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Abstract

The spectral domain method has proved to be a suitable analytical tool for the characterization of open,
symmetrical planar structures. The method requires the repeated calculation of matrix elements, which
each involves the time-consuming process of numerical integration over an infinite range. In this paper,
suitable basis functions for the expansion of electric surface currents on strips or electric fields in slots,
are provided. It is also shown how the use of these basis functions makes possible the efficient and rapid
calculation of the matrix elements.

1. Introduction

The spectral domain method has become an important tool in the analysis of microwave and millimetre
wave integrated circuits [1]. Of particular interest in this paper is its application on the characterization
of open, symmetrical planar structures where substrates are assumed to be infinitely wide {2-6]. The
method generally requires a significant amount of analytical preprocessing, but the introduction of the
irnmitance approach [2] has simplified the derivation of the dyadic Green’s function elements. However,
some practical difficulties are still encountered during the implementation of the method, and in this paper
we show how these may be overcome.

Application of the immitance approach yields the spectral dyadic Green’s function for the planar structure
under consideration. The unknown electric surface currents on strips (or electric fields in slots) are
expanded into finite sets of basis functions. For a solution of the dispersion characteristics, the method
requires an iterative search for the value of the axial propagation constant, 8, which renders the
determinant of a square matrix to zero. The matrix elements need to be recalculated during each iteration.
The computation of each individual matrix element requires numerical integration over an infinite range,
where the integrand contains basis functions that have been used in the expansions. These calculations
are the most time-consuming steps in the implementation of the method. Due to the slow rate of
convergence of certain integrals, difficulties are encountered in attempts to attain the required accuracy
tolerances during the numerical integration. In this paper, we provide suitable basis functions for the
expansion of unknown electric currents or fields. The use of these basis functions facilitates the efficient
calculation of the matrix elements.

2. Suitable basis functions

Consider the general multilayered planar structure shown in Figure 1. It consists of a number of dielectric
layers, with strips and/or slots spaced symmetrically about the y-axis between the different layers. The
structure has infinitely thin metallized surfaces with infinitely wide dielectric substrates, and is
homogeneous in the z-direction. It may be analyzed in the spectral domain, with the Fourier transform
defined as
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The electric surface currents on all finite width strips and the transverse (with respect to the y direction)
electric fields in finite width slots are expanded into finite sets of basis functions. Using the immitance
approach [2], equivalent circuits may be constructed, where the expanded quantities act as current and
voltage sources respectively. From the equivalent circuits, the elements of the spectral dyadic Green'’s
function are obtained in closed form.

Figure 1  Symmetrical multilayered planar structure.

In symmetrical planar structures, the strips or slots in a specific plane y = y, belong to one of two
categories, namely

1. A single strip or slot centred at x = 0, as shown in Figure 2(a).

2. A pair of strips or slots centred at x = b and x = -b respectively, as depicted in Figure 2(b).

A multiconductor transmission line supports a number of fundamental modes. For symmetrical structures,
each mode belongs to one of two mode types, which we denominate as even and odd type modes. The
field distribution of even (0dd) type modes is characterized by the fact that a magnetic conductor (electric
conductor) may be introduced in the plane of symmetry without disturbing the fields. Depending on the
mode type, only basis functions which are either even or odd functions of x need to be included in the
expansion of currents on single strips or fields in single slots, The same symmetry considerations hold
for the case of a pair of strips or slots. It is however necessary to include basis functions which are both
even and odd with respect to the individual axes of a pair of strips or slots [6]. This could be explained
by means of the following example. Let Figure 2(b) represent a pair of strips, and we would like to
expand the electric surface current J, (x, y,) for an even type mode. From the symmetry considerations
it then follows that J, (x, y,) should be an odd function of x, and that its basis functions should thus all
be odd with respect to x = 0. However, the current distribution on the right hand strip would in general
not be symmetrical about its axis at x = b. This fact therefore requires the inclusion of basis functions
which are even and basis functions which are odd with respect to x = b in the domain |x - b| < w/2.
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Figure 2 (a) A single strip or slot and (b} a pair of strips or slots.

