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Abstract

Monostatic rcs characterisation using integral
equation methods in the frequency domain requires
the solution of very large matrix equations with
multiple right hand sides. Although costly for a
single right hand side, direct methods are
attractive in that subsequent right hand sides are
very cheap. Iterative methods are much cheaper
for a single right hand side, but if the whole
solution must be repeated for each, they become
much more expensive. We investigate here the
performance of a simple modification to the GCR
algorithm, which allows solutions for an
essentially unlimited number of right hand sides to
be obtained for a modest multiple of the cost of the
first. For the cases investigated, with up to 360
right hand sides an bodies up to 15 wavelengths
long, with matrices up to 20,440 by 20440 in size,
this multiple was below ~10. Costs seem to rise
with the number of right hand sides till the surface
field is in some sense characterised, and thereafter
subsequent illumination angles are essentially free.
An investigation of cost scaling ana set of spheres,
ranging from ~1 to 7 wavelengths in diameter, seems
to indicate the cost of full monostatic
characterisation to scale with about the fifth
power of frequency.

1. Introduction

There are two main cost components in the solution
of large scattering problems, such as rcs evaluation,
via frequency domain integral equation methods.
The first, scaling with frequency f to the fourth
power, is the cost of formation of the dense matrix
describmyg  interactions between parts of the
scatterer. The second is the cost of solving the
resulting matrix equation.

For the direct solution schemes most usually
employed, this solution cost scales with N¥, where
N is the order of the matrix equation, or
equivalently with f*. For all but small problems
matrix solution is thus the dominant cost. Because of
this large cost, there has been increasing attention
paid of late to the use of iterative methods for

matrix solution™ It is generally concluded from
such studies that iterative schemes require much
less time to compute, often by an order of magnitude
or more, than would be taken to solve the same
systemn by direct methods. Cost reduction by a large
multiple is obviously welcome; even more so would
be if that multiple itself increased with problem
size, corresponding to a reduction in cost scaling
below the f* of the direct approach. This has
indeed been suggested’, but the evidence is as yet
inconclusive’.

For practical radar cross secton analyses, it is
necessary to determine the scattered field caused by
fields incident from a (large) mmber of directions.
Direct solution methods are then attractive. Once
the f* cost of matrix factorisation has been paid,
solutions for large numbers of incident waves (right
hand side vectors in matrix equation terms) can
each be found ata cost scaling with f*. Even if the
required number of right hand sides scales with the
second power of frequency, the overall cost of a full
monostatic evaluation still only(!) scales with
frequency to the sixth power.

This interest in multiple illumination angles is a
discouragement to the use of iterative methods. One
approach using them is simply to start the solution
afresh for each right hand side. Naturally, i f more
thana few right hand sides are required, any cost
saving over the direct appreach is lost. 1f the
required number of right hand sides scales with the
second power of frequency, the overall cost then
scales with something approaching f*.

We present here methods which seem able to
provide iterative solutions for additional
monostatic illumination angles (right hand sides)
at essentially ro cost, once sufficient right hand
sides have been analysed to characterise, in some
sense, the surface field.

There have been a few attempts to address this
multiple right hand side issue for iterative
solutions, which we will discuss prior to describing
the present approach.



In general the quality of the initial guess has only a
modest affect an the number of iterations required
for convergence . of an iterative method™".
Consequently, the approach of using the solution
from one incident wave as the starting point for the
next offers little benefit.

For the sparse matrices resulting from a finite
element discretisation, Smith and colleagues®
effectively expanded several solutions in terms ofa
single set of search vectors, with some success.

In a very recent paper Boyse and Seidl use the
GMRES algorithm (and see references cited in Boyse
for more details of the block GMRES and the
multiple right hand side variant thereof). In
essence the problem is first solved simultaneously
for a modest number of right hand sides, distributed
uniformly over the span of right hand sides of
eventual interest, using a block GMRES approach.
Whilst this costs more than for a single right hand
side, it is not a large multiple of the cost
Intermediate values are then found, using the
orthonormal basis for the Krylov sub-space which
was found during the solution for the initial right
hand sides. It was found necessary to ensure that
the number of right hand sides solved for initially
was carefully chosen. This rumber of right hand
sides was noted as needing to be sufficient to
represent in some sense the RCS distribution sought.
An angular separation such as to allow rather more
than two samples per wavelength was suggested. If
this is not observed, intermediate solutions found
subsequently tended to have significant errors. Too
many initial right hand sides, however, caused
slow convergence of the block GMRES solution.
Owerall, significant reduction in time relative toa
direct solution was observed.

