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ABSTRACT
A new iterative algorithm for calculating the electromagnetic scattering
from planar, periodic gratings and grids was developed. Results are
compared with the moment method and the Spectral Iteration (S.I.T.)
method. The Secant approach is used in conjunction with the Spectral
Iteration Approach to achieve convergence. It is shown that the Secant
approach, which does not depend on the evaluation of numerical
derivatives to achieve convergence like thé contraction—corrector S.I.T.
method, yields good results. Finally, suggestions for applying this

method to two dimensional structures are included and discussed.
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1. INTRODUCTION
Over the years, many numerical methods have evolved for solving the
problem of electromagnetic scattering from periodic structures. The most
popular approach, the method of moments [Harrington, R. F.], usually
requires large amounts of computer memory when applied to periodic
surfaces, although there are method of moment techniques that use Floquet

information which improves this situation [Munk, B. A. and G. A. Burell].

Another technique, the Spectral-Iteration technique (S.I.T.) [Tsao, C. H.

and R. Mittra] circumvents this memory requirement, but suffers from
convergence problems.

Brand [Brand, J. C. and J. F. Kauffman] applied a corrective scheme
that not only solved but accelerated the convergence problem. This
method, however, depends on the evaluation of numerical derivatives to
generate a series of convergent iterations. In some cases the
computation of the derivatives can be so critical that the new corrective
scheme fails to converge. This paper offers an improvement over Brand's
method by using the Secant method instead of the contraction mapping
approach.

The reasons why the contraction corrector-S.I.T. method fails to
converge for two dimensional problems are discussed.

Results obtained by this method are compared with other theoretical
and experimental data.

2. FORMULATION

It can be shown [Tsao, C. H. and R. Mittra] that the incident H

field can be expressed in terms of the aperture electric field Ea as:
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where the tilde (™) symbol is used to denote the transformed quantity.

The parameters an and an are the Floquet modes and are given by:

@ = 2m/a - k sinB cos ¢ (2)
an = 2m/b sin Q - 2m/a cot @ + k sinb sin ¢

The Fourier transform of Green’s function is given by:

- (-372) (@ -2 - p2)2 (3)
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Equation (1) applies only to the aperture region shown in Figure 1 and in

order to include the contribution of the H field along the conducting

strips, the current densities have to be added to equation (1) to yield:

a B k2—a2
mn” mn mn -
Tcr’(j) =n x B + 2/juu z G Ea (4)
2 .2
i Fon K “%nPn ]

x exp[i(a_x+6,_y)]

Because the current density can only be present on the strips, a

truncation operator is used which is defined by:

X(;3 for r in the aperture
Tcr{X(;S} =
for r in the conducting region
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Tcr'{X(;)} = the opposite of Tcr

For gratings, Q = 00°

, b= ©, and one ends up with the one dimensional
problem.
To solve equation (4), Tsao and Mittra developed an iterative scheme

which basically can be expressed in terms of the electric field only as:

iR

-1

Et(i”) =F ! G, F{(ju/2) [Tcr'{ﬁtin" + (2/jom)

-1 = -1 o inc

F G0 F Tcr(Et )]}] Ht }] (5)
where:

2 2
N amnﬁmn k -amn
Co = G (6)
2 .2
an—k B mann

F stands for the Fourier transform and 1“_1 for its inverse. In this

form, equation (5) does not converge for strip spacings of one wavelength
or less. Brand imposed a corrective scheme to avoid this convergence
problem. An alternative technique was developed, called the Secant
Spectral Iterative method [Middelveen, R., C. G. Christodoulou, and J. F.
Kauffman]. This method avoids the calculation of numerical derivatives
which are required in Brands's technique. To see how the Contraction and
Secant methods are used, equation (5) is expressed in an operator form

as:
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Ei*l = L(EH (7)

where L is an operator representing the right hand side of equation (5).

