ) ( ) ( )R X X Y Y Z Z= − + − + − . 

As a result of (4), the criterion (3) is 
equivalent with (5a). 
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Here, 1V  and 2V  denote the volumes of two  

rectangular cells ( 1 1V a b l= ⋅ ⋅ , 2 2V c d l= ⋅ ⋅ ). 
Following this procedure, the quantified MOR  
criteria in the other five dimensions (i.e., with 
sizes of b, l1, d, c, l2 in Fig. 1) are obtained as (5b) 
- (5f) describe. 
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3
1 2 2max | | / (min ) .VV S l R ε⋅ ⋅ ≤               (5f) 

The value of ε depends on the permitted error 
and will influence the adoption of reduced-order 
models. Normally, smaller values of ε will 
produce more rigorous reduced-order models, 
while larger values will generate approximate 
model-order reduction. 

In the previous formulae (5), elements of the 
arrays Q, R, and S are summation limits of X, Y, 
and Z variables in (1), respectively, e.g., 

[ , , , ]Q E d E d a E a E= + + − − . The minR means the 
minimum distance of two cells which can be 
calculated by an arithmetic expression (6). 
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where 
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0 otherwise
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min | | | |,   | |
min_ .

0 otherwise

S S S or S S
z

= = −
= 


   

In practical applications, when the 
dimensions in the direction of current (i.e., l1 or l2 
in Fig. 1) are eliminated according to the MOR 
criteria, the inductance value is equal to the value 
obtained by the simplified model multiplied by the 
eliminated length; otherwise, the inductance value 
of the primitive model is equivalent with the 
reduced-order model. 

 
B. Code implementation 

In this section, we propose a scheme of the 
working flow of our MOR procedure, which can 
be easily implemented in MATLAB or other 
computation environments. We assume the 
meshing or spatial discretization is carried out 
according to λmin/20-rule [6]. The code 
implementation can be carried out, step by step, as 
follows: 
1. Evaluation of the following quantities: 
a) Find the minimum distance of two cells (i.e., 

minR) according to (6); 
b) Find the LHS terms of (5) using matrix 

approach simultaneously and denote them as
( )ratio i (i=1, 2, 3, 4, 5, 6, corresponding to 

dimensions of a, b, l1, d, c, l2); 
2. Determination of model-order reduction 

basing on the MOR criteria 
An array flag is used to record a binary 

decision of MOR for corresponding dimensions; 
i.e., we compare ( )ratio i  of each dimension with 
the user-set threshold value ε. 

( ( ) )    ( ) 0     ( ) 1if ratio i then flag i else flag i≤ ε = = ; 
Then, a fast hierarchical decision algorithm is 

applied to choose the suitable reduced-order 
calculation model. The sum of all elements of the 
array flag is equal to the order of the 

reduced-order model; e.g., if ( [ ]) 4sum flag = , 
then the primitive model can be represented by a 
4D model. 
3. Coordinate transformation 

A certain model-order value usually 
corresponds to several primary structures. For 
instance, there are 15 different 2D models, and all 
of them can be categorized as two primitive 
models (see the 2D-1 model and 2D-2 model in 
Table 1) with some coordinate transformation. We 

take a specific case ( [0 0 0 0 1 1]flag = ) to 
illustrate three procedures of the coordinate 
transformation. 

a) Determination of specific reduced-order 
model; 
The sum of flag  indicates that the 

reduced-order model is a 2D model which is 
composed of a point and a thin tape as Fig. 2(a) 
shows, so it can be categorized to the primitive 
2D-1 model illustrated in Table 1 using coordinate 
transformation. 

b) Matching cells; 
The point in Fig. 2(a) is localized at the 

origin of coordinates which is different from 2D-1 
model in Table 1; hence, we need to exchange all 
the dimensional parameters of the two cells to 
obtain a model as Fig. 2(b). 

c) Matching coordinates; 
The thin tape in primitive 2D-1 model in 

Table 1 is perpendicular to Y-axis, In order to use 
the related formula we need to exchange X and Y 
coordinates of cell with current I2. 

E
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Fig. 2. A coordinate transformation example. 
 
4. Correction of inductance values 

In the above case, since the dimension l1 in 
the direction of current I1 is eliminated according 
to the MOR criteria, the inductance value is equal 
to the value obtained by the reduced-order model 
(see 2D-1 model in Table 1) multiplied by the 
eliminated length l1. 