The surface currents or electric fields in the plane y = y, may be expanded using any kind of basis
functions, as long as they are non-zero only for |x| < w/2 in the case of Figure 2(a), or only for
Ix + #| < w/2 in Figure 2(b). The efficiency and accuracy of the method is, however, dependent on the
choice of basis functions. The singular behaviour of the electric surface currents parallel to the strip edges
or the electric fields normal to the slot edges should therefore be incorporated in the basis functions [7].

In general, the surface currents or electric fields in the plane y = y, may be expanded as

Fx,y) =Y a f.(x) G(x,y,) =Y, b, g,(x) 2)

where F(x,y,) and G(x,y,) represent J,(x,y) and J {x,y,), or E (x,y) and E, (x,y,). The terms a,
and b, are unknown coefficients, while f, (x) and g,(x) are basis functions which satisfy the edge
conditions. In the spectral domain, this becomes

N

Fla,y) = 3, o, f(e)  G(a,y) =3 b, 3,(a) @)

=l a=1

We define two sets of functions which may act as building blocks for the appropriate bases. These are
given by

T _,(2xiw)
JT-Gxiwy x| < wr2 @
=1,2,3,..
¢ (x,w) =1 -Qxiw)® U _ (2x/w) ™

£, (x,w) =

T,(x) and U, (x) are mth order Chebyshev polynomials of the first and second kind respectively. These
functions are shown in Figure 3 for different values of m. £,(x, w) is singular at |x| = w/2. Also note
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that ¢, (x, w) and {,(x, w) are even functions of x for m odd, and vice versa.

Figure 3(a) The function £, {x, w) for different values of m.
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Figure 3(b) The function ¢, (x, w) for different values of m.
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Their Fourier transforms are given by

E (a,w) =jm "Tw (awi2)  T(a,w) = jm Eaf'. J_(aw/2) (5)

where J,,(x) is the Bessel function of the first kind of order m. The basis functions f, (x) and g, (x) may
thus be expressed as combinations and permutations of {, (x,w) and £,(x,w) respectively. Table 1

provides suitable basis functions for the expansion of the different unknown quantities.

Single / | Strip / | Expanded | Mode Basis Fourier transform of
Pair Slot quantity type function basis function
ll Single Strip J.0xy) Even Sl w) G, W)
Odd Gon—1(X, W) ?h—l(asw)
J LX) Even §on-1(X,W) Eon- (W)
Odd §2(x, W) E.0(a,w)
Slot E(x,y) Even £,,(x,W) £, (o, W)
Odd £ (X, W) ézml(asw)
E (x,y,) Even $on 1 (X, W) }m—t(aaw)
Odd .C'zn(X,W) ?ZH(Q,W)
Pair Strip | J.(x,y) Even Gx+bw) — | =2 sin(ab) L(a,W) n odd
o &{x-b,w) 2 cos(ah) (o, W) n even
Odd Goc+bw) + | 2 cos(eb) §(o,W) n odd
6 Lx-b,w) =2 sin(ad) & (0, W) n even
J(x.y) Even £x+bw) + | 2 cos(ab) E,(a,w) n odd
6 £,(x-b,w) —2j sin(ad) E,(ce,W) n even
Odd Ex+b,w) — | =2 sin(ab) E(a,w) n odd
o &£, (x-b,w) 2 cos(ab) & (a,w) n even
Slot E(x,y) Even g x+bw) — | —2j sin(ab) E.(a,w) n odd
& &, (x-b,w) 2 cos(aed) & (a,W) n even
Odd Ex+bw) + | 2 cos(ab) E(a,w) n odd
6 £ (x-b,w) —2f sin{ab) £,(a, W) n even
E(x,y) Even Lo+bw) + | 2 cosab) Efow) n odd
6 {(x-b,w) —2j sin{ab) { (a,w) n even
Odd Lx+bw) — | =2 sin(ab) L(a,w) n odd
o {(x-bwW) 2 cos(ab) (o, W) n even
Table 1 The nth basis function for the expansion of currents or fields, where n =1,2,3, . . and