For equation (5) to converge the spectral radius of L should be:
p(L) < 1 (8)

One way to achieve this is to cast equation (7) as:

1

g(xi) - xi+ L(xi) (9)

by letting E

"
"

Define a new mapping G(xl) so that

o(xl) = ext+(1-0)g(x}) (10)

According to the contraction mapping theory [Rus, I.A] the transformation
G of a metric space X onto itself is Lipshitz continuous if there exists
a p, independent of x and y such that

d(G(x).G(y))<pd(x.,y) for all x,y.eX,
where d(x,y) is a proper metric in X. For ;trictly contractive mapping p
is less than one.

One Dimensional Case

For the one dimensional case the simplest possible metric d that can

be used to obtain the optimum 6 is chosen as follows:

|G(y)—G(x0)|< ply—xol for p<1 (11)
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Let y=x + 6 then
G(xo+6)-C(xo) <p
6

(12)

lc(xo + 5)—G(xo)|<plt’5l or

So the necessary and sufficient condition for contraction mapping

becomes:

™ <p (13)
Now substitute (10) in (12) to obtain:

|6(x0+6)+(1—6) g(xo+6)—6xo—(1—6) g(xo)|<p|5| or
lo+(1-6) €| ¢,

Setting p=0 in the above equation and solving for 6 yields:
8 = (dg(x)/dx)/(dg(x)/dx-1) (14)

This value of 0 is called the "contraction” factor since it will yield a
convergent scheme even in those cases where the basic iterative scheme of
equation (7) fails to converge. It should be noted here that in the
above analysis 6 is treated as a constant when in fact it is a function
of x. The reason for that treatment is that 6 is solved in the
neighborhood of a solution (root) X, where the values that 6 acquires are
approximately equal. Therefore, 6 can be assumed to be constant within
that particular neighborhood.

Two Dimensional Case

In two dimensions, the basic iterative scheme of equation (10) is
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given by:

51 o11 o12| [x*| [(1-811 -e12| |g(+*.v™) e y™M

[
+
I

(15)

n+1 n

821 622 -621 (1-622)] |h(x".y™) H(x™,y™)

Now it is easy to set all four partial derivates Gx, Gy, Hx and Hy equal

to zero to obtain:

Gx = 011+(1-611) g 612 h =0

Gy = 012+(1-611) g -612 h =0

Hx = 621-621 g+ (1-622) h =0

Hy = 622-021 g + (1-622) h =0 (16)

Solving this system of equations for 611, 612, 621, 622 yields:

h.g +g, (1-h )

611 = hxgy"(l_gx)(l_hy) (17)
812 = %y (18)
h g ~(1-g,)(1-h))
hX
821 = (19)
h g ~(1-g,)(1-h)
h 1-g_)h
822 = K&yt (178 )0y (20)

hxgy—(l-gx)(l-hy)
Again, this choice of 8's works very well for the one dimensional problem
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but it does not lead to convergence for the two dimensional wire mesh
problem.

To explain why this method does not work for the two dimensional
problem the theory for constructing convergent iterations for a pair of
transcendental equations 1is invoked. According to this theory the

original system of equations

xn+1 - G(xn,yn)

yn+1 = H(xn.yn) can be written as:

= el (LY =TI Y v = eGPy

Y = Pele Py ey v = HOE YR (21)
Note the similarity of the above equation with equation (15). The

parameters a, B, v and & play the same role in equation (21) as the
relaxation factors 611, 612, 621 and 622 in equation (15). To find the
root of equation (21) it is desired to determine a, B, ~ and &5, by the
four conditions that the first partial derivatives of G and H are zero at
some point (x,y) that hopefully is near the root. Note that the unknown
parameters enter.linearly in the same way as 8’s do in equation (15), so
the calculation of the partial derivatives Gx’Gy'Hx and Hy poses no
problem. For the case of transcendental equations, it is known that this
method of constructing convergent schemes works provided that the partial
derivatives gx.gy,hx and hy DO NOT vary very rapidly in the neighborhood
of the root (xo.yo). Thus, although it is easy to produce a G and an H
that are well behaved at the root (xo.yo) they may behave quite badly a
small distance away. If this strategy is to be successful, G and H must
not only have small partial derivatives in some region, but this region

must also include the desired root. For the two dimensional wire mesh it
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was found that the derivatives gx.gy, hx and hy vary very rapidly,
especially at points close to the edges of the wire. So this fact, and
the lack of knowledge of the region within which a root exists, causes
this method to fail.