The GCR (generalised conjugate residual)
algorithm' was used by Soudais’ for solving the
matrix equations resulting from analysis of
scattering from a ~1 wavelength mixed dielectric-
perfect conductor target. A finite element and
symmetric Stratton-Chu treatment were combined,
giving a matrix system which was symmetric, and
sparse in the finite element regions. Multiple right
hand sides were tackled by what seemed to be a
very effective, and attractively simple,
modification. to the normal GCR algorithm. As
with most iterative methods, the solution is
changed at each iteration by moving a particular
distance (the step length) in some direction (the
search direction). The computationally expensive
part of the algorithm is the finding of this search

direction. In the modified algorithm, the search
direction is found for only that right hand side
currently exhibiting the largest residual. The
solutions to all right hand sides are advanced in
this direction, but for a different {and optimal) step
length in that direction for each.

In the sections which follow we will extend the
application of this approach, to the dense and
unsymmetric matrices which result from a normal
integral equation discretisation, and to analysing
scattering from multi-wavelength ‘stealthy’
targets. A major aspect of interest will be the
interaction of the rumber of iterations required (a
measure of the computational work), with the
number of right hand sides analysed, and the body
size in wavelengths. It is this latter which
determines the Yjaggedness' with angle of the
monostatic radar cross section, and consequently the
rnumber of illumination angles required to
characterise it. If the number of iterations continues
to rise in proportion to the mumber of illumination
angles, till the point that the response is fully
characterised, there may be no reduction in cost
scaling; if otherwise, there could be.

In the next section we will summarise the integral
equation formulation, and outline the normal GCR
algorithm, and the modification to handle
multiple right hand sides. Section three will
present results from its application to a number of
rcs problems.

2. Formulation

The formulation is well known, and only a brief
description will be given here. The MFIE for
scattering from a smooth, closed perfect conductor is

LHI(r) = () +
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where the integrations to obtain the field at surface
location r are over the rest of the surface of the
scatterers’ andr', with n the unit normal, and R the
vectorr-r'. The incident wave is H™. We employ a
curvilinear, isoparametric discretisation, with
Gaussian quadrature, Fuller details are given
elsewhere’; the result is a (complex) matrix
equation of the form:

[AJH=H" (2)



This is to be solved with tens or possibly hundreds
of incident wave vectors H™.

We use the unpreconditioned GCRE algorithm,
which we first cutline in its normal 'single right
hand side’ form.

To solve

Ax=b (3)
Initialise:
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Calculate the step lengtha:
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If not, calculate search direction vector and matrix
vector product for the next iteration:
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As well as the main system matrix, we see that the
sets of vectors p™ and Ap™ must be stored.

The modifications required to solve for multiple
right hand sides are very simple. In the
initialisation stage a residual and initial search
direction is obtained for each right hand side.

At equation (5) a step length is calculated for each
right hand side, and the solution and residual
vectors incremented. Between (7) and (8) the largest
{(normalised) residual is found, by searching
through the residuals associated with all right
hand sides.

Assuming it fails the test (8), a single search
direction is calculated in (9) and (10), to suit that
right hand side found to have the largest residual.
This step, involving matrix vector multiplication,
is the one where the principal computation lies. A
different step length for each right hand side is
then calculated in {5), which is used with the
conumon search direction to increment each solution
in (6). We see that at each iteration the parameters
selected most suit that right hand side currently
furthest from solution. As a result that right hand
side improves rapidly, with some other right hand
then side taking its place as the current worst. Thus
are all right hand sides shepherded to solution

maore or less in step.

Each right hand side is seen to increase by one the
mumber of vector-vector manipulations required at
each iteration (multiplications in equation (5)), and
vector-vector additions in equations (6), (7) and
(8)). Storage is increased by the need to store the
evolving solution and residual for each right hand
side. For problems of practical interest, these
increases are a modest fraction of the requirements
for a single right hand side. As the solutions are
attained, it would be possible to continue to iterate
only for those whose residual is not yet below the
specified tolerance. Although this would save some
cost, the saving would be small, and the refinement
has not been implemented.

3. Demonstrations

In the sections which follow we present results of
the analysis of targets illuminated by many
different incident waves. Of particular interest
will be the wvariation of the total mmber of
iterations with the number of illumination angles,
and, for practical purposes, the variation of the rcs
over that range of illumination angles. Does the



number of iterations rise with illumination angles
as long as new’ information is being gained?

3.1 Equatorial scans

We consider first a monostatic equatorial scan of
the NASA almond, illuminated at7 GHz, making
it ~6 wavelengths long. Discretisation employed an
average nodal separation of about 1/9 of a
wavelength, and throughout a termination residual
of 10* was employed. This is a value recently
suggested" as appropriate for this discretisation,
for the curvilinear isoparametric modelling
employed.