 
IV. NUMERICAL RESULTS 

In the following experiments, the 
cross-sectional dimensions of two rectangular 
cells are fixed at 0.5 mm×0.5 mm and 0.8 
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mm×0.8 mm. The two cells are aligned at one 
terminal and their lengths are 4 mm and 6 mm, 
respectively. We set the threshold value ε of 1e-21 
in the numerical experiments. Double precision is 
used in the following results, and all the numerical 
experiments are conducted under the hardware 
condition of an ordinary 64-bit computer with a 
2.4GHz processor and a 3GB RAM (DDR 3). 

To represent the miscalculation phenomenon, 
mutual inductance values are extracted using the 
primitive formula (1) and our MOR approach. The 
inductance values and reduced-orders of adopted 
models respect to different lateral separation are 
shown in Fig. 3. The mutual inductance should 
decrease smoothly as the distance increases; 
nevertheless, from the data in Fig. 3, it is evident 
that the primitive formula (1) produces totally 
wrong inductance values, including even negative 
results. On the contrary, the proposed MOR 
method is numerically stable. 
 

 
Fig. 3. Mutual inductance values and 
reduced-orders respect to varying distance. 
 
A. Accuracy 

The fast multipole method (FMM) is applied 
in general PEEC framework to calculate partial 
elements in a more efficient way without 
compromising the accuracy [5]. A widely-used 
tool FastHenry uses a specific 
multipole-accelerated generalized minimal 
residual (GMRES) algorithm to compute 
inductance matrix [21]. To investigate the 
accuracy of our procedure, mutual inductance 
values are calculated using our MOR method and 
FastHenry. The geometrical parameters in the 
above case are maintained in this study. Figure 4 
shows the results. 

 
Fig. 4. Mutual inductance values by MOR method 
and FastHenry. 
 

 
Fig. 5. Feature selective validation of mutual 
inductance values by MOR method and 
FastHenry. 
 

The feature selective validation (FSV) [22-24] 
technique is an effective algorithm that can be 
used to validate computational electromagnetics 
(CEM). We use the FSV technique to compare 
details of the two inductance datasets. Figure 5(a) 
shows point-by-point comparisons for a global 
difference measure (GDM). Figure 5(b) illustrates 
the proportion of the point-by-point analyses that 
falls into the six natural language descriptor 
categories (i.e., excellent, very good, good, fair, 
poor, very poor). Other synthetic FSV parameters 
are also given in Fig. 5(b). The feature selective 
validation indicates that our MOR method has an 
excellent agreement with FastHenry. 

 
B. Stability 

Zhong’s procedure is numerically more 
stable than the conventional formulae in [15-17]. 
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Mutual inductance values are extracted by our 
MOR method and Zhong’s procedure in case that 
the lateral separation between two cells varies up 
to five meters. Figure 6 shows the computation 
results. It is evident that our MOR method is 
numerically more stable than Zhong’s procedure 
for the structures with large spacing. 
 

 
Fig. 6. Mutual inductance values by MOR method 
and Zhong’s procedure. 
 
C. Calculation cost 

Table 2 shows the total consumed time of 
various models in 100,000 independent 
experiments. The number of summation loops of a 
0D model’s formula is only 1/64 of a 6D model’s 
formula. Since a particular matrix approach is 
used to accelerate 64 summation loops in our 
Matlab code, the realistic consumed time of the 
0D model is 43.45% of the 6D model. As a 
conclusion from Table 2, our MOR procedure not 
only improves the accuracy and stability, but also 
reduces the calculation complexity. 

Zhong’s formula consumes nearly the same 
time as the primitive 6D model; because it is 
actually a result of 64 expressions of self 
inductance [15, 16] which is as complex as the  
primitive function (1c). That is to say, our MOR  

method is, also, faster than Zhong’s procedure.  
 

Table 2: Consumed time of various models 
Model Cost time (s) Normalized percent 
6D 26.763 100.00% 
5D 22.432 83.82% 
4D-1 22.341 83.48% 
4D-2 26.345 98.44% 
4D-3 26.015 97.21% 
3D-1 22.939 85.71% 
3D-2 25.336 94.67% 
2D-1 16.565 61.90% 
2D-2 13.895 51.92% 
1D 12.189 45.54% 
0D 11.629 43.45% 

 
D. A transmission line structure experiment 

In the following, we present a two-conductor 
transmission line structure to show the influence 
of inductance values on the accuracy of PEEC 
modeling. The dimensions of the structure are 
illustrated in Fig. 7. The two conductors are with 
the same dimensions, and a common reference 
ground provides the possibility of generating 
interference due to crosstalk. An excitation source 
consisting of a source resistance RS (50 ohms) and 
a source voltage VS (1 volt) is connected to a load 
RL (50 ohms) via a generator conductor and a 
reference ground. A receptor conductor connects 
the other two terminations, represented by 
resistors RNE (50 ohms) and RFE (50 ohms). 