&= 41 for n 0odd and n even respectively.
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3. Calculation of the matrix elements

Application of Galerkin’s method together with Parseval’s theorem then resuits in the eigenvalue equation
which needs to be solved numerically [2-7]. The matrix elements that need to be calculated during the
process, are all of the form [7]

-

[ G(a,B) k,(a) k,(a) da
. ©)
2 [ G(a,8) A (a) h(a) da

L]

P(6)

1l

where G(a,B) is an element of the spectral dyadic Green’s function. h(c) and Aa) are Fourier
transformed basis functions pertaining to a domain with relevant dimensions denoted by subscripts g and
b respectively.

For closed structures, the integrand of equation (6) might have poles located on the axis of integration.
This necessitates the application of residue calculus techniques for the evaluation of the integrals [1,8].
These processes are considered to be beyond the scope of this paper.

In the case of open structures, no poles are located on the axis of integration, and therefore no special
pole extraction techniques are required for the calculation of the integrals. However, the matrix elements
are computed by performing numerical integration over an semi-infinite range, and often the rate of
convergence is slow. This presents difficulties in attaining the required accuracy tolerances. By applying
the following techniques, these difficulties may be overcome.

Using the basis functions defined in (5) and Table 1, we see that the product /,(c) k() consists of :

1. A complex constant term.

2. A term of the form o« " with r = 0, 1, or 2. For example, if either h(c) is proportionate to
$.(c,w) or hye) is proportionate to {.(a,w,), then r = 1. If neither A(a) nor A,(a) is
proportionate to {,, then 7 = 0.

3. A product of two Bessel functions.

4.  Zero, one or two sin(ab) and/or cos(ab) terms, where b = b, or b = b,. If both A () and A (a)
pertain to single strips or slots, no sines or cosines would appear in the product. If either of the
basis functions pertains to a pair of strips or slots, then the product of the bases contains one sine
or cosine term. Finally, if both A () and 7,(c) belongs to pairs of strips/slots, each would
contribute a sin{aeh) or cos{ab) term to the product of the bases.

When the product of two trigonometric terms appear in the integrand of equation (6), the following
identities are used to transform it to the sum of two terms.

sin(ab, ) sin(ab,) = 1 {cos[a(8, ~b,)] - cos[a(b, +5,)1}
cos(ab,) cos(ab,) = 2 {cos[a(b, -b,)] + cos[a(b, +b,)]} G

sin(ab, ) cos(ab,) = %{sin[cx(ba -b,)] +sin[a(b, + b,)1}
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Equation (6) may thus in general be rewritten in the form

P(B) = )j“, A, ] @Jt(aw‘,m)a(awz)pi(a) do

8
= A F,
ZO: F(8) @®
Pola) =1 p, () = sin{ab,) p,(a) = cos(ab,)
Py(a) = sin(ab,) p.(a) = cos(mb,) ps(a) = sin[a(b, +b,)]

Po(@) = cos[a(b, +b,)]  p,(@) = sin[a(b,-b)] p,(a) = cos[a(b, - b,)]

where k and ! are integers. A,, A, . . d; are complex constants, of which at least seven are zero.
Therefore, a maximum of two terms in the series need to be computed. Note that equation (8) is not an
expansion of the original integral in (6) - it is merely a general representation of all the possible forms
equation {6) might take on after the transformations of (7) had been applied. If, for example, the original
integrand in (6) contains the term cos(ad,) cos(ab,), the only non-zero A's in (8) are A and A;. For the
special case where b, = b,, the non-zero constants are A, and A,.

Fori # 0, the integrands of the F(8) terms are all oscillatory over the entire range. These integrals have
a poor convergence rate when it is evaluated with conventional quadrature routines. They may be
computed much more efficiently by treating them as Fourier integrals with the sine and cosine terms as
kernels. A special routine such as QDAWF [9] may then be used to evaluate these integrals. QDAWF
is an adaptive routine, designed to integrate functions of the form f(x) sin{wx) or f(x) cos(wx) over a
semi-infinite range. It integrates the integrand between zeros over a number of subintervals, and invokes
an extrapolation scheme in order to estimate the integral.

