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ABSTRACT

Finite difference techniques are widely used in the
solution of electromagnetic boundary value problems, but
seldom employed with static or quasi-static field problems.
Historically this departure was warranted by (1) the relative
ease by which problem geometries can be modeled using the
finite element counterpart, and (2) the lack of symmetrical
properties and large banding in the governing matrices.
Presented here are some methods for generalizing the finite
difference approach so that problem definition is easily
modeled and Hermitian matrices result. The technique uses
a conventionat finite difference grid placed in the work area
irrespective of the problem geometry. Finite difference
equations are wrilten in their simplest form across the
problem work space. Boundary conditions are then
introduced after the bulk equations are in place. The
problem is solved using a non square governing matrix in a
least square sense, This is accomplished most easily by pre-
multiplying the matrix equation by its transpose. An
alternative to the preconditioned conjugate gradient technique
for solving the resultant matrix equation is to seek the
eigenvalues for the system and express the answer as a sum
of the eigenvectors. Results are shown for a salient pole
motor. The technique is very useful in handling rotating or
translating problems where considerable attention must be
given to the proper connection and re-connection of the grid
points.

BACKGROUND

Finite difference methods are often used to solve
complex electromagnetic interaction problems. Because of
the way in which the defining equations are represented, the
banding of the resulting matrix equations can be quite large,
It is also difficult to maintain symmetry in the matrix in
order to speed up the solution. Many techniques have been
proposed using equivalent circuit models and successive over
relaxation techniques to address some of these
problems[1], but odd geometries continue to present
difficulties in representation of the constitutive equations. On
the positive side, finite difference methods are intuitively
appealing; goveming equations are easily expanded and
represented on a point by point basis in space. With
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homogeneous grids containing equally spaced points, the
problem setup is quite straightforward [2].

At issue in this paper is how to apply the attractive

features of the finite difference technique in problems with
generalized geometries. The following two additional
problems are invoked with the generalized geometry :
a. Representing the first and second-order derivatives in a
nonuniform grid, one which °fits* the problem boundaries.
b. Addressing the issue of iteratively refining the grid to
enhance solution accuracy without reformulating the
problem,

The technique offered in this paper has the
flexibility of addressing the above problems, and
springboards from the excellent work of Girdinio et
al[3],[4]. Among other things, they point out the
benefits of using not 4 but 5 points to represent the two-
dimensijonal Laplacian operator as far as the freedom it
affords in placement of points. The present work begins at
that point and applies the idea not only to the internal
volume to be modeled, but also to the enforcement of
boundary conditions. The emphasis in this paper is on an
easy implementation of the finite difference equations and
iterative grid refinement to enhance solution accuracy.

THEORY

Consider a problem where the H field is represented
as cither a total or reduced scalar potential. For the latter,
we use

A-T-vo )

where T is the magnetic intensity source term and is found
in the current carrying region using the Biot-Savart law.
The problem reduces to solving Laplace's equation for the
unknown ®,
V(RV0)=Vp V& +p V20 =0. @
The simplest discretization for a multi-region
problem is to continue a homogeneous grid through the
problem space as indicated in Figure 1. The Laplacian
operator is easily represented in either 2 or 3 dimensions for
such a grid,

Referring to Figure 2, the 2-D expansion about
point 0 is
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Figure 1, Grid continuation through the boundary
of a dissimilar medium,
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where Ax, Ay refer to the grid distance between points in the
x and y directions. The problem setup proceeds by writing
the Laplacian operator for @ in all regions. It is assumed
the material inhomogeneities are at least piecewise
homogeneous, i.e., that the Vp terms are negligible within
any such piecewise homogeneous region. The only
precaution 1o be taken is to use points from a common
region when using a finite difference representation of the
problem operator such as (3). In close proximity to the
boundary interface, the one-sided second-order derivative
should be used to represent the Laplacian. The second-order
horizontal derivative represented in terms of the potential at
adjacent horizontal positions b and ¢ in Figure 1 is
Fo_0,20,+9,

i yve &AxY @

The final term in (4) indicates the error terms are correct to
order Ax3.