For the Secant Method a different approach is taken. First we

define a residue vector F defined by:

F(E) = L(E)-E (22)

The value of F is actually the error in the solution of equation (7).

The secant method technique is applied to equation (22) as:
et - lprEh) N/ (FED-FET)] (23)

It should be noted that the form of this equation is good only for one
dimensional periodic structures (gratings) and that it has to be applied
at each sampling point. Numerically, the secant method has an order of
convergence of 1.62 [Traub, J. F.].
3. TWO DIMENSIONAL PROBLEM

For two dimensional problems, such as grids, the formulation of the
Secant method is more complex. In_this case the problem becomes the
fitting of a surface at three points [Acton, F. S.]. We actually seek a
common root for Ex(x.y) and Ey(x,y). In such a case this method is
summarized as follows:

1. Given three points in (x,y) plane, fit planes to the two

surfaces, Ex and Ey. and determine the point of intersection, point

(x4:54)-
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2. Substitute one of the first three points by (x4.y4).

3. Repeat steps 1 and 2 to convergence.
It should be noted that there are several degrees of freedom in choosing
which point to substitute at each iteration. Geometrically, this method
fails if all points are collinear due to instability. So one should
choose the three points that will maximize some measure of noncolinearity
[Froberg, C. E.].

Some Computational Details:

To carry out step one of the above mentioned process we start with the

general plane equation:

ajxta y+z = m (24)
. . th .

Substituting the n~ point on the Ex surface we get:

alxn+a2yn+Exn =m (25)

N\

Subtracting this_ equation from the general plane equation on the (x,y)

plane yields:

al(x—xn)+a2(y—yn) = Exn n=1,23 (26)

Similarly, for the Ey surface we obtain:
a3(x—xn)+a4(y-yn) =E n=1,23 (27)

yn

After some manipulation these equations can be decoupled and end up with
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the following conditions for solving for x and y:

x—xl X—X2 X—X3
E, Eo, Eg| =0 (28)
E E E

yl y2 y3

and

VY Y Vy YV

E, E, Es| =0 (29)
E E E

v1 y2 y3

Also, to avoid having colinearity the following condition should be

satisfied:

a,a,ma,3, # 0 (30)

In general, stability in two dimensions is a much more difficult

quality to handle than in one.
4. NUMERICAL RESULTS

A couple of numerical results are shown here to validate the one
dimensional algorithm. Figure 2 depicts the electric field across a unit
cell with a large strip size. The result is in good agreement with
Brand's result. In Figure 3, the reflection coefficient predicted with
this method is compared with those reported by Brand and Wait [Wait, J.
R.] for various cell widths. In both examples 128 samples were used.

These results were run on a VAX 11/750 machine. Table 1 shows the

number of iterations required for different numbers of sampling points.
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The 32 sample points with 8 iterations require 5.25 seconds of CPU time
while with 512 sampling points and 20 iterations it takes 38.58 seconds
to converge. It was found that a sampling number larger than 128 will
not lead to any significant change in the value of the reflection
coefficient.

It should be mentioned here that this method solves for both induced
currents and aperture fields whereas the FFT conjugate gradient method
can only solve for one variable at a time (current or aperture field).

5. SUMMARY AND CONCLUSIONS

An alternative derivative-free method was developed to ensure the
convergence of the spectral iteration approach as applied to the
electromagnetic scattering from periodic gratings. This method derived
from the original S.I.T. method to which a modification was made via the
secant method. The two dimensional problem was formulated and its

conditions for convergence stated.
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Table 1.

Sampling points Vs. Iterations required
Sampling points Iterations
32 8
64 8
128 16
256 14
512 20
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