In general, the Fy(8) term may be calculated by using a routine like QDAGI [9]. QDAGI is an integration
routine designed to numerically evaluate integrals over an infinite or semi-infinite range. It initially
transforms the interval into the finite interval [0, 1], and then uses a 21 point Gauss-Kronrod rule to
estimate the integral. The integrand of the Fy(8) term is well behaved, provided that the basis functions
h () and h,,(oz) are not associated with the same single or pair of strips or slots. Inspection reveals that
the bases A (@) and Ay (o) then necessarily pertain to strips or slots that are on different vertical planes.

(If A,(cx) and h,(cx) are associated with different strips or slots on the same vertical plane, the constant A,
is zero, and therefore the Fy(8) term need not be computed.) The Green's function elements are then of
such a form that the integrand decays rapidly for large values of «, and therefore the integral converges
quickly.

However, when this provision does not apply, the basis functions A,(x) and A,(x) are defined over the
same domain (so that w, = w, = wand b, = b, = b). The integrand then decays less rapidly, which
causes the rate of convergence to be slow. As reported for the specific case of a single slot in [4], Fy(8)
may then be converted into a rapidly convergent integral by extracting its asymptotic form and evaluating
it in closed form. This is done by stating that

46



F,@) = | fa,8) da

©)

) ey sgl—. g

- [ [Fe.8)-F.(a.8)] dex + ff.(a,s) da

where f.(a,0) is the asymptotic form of the integrand. For cases where convergence is slow, the
asymptote is usually of the form

Folo,B) = C@) — B T (ewi2) J(aw/2) (10)

with C(8) a complex function. When |k — I} = 25 with s an integer (as was the case in [4]), the second
integral in the final expression of (9) is given in closed form by [10]

C(B) (-1y L(Bw/2) K(Bw/2) k=2l

[ 7.(@.8)de - b
0 C(B) (1) I(Bw/2) K,(Bw/2) k<l

where I_(x) and K_(x) are modified Bessel functions of the first and second kind respectively.
However, when |k — [| = 25 + 1 (i.e. an odd integer), this integral is not available in closed form. We

therefore need to modify the expression for F.(a,8) by replacing the Bessel functions with their
respective large argument forms [11], so that

and
I fm(a,ﬁ)da = C(ﬁ) (—1)5(:::41)!2 e—ﬁw (13)

The first term in the final expression of equation (9) is then a rapidly convergent integral, and is suitable
for efficient numerical computation with a routine such as QDAGI [9].

4. Example

Comparing the basis functions shown in Figure 3 with the conventional trigonometric bases in [3], [6]
and [7], shows that the two sets of functions are similar in form. The use of the Chebyshev bases instead
of the trigonometric bases, therefore does not result in a reduction (or an increase) in the number of
unknowns. For a given accuracy level of the final result, the same number of bases should be included
in the expansions, irrespective of the type of basis functions used. When the special calculation techniques
described here are not used, the CPU time required to compute the integrals is also largely insensitive
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to the choice of basis functions.

However, if we treat oscillatory integrals as Fourier integrals, and apply asymptotic extraction to slowly
converging integrals, the required CPU time is reduced significantly. As an example, we consider certain
matrix elements that are calcutated during the analysis of the semi re-entrant (SRE) microstrip section [6].
This structure is ideally suited to illustrate these techniques, since it comprises of both a single strip and
a pair of strips. Instead of the conventional trigonometric bases used by the authors in [6], we now utilize
the appropriate basis functions specified in Table 1 to calculate the following elements :

1.