Figure 1 shows the variation in the number of
iterations required with the number of illumination
angles. The monostatic scan was computed as a
single run, with respectively 1, 5, 10, ... up to 180
illumination angles (right hand sides) in tum.
Cases were studied with these illumination angles
distributed uniformly over 18¢F, 90F, 45" and 15,
forming the lines shown on the figure.

We see thatin each case the number of iterations
required initially rises with the rnumber of
illumination angles examined. For the 180 case,
this rise is essentially complete some time before
~30 illumination angles, by when aboul six times as
many iterations are required as are required for a
single illumination angle. By this point we are
gaining ~30 solutions for a multiple of ~6 in the
work required. From then on solutions for additional
angles are obtained without further iterations; the
maximum 180 considered are similarly gained with
this same multiple of ~6 over the cost of one. (As
discussed in section 2 above, there is still some
modest angle-dependent cost, in the vector
manipulations of (5) - (&). This is very small in
practice, and will be neglected in subsequent
discussion.} Similar comments can be made about
cases with the illumination angles distributed over
a smaller range. As the extent is reduced, in each
case the "plateau’ in iterations occurs at a lower
number of iterations, and after fewer illumination
angles. For example, for a 15° degree range, the
plateau in number of iterations is reached after
about 10 illumination angles compared to the ~30 of
the 180° case. This is consistent with the number of
iterations being a function of the amount of
information being sought; reducing the range reduces
the amount.

There is an interesting parallel here with the
ohservations of Boves and Seidl’. Using their very
different approach, they found costs to rise

essentially linearly with number of illumination
angles till the response was partially
characterised, and that subsequent illumination
angles were essentially free.

However, the response in that reference was
considered primarily in terms of rcs, although the
actual unknown for which we are solving a set of
equations is the surface field. The monostatic rcs,
the guantity actually sought, and the surface field
at any particular surface location, are very
different functions of incident illumination angle.
The (monostatic) rcs generally is a much less smooth
a function of incident illumination angle than is the
surface field. (For simple geometries it can of course
be much more smooth, as the case of the monostatic
res of a multi-wavelength sphere attests.)

We find some empirical evidence that the plateau
is reached when the density of illumination angles
is such as to represent reasonably the variation of
surface field with illumination angle. In figure 2 is
shown an indication of the variation of surface
field with illumination angle for the six
wavelength almond, by selecting a node (at -4.1%, 0,
0) and component (the real part of the y component)
at random. The locations of 30 uniformly spaced
illumination angles are marked an this figure, and
it could be argued that results from only this many
illumination angles provide a reasonably good
representation of the surface field variation.

The corresponding res is shown in figure 3, with the
solid line obtained by illumination from 180 angles,

~ and the 30 locations again marked. (This present

paper is not concemed with characterisation of an
res code, but for completeness this figure also shows
the measured rcs'?, albeit with the measured values
obtained from an enlarged photocopy of the
published measurements. As is seen, agreement of
the computed values with this is good.) We see
that much of the detailed structure of the res 1s not
revealed by using only these 30 angles; lobes an the
RCS plot are generally seen to be significantly
narrower than on that of the surface field.
However, with the 30 illumination angles
corresponding to the start of the plateau, this
detail is obtained essentially free. (We have nol
investigated the point, but this might be interesting
to consider in the context of the 'monostatic -
bistatic approximation™. Here relatively widely
separated illumination angles can be used to
provide a good approximation to the finely
sampled monostatic response. It may indeed be that
similar criteria apply.)



Timings may be of interest. On a Dec Alpha 600
workstation, the matrix took about 16 minutes to
form, and 25 minutes to solve for each illumination,
giving a total time of 75 hours for a 180 illumination
angle characterisation. Using the multiple right
hand side approach, these same 180 solutions were
obtained in about 3 hours.

As a further example, tigure 4 (inset) shows the
monostatic res of a 11:1 cylindrical dipole, with
hemispherical end caps, discretised with 3026
nodes, and illuminated such as to make it ~15
wavelengths long. This figure was drawn from
results evaluated with 360 illumination angles 0.5
apart, and shows approximately 60 distinct peaks
over the 18(F. [t is not shown, but the variation of
surface field with illumination angle is not
surprisingly very much smoother than the rcs
this 15 wavelength body; indeed it is very smooth
for many surface locations, with ~15 peaks being
the maximum found. Figure 4 shows the variation of
the number of iterations with the rmumber of
illumination angles. Again, we see a distinct
plateau occwring, here after ~90 illumination
angles. This is sufficient to represent reasonably the
surface field variation, but not to characterise the
equatorial rcs variation. Here the full equatorial
menostatic  result, employing 360 illumination
angles, is obtained for ~4 times the cost of a single
iterative solution. For this size of matrix, 6052 by
6052 (complex), we generally find a single iterative
solution to cost rather more than an order of
magnitude less than a single direct solution.

