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Joachim Fetzer, Stefan Kurz, Ginther Lehner and Wolfgang M. Rucker
Institut fiir Theorie der Elektrotechnik, Universitdt Stuttgart, Pfaffenwaldring 47, 70550 Stuttgart, Germany

Abstract—For the calculation of magnetic forces
with the Maxwell stress tensor the normal and the
tangential derivatives of the vector potential A have to
be known. We choose C’-continuous elements, there-
fore A and its tangential derivatives are continuous.
In contrast, the normal derivative 8A/8n calculated
with the finite element method is continuous only in a
weak sense. When BEM-FEM coupling is used how-
ever, the value of #A/8n is uniquely available on the
coupling surfaces from the BEM formulation. Two
methods of magnetic force computation using 8A/8n
either from FEM or from BEM data will be presented.
Their accuracy will be compared by means of several
examples.

I. BEM-FEM COUPLING

Starting from Maxwell-equations describing magneto-
static problems and taking into account the constitutive
relation B = uoﬁ + M and the magnetic vector potential
A’, the equation

P 1 -
-l\‘ﬂA =§ + —rotM (1)
Hao o

can be derived, The boundary condition A = 0 at infin-
ity ensures that the solution of (1) satisfies the Coulomb
gauge divA = 0. The magnetic fields to be calculated
are caused by the impressed current density g and by the
magnetization M.

The domain (2 of the boundary value problem (1) is de-
composed into a set of finite element subdomains lpgm.
which coincide with the magnetic parts of the problem and
a BEM subdomain Qggy which represents the surround-
ing vacuwm space and the impressed source currents, Fig.
1. The common boundaries I'reM: = I'semir correspond
to iron-air interfaces.

The application of the finite element method in Qpgym
and the application of the boundary element method in
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Fig. 1. Structure of the considered domain
Qpem = QpEM1 U OrEM2, 0 = Qpem U OpeM

Irem = T'rem1 Y TreMz2,

Ieemi = eemit UT'BEMi2

{2prm both yield a linear system of equations [1], namely
[KWATEM) — T {@7P™) = (F(aD)), (@)
GHQ®™™) - [H{A®™} = (R3@)). ()

Isoparametric nodal finite elements and boundary ele-
ments have been used for the discretization. {AFEM} and
{f-f BEMY are the nodal values of Ain OppmULpey and on
Tsewmi, respectively. {GFEMY} and {GBEM} are the nodal

values of .
Q’:i(%‘s—ﬂxﬁ) (4)

on FFEM_F I'epM; with M =0in lsem. The boundary
values {QFEM} {4BEMY and {JBEM} at the nodes on
the common boundaries can be eliminated from (2), (3)
due to their continuity {2] resulting in

K]
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The second member vector {F'} does not depend on the
impressed current density gs only, but also on the mag-
netization M, specified by the prescribed magnetization
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‘curve. Therefore (3) has to be solved iteratively. In this
case, the so-called “combined iteration” [3] which is a vari-
ant of the M(B)-iteration has been used.

II. ForCcE COMPUTATION

The magnetic force is computed using the well known
Maxwell stress tensor (MST) method, i.e. by the integra~
tion of a normal and a tangential force density

o=y (22— mit)a, (62)
fi = BB, (6b)

over a surface, which entirely encloses the object under
consideration,
F= }( far.
s

Considering a Cartesian coordinate system (#,%,%2),
which is rotated against the original coordinate system
s0 that 7 is orthogonal to the boundary in the consid-
ered point (Fig. 2), the components By, Hy, and H,, are
related to the vector potential as follows

(7)
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Bn = 8t Otz ’ (Sa)
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Ha=1 (52 - %), (8)
1[04, 94,

Ht,2 = ; ( an atl ) . (SC)

It can be seen from (8a) that B, is continuous on the
boundaries between adjacent finite elements due to the
continuity of A. In contrast, Hy is only weakly continuous
on such boundaries because it depends on 84/8n. The
FE formulation satisfies the interface condition for 84/9n
resulting from (4) only in a weak sense. Computation of
the MST may therefore cause difficulties, because it is not
clear, which one of the two different values of H, should
be used, especially on iron-air interfaces [4)].

In the context of BEM-FEM coupling, it is natural to
choose S = 'remy = I'BEM;., which means that the in-
tegration is actually performed over the iron-air interface

Meem =Meemi

Fig. 2. Local coordinate system (ﬁ,ﬂ,fz)

of the considered part. According to the above, there are
two different ways for the computation of the MST. The
values of §A/8n can be obtained either from FEM or from
BEM data.

A. Computation of the MST by FEM Data (MST FEM)

Introducing the permeability ¢ = 1/v which may be
field dependent, the force density (6) can equivalently be
expressed as

F= % (B-#)B — (B x 7) x B]
+ —;-(uo -v) (B;{ + ;—OBE) 7. (9)

Equation (5) has to be solved before the values of B on
the boundary § = I'ren, can be obtained by the usual
differentiation of the FE shape functions. The global force
can then be calculated with the help of (7) and (9).