P11(8) for an even type mode:
From the definition of the matrix elements [6, eq. (9)], we see that

Plg) - [ 21 (a,8) Fi@ (@) da
> (14)

=2 ] 2 (a,8) F i@ F i@ do

where Z !}(«,B) is an element of the spectral dyadic Green’s function, while f1,(e) is a Fourier
transformed basis function for the x directed current on the single strip. From Table 1, it follows
that f1,{(a) = &H(a, w,), which yields
L le
Pi@) = -87* | 2y (@,B)
a?

0

J(aw,12) J,(aw,/2) da (15)

If we compare this to equation (8), we see that A, = ~ 8 #* and 4, = 0 when i # 0. The integral
Fy(B) is evaluated as indicated in equation (9). An expression for C(8) is obtained by calculating
the Green’s function element for a > > 8, so that

2 (a,8) > =2 j (16)

w’ + f? wED(l +Er2)

and

c) = —J a7

wey(l+e,)

Q32 (8) for an even type mode:
From [6, eq. (9)], we see that
2@ = | 2./(e.) F ) Fo) da
- (18)

=2 [ 2(a,8) F i) Foe) da

0
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Substituting the bases yields

212 ,
o) - jizwiw, | 2D
[

J (aw,/2) J (aw,/2) sin(aT) da (19)

where 7= d + w,/2. The complex constants in (8) are thus given by A, =j127°w, and 4, =0
when i # 1. F,(8) is calculated as a Fourier integral.

SZ (B) for an odd type mode:
From the matrix element definition, it follows that

2@ =2 [ 27 (a,8) Fi(e) Fie) da (20)

0

which reduces to

5328) = 2mw,? f Z2(a,8) J,(aw,/2) J,(aw,/2) sin*(ar) do
0
= m2w,? [ 27%(e,B) Jy(aw,/2) J,(aw,/2) da

0

- 77w,? j 222 (a,B8) J,(aw,/2) J,(aw,/2) cos(2aT) do
0

= A, F,(B) + A, F,(B)

@1

The F,(8) term is treated as a Fourier integral with the cosine as kernel, while the integral Fy(8)
is calculated by extracting its asymptotic form. The latter is done by noting that for & > > §

22 - o fﬁz - je Ko (22)
Zzz (a!'ﬁ) a2 + Bz l wfo(er2+er3) 2 ]
so that
i jB? _ Jwp, 23
C(8) wey(e,, + €,5) 2 ()

These matrix elements were calculated on a Persetel PS8/90-3 computer, in the one case by utilizing the
special techniques described in section 3, and in the other case by simply integrating the integrands as
defined in equations (14), (18) and (20). The calculations were performed for an SRE structure with
dimensions w,/A, = 0.01, wu/A, = 0.02, d/\, = 0.005, t/A, = 0.01, s/A\; = 0.0025, ¢, = ¢, =2.2, and
with ky/8 = MA, = 0.7 . The integrals were calculated with a relative accuracy criterion of 0.001 (i.e. the
error should be smaller than 0.1% of the absolute value of the final result). The CPU times required to
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calculate the matrix elements using the two approaches are shown in Table 2.

=

Element | CPU time utilizing special | CPU time without special Il

techniques (seconds) techniques (seconds)
P1(B) 0.37 6.72
Q3 6) 0.20 0.93

SZ(8) 0.74 12.15 “

Table 2 CPU time required to calculate the different matrix elements.

For these examples, the calculation of elements with oscillatory integrands as Fourier integrals, and the
application of asymptotic extraction reduce the CPU time by factors of about 4.5 and 18 respectively.

5. Conclusion

Suitable basis functions for the expansion of unknown electric currents or fields as required by the
spectral domain method applied to a symmetrical planar transmission line, have been provided. We have
shown how through using these basis functions, the required CPU time for the matrix element calculations
may be reduced appreciably. Elements with oscillatory integrands are treated as Fourier-type integrals,
while asymptotic extraction is performed to enhance the convergence rate of integrals with non-oscillatory
integrands. Application of the latter technique has been limited to structures with single strips or slots,
but with the additional information furnished in this paper, this procedure may now be utilized during
the analysis of any symmetrical multiconductor transmission line.
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