3.2 Mear head-on rcs

Whilst it is conventional to analyse equatorial
sweeps as above, practical interest may probably be
concentrated on a relatively small solid angle
centred around head-on, possibly biased towards
illumination from slightly below. We have
analysed this same 6 wavelength almond, with
illumination in the range 0 to 16" vertically and 0 to
16" horizontally from head-on (where symmetry
naturally makes only this one quadrant necessary).
A uniform increment in each angular coordinate was
used, with computations made with 16 by 16 (256)
illumination angles, 8 by 8, 4 by 4, 3by 3 and 1 (head
on) illumination angle. The inset in figure 5 shows a
representation of the rcs, plotted from the 256
illumination angle result. Figure 5 shows the
variation in the number of iterations with the
number of illumination angles, again exhibiting the
characteristic 'plateau’, here at about 7 times the

number of iterations
illumination angle.

required for a single

3.3 Cost scaling

As noted earlier, there is mo clear evidence
regarding cost scaling for single illumination angle
(single right hand side) solutions via iterative
methods. The position is naturally made more
complicated once multiple illumination angles are
included. We can present here some empirical
evidence, but only tentative observations and
conclusions can be drawn.

As discussed elsewhere®, fineness of discretisation
(expressed in terms of degrees of freedom per
incident wavelength) itself can influence the
number of iterations required. We will here employ
spherical scatterers of a range of sizes, as uniform
discretisation is difficult to ensure on (say) the
almond.

Whilst obviously it is machine dependant, some
actual times might be helpful. All jobs were run ona
S6Mb SGI Indy R5000. The matrix for the biggest
mesh, 20440 (single precision complex) x 20440 in
size, occupied 3.2 Gb. This was formed once, and
read in for each iteration. Each such iteration took
~10 minutes, of which almost half was reading from
disk. At the plateau of figure 6, mentioned below,
some 680 iterations were required, corresponding to
a time of 110 hours for the full characterisation.

We plot in figure 6 the number of iterations required
versus illumination angles for a 180° scan of a series
of spheres. These range in size from 1.6 wavelengths
in diameter (1060 by 1060 matrix) to 7.12
wavelengths (20440 by 20440 matrix). They
display behaviour qualitatively identical to that
of the almond, with a flat plateau in number of
iterations required being reached after only a
modest number of illumination angles. Here,
though, the monostatic rcs is of course characterised
fully by a single illumination, whereas the
computed surface field distribution is dependant on
the illumination angle, lending further evidence to
the observation that it is the latter which is the
determinant of computational work.

In figure 7 we plot the variation of the number of
iterations required at this plateau versus the
diameter of the sphere in wavelengths. This
number of iterations for full characterisation seems
to rise roughly linearly with problem size. As the
matrix size varies with the square of the body size
or frequency, the cost of each iteration scales with



the fourth power of frequency, giving a total cost
scaling in this particular case with about the fifth
power of frequency.

4. Di . i Conclusions

A very simple modification of the GCR approach
has been shown to be effective for analysis of
multiple right hand sides for the large, dense and
unsymmetric matrices of  multi-wavelength
monostatic rcs calculations.

It seems possible to obtain solutions for a large
number of different illumination angles for a modest
multiple of the cost for a single right hand side.
Typically, forthe cases examined, this multiple is
~<10 for an essentially unlimited mumber of
illumination angles.

As noted, the cost scaling of iterative solutions for
single look angles is unclear. Starting from this
point, we conclude from the present study:

- Costs for multiple look angles are independent of
the mumber of look angles once more than some
threshold number of look angles is considered.

- This thresheold seems to be related to the mmmber
required to characterise the surface field, not the
number required to characterise the rcs.

- How the mumber required to characterise the
surface field varies with frequency is obviously
geometry-dependant.

- On many geometries (eg the almond studied) the
surface field needs far fewer angles to characterise
it than does the rcs.

- The net result is that, for a body where this is
true, monostatic res characterisation can be obtained
for a small fraction of the cost of repeated ab initio
iterative solution of the matrix equation.
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Figure 1

NASA almond, 7 GHz (6 wavelengths long); Iteratioms required versus rommber of
llumination angles, with angular range spanned by the illumination angles, measured from
head-on, as a parameter.
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MNASA almond (7 GHz, & wavelengths long) Real part of y-component of surface H field at
surface location (-4.17, 0, 0} as a functon of monostatic incident illumination angle. The

llumination ranges from 0 to 180 in the equatorial (V¥V} plane {solid line), with results
every 6 degrees {30 uniformly spaced illumination angles) additionally marked by drcles.
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