B. Computation of the MST by BEM Data (MST BEM)

In the case of i = yp like in gy, the second term in
(9) vanishes resulting in

-+

B.7\B— (B xq)xB|. 1

f= 2uo[( #)B — (B x 1) x B (10)
The derivatives of A_-with Tespect to z,y,z are now re-
quired to compute B = rot 4. From (3), (4) we have

(M =0)

{1&4

o On
where the superscripts BB have been omitted. Assuming
the usual isoparametric nodal boundary elements, 7, A
and ) are interpolated from their nodal values as follows

}—{Q}—[G]‘ (1144} + (RS@)}), ()

g

T= Ni(€1 Ti)ﬁ, (123')
i=1

- k —

A = ZNi(Ea n)A‘H (12b)

Q= Z Ni(&,mQ;, {12c)

i=1

where £,n are the local coordinates, N; the shape func-
tions and k the number of nodes of the boundary element.
The derivatives of {12a) are

k

FE = is (13&)
=0
k
=3 ;g Py (13b)
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TABLE I
COMPUTATIONAL DATA FOR THE HOLLOW SPHERE

Coarse Mesh Fine Mesh Coarse Mesh Analytical [5]
Linear Elements Linear Elements Quadratic Elements
Total number of nodes 555 2499 3369 -
Number of FEM elements 1978 9726 1920 -
Number of boundary nodes 242 882 882 -
Number of BEM elements 400 1600 400 -
Total number of equations 1255 6039 8649 -
Force F, by MST BEM 341,83 N 364.55 N 372,90 N 372.88 N
Force F,; by MST FEM 339.84 N 363.87T N 37281 N 372.88 N
The unit normal vector is on it. The parameters are given in Fig. 3. For sym-
P o7 metry reasons only a quarter of the sphere needs to be
A= T = B (14)  discretized. Computations have been performed with lin-
[T X 7] n ear elements (3-noded triangles, 6-noded tetrahedrons) as
Application of well as quadratic elements (6-noded triangles, 10-noded
tetrahedrons) and with two different meshes. Fig. 4 shows
oz a¢ the coarse and Fig. 5 the fine BE mesh. Some computa-
dyl=J16n), (15) tional data and the results for the attractive force are
e an summarized in Table I. Both methods yield nearly identi-
T cal forces. Especially the computation based on quadratic
J=(F 7 7} (16)

allows the calculation of the desired derivatives from (12).
The global force can then again be calculated with the
help of (7) and (10).

III. NuMmERICAL EXAMPLES

In this section, two numerical examples are presented
to compare the computed forces of both methods (MST
FEM, MST BEM) with each other and with analytical
or measured values. Both examples are modelled with
the coupled BEM-FEM scheme of Fig. 1, where the BEM
region is air.

A. Magnetic Attraction of a Ferromagnetic Sphere

This problem is discussed in [5] and has an analytical
solution. A hollow ferromagnetic sphere is placed under
a circular current loop, which exerts an attractive force

VF:
Ry =35mm
Ra=50mm
h R =70mm
h=30mm
£ ="500u0
I=20000A

Fig. 3. Magnetic attraction of a hollow sphere
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Fig. 4. Coarse discretization of 1/4 of the hallow sphere

Fig. 5. Fine discretization of 1/4 of the hollow sphere



elements gives excellent results. The reason for this might
be that quadratic isoparametric elements are better suited
for the modelling of a smooth surface.

B. TEAM Workshop Problem 20

As a second example we consider TEAM Warkshop
problem 20, which consists of a steel center pole sur-
rounded by an exciting coil. The magnetic circuit is com-
pleted by a steel yoke. A complete definition of the ge-
ometry can be found in [6]. Taking advantage of the
symmetry, only a quarter of the problem region had to
be discretized using 8-noded quadratic quadrilaterals and
20-noded quadratic hexahedrons, Fig. 6. Some compu-
tational data are given in Table II. The measured and
computed values of the force F; acting on the center pole
can be seen from Table III and Fig. 7. Again, there is
good agreement between both methods and the measured
data.

Fig. 6. Discretization of 1/4 of TEAM problem 20

TABLE 11
COMPUTATIONAL DATA ForR TEAM PROBLEM 20
Total number of nodes 15068
Number of FEM elements 2784
Number of boundary nodes 4266
Number of BEM elements 1346
Total number of equations 38231

TABLE III
FORCE F; ACTING ON THE CENTER POLE

Excitation Measured (7] MST BEM MST FEM

1000 AT 78N 8.7 N 84N
30600 AT 543N 56.8 N 54.6 N
4500 AT 75.5 N 760N 73.6 N
5000 AT 810N 814 N 8.7 N
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Fig. 7. Force F; acting on the center pole of TEAM problem 20

IV. CONCLUSIONS

Two methods have been presented for the evaluation
of the Maxwell stress tensor in the context of BEM-FEM
coupling. It has been demonstrated that a good accu-
racy can be achieved even when the surface of integration
coincides with the iron-air interface provided that the dis-
cretization is appropriate. In connection with BEM-FEM
coupling, the MST method is easy to implement in an
existing code, because no additional surfaces have to be
introduced for the integration.
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