The crosstalk can be viewed as a transfer 
function between the input VS and the outputs VNE 
and VFE (induced voltages at two ends of the 
receptor conductor). The frequency domain 
response of the crosstalk transfer ratio at the 
near-end (i.e., 1020 log ( )NE SV V× ) was calculated 
by both MTL theory [25] and PEEC method. 
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Fig. 7. A two-conductor transmission line structure. 
 

 
 

 
 

0.0027964 1.7682e 008j 6.3109e 030 6.6661e 011j
.

6.3109e 030 6.6661e 011j 0.0027964 1.7682e 008j
R jL

+ − − + − 
+ =  − + − + − 

 

 
Impedance matrix (R+jL) used in the MTL 

model is computed by the method of moment 
(MoM). 

In order not to introduce the influence of 
capacitance accuracy, we use a quasi-static PEEC 
(Lp, R) model [2], and the capacitive coupling is 
not considered in the transmission line model 
either. 

In the PEEC procedure, each conductor is 
discretized into five even conductive cells along 
its length. The inductance matrices L1 and L2 are 
calculated by our MOR method and primitive 
formula (1) respectively. We see some differences 
in the mutual inductance values which are in the 

off-diagonal terms. It is clear that the primitive 
formula (1) produce inaccurate inductances 
including even negative values.  

Figure 8 shows the near-end crosstalk 
transfer function in frequency domain from 1 kHz 
to 1 MHz. Comparing with the MTL model, it is 
obvious that the inaccurate partial inductance 
values cause errors while good agreement is 
obtained by the MOR inductance calculation 
routine. This numerical experiment indicates that 
our MOR method can improve the stability and 
accuracy of partial inductance values and thus 
accurate PEEC results. 
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Fig. 8. Frequency-domain representation of the 
near-end crosstalk transfer function. 

 
V. CONCLUSIONS AND DISCUSSIONS 

The proposed novel model-order reduction 
(MOR) method concerns the stability and 
accuracy improvement of conventional analytical 
partial mutual inductance calculation routines. 
Compact analytical criteria of the MOR approach 
are presented in this paper and the working flow 
for a code implementation allows convenient 
utilization in PEEC modeling. Numerical 
experiments indicate that the MOR method has its 
advantages of improving the inductance 
calculation stability and reducing the calculation 
complexity, especially for three-dimensional 
structures with large spacing. This method is more 
appropriate for PEEC modeling for large complex 
electronic systems. 

This paper only focuses on the analytical 
inductance calculation for the consideration of fast 
and simple utilization. Actually, combining 
analytical and numerical calculation routine (e.g., 
Gauss-Legendre numerical integration) can be 
thought of as one option.  

 
APPENDIX 

 
A.  A lemma for order reduction 

( )F x  is a primitive function of ( )f x . 

Mathematically, the definite integral of ( )f x with 
limits a and b respect to x equals the difference of 

( )F x  evaluated at b and a, which can be 

described as (A-1). This implies that ( )f x is with 

respect to a lower order of x comparing with ( )F x . 

( ) ( ) ( )
b

a
f x dx F b F a= −                  (A-1)  

Suppose the conditions a) and b) can be 
satisfied simultaneously, it is easy to proof that 
( ) ( )b a f x− ⋅  is an approximation to 

( ) ( )F b F a−  for any value of x  in the interval 

[a, b]; thus, a lower order formula ( )f x can 

represent the higher order formula ( )F x . 

a) ( )f x  is a continuous monotonic function in 
an interval [a, b]; 

b) ( ) ( )b a f x ε′− ≤ , ε is an extremely small 

positive value; 
 

B.  Brief proof of the lemma 
From the view of the limitation theory, we 

can draw a conclusion as (A-2) if the 
conditions a) and b) can be satisfied 
simultaneously. 

[ , ]
lim ( ) ( ) 0

x a b
b a f x

∈
′− =                   (A-2) 

(A-2) implies two cases: 
Case 1: 0b a− → , this means the limitation of 
integral interval is zero; 

( ) ( ) ( ) ( ) ( ) 0
b

a
f x dx F b F a b a f x= − ≈ − →    (A-3) 

Case 2: ( ) 0f x′ → , that is, ( )f x  is a constant 

function with respect to [ , ]x a b∈ ; 

( ) ( ) ( ) ( ) ( )
b

a
f x dx F b F a b a f x= − ≈ −      

 (A-4) 

Considering (A-3) and (A-4), we can draw 
the conclusion as the lemma describes. 
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