The one sided expansion is the same regardless of
which side of the boundary the derivative is taken. After
writing (2) for all the grid points in the problem, the result
is a N by N matrix for N unknowns. Over the bulk region of
the problem, the standard finite difference representation of
the Laplacian is employed because of its ease of
implementation. This is, in fact, the motivation for using the
finite difference method as opposed to the finite element
method. The contribution of this paper is to show that it is
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possible to set up an evenly spaced finite difference grid
irrespective of boundaries, and match boundary conditions
after the bulk system equations are modeled. Furthermore, in
a standard grid, 4 surrounding points (or 6 in 3D) are used
to represent the Laplacian, Here it is shown that using five
neighboring points (or 9 points in 3D) provides flexibility in
modeling a variety of shapes while preserving the numerical
accuracy to order A where A represents the largest
distance to any one of the neighboring points. Indeed, the
technique allows one to place points on the interface
randomly. The only penalty is the requirement of solving a
6 by 6 matrix for each interfacial point. The technique is
also useful for increasing accuracy where the field has a
high gradient, i.e., adding points randomly within a certain
region of the problem.

This is made clear by the alternative representation
of the second derivatives on x and y at point 0 in Figure 2,
obtained by the set of equations

o® a0
¢J=Qo+—°Ax +—2Ay,+
& oy )
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3 2 {Ax)z+2 > (Ay)+ 5 axa;Ax y+ &A%
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where the index j refxs 10 ane of the neaest neighbors, ad Ax,, Ay,
refer respectively to the x and y differences from the point
j to the field point at .. When (5) is repeated for each of
the 5 nearest neighbors, there results a matrix equation for
the unknown partial derivatives of @ at point 0 in terms of
the potential values at the nearest neighboring points and the
self point ®,,
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It is straightforward to invert this 5 by 5 matrix to arrive at
the result



Figure 2. Typical points used for evaluating the
Laplacian operator in the bulk and for interpolation

near interfaces.
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C is the 5 by 5 inverse of the left hand side of (6). Thus, the
Laplacian equation could be written at the point &, as

5 5
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The entire matrix is then built vp from this principle,
implementing (2) for every point in a piecewise
homogeneous region. Because the Y term of (2) is zero in
such regions, the permeability of the material will not appear
in any of these equations.

The remaining step necessary to properly mode! the
problem is to impose the boundary conditions. Referring
back to Figure 2, it is necessary to interpolate @ at the
boundary points B in terms of the potential values on one
side of the boundary only. As the boundary is approached
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from a given region, this interpolation must be realized using
potentials located in the same region. If the points lie on a
line in 2-D this interpolation requires 6 points, 10 in 3-D.
The 6 conditions come from the Taylor expansion of the
sought after boundary potential in terms of 6 nearest
neighbors (points 6-11).
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Equation (5) is repeated for all 6 nearest neighbors;
it is understood that all the derivatives are evaluated at the
boundary point B, and that Ax,, Ay, refer, respectively,
to the x and y differences from the point j to the boundary
point B. The solution of this 6 by 5 matrix equation is very
fast, and yields not only the desired ®, od/0x, and od/dy,
but the higher-order derivatives as well. Any Dirichlet or
Neuman condition can be matched with these derivative
values.

It should be mentioned in passing that when the
points lie on a line collinear with the local normal as the
points 12-14 do in Figure 2, the first-order derivative at
location 12 with respect to the local normal (x direction) is
computed from 2 Taylor expansions about the point 12;
since

2
0,0+ 0125, I, g
ax ax: 2!
and
o -@ +“u2m+ 5"‘0“ 4Ax’+ an
14”2 PYRRET
it follows that

ox 2Ax
This conventional alternative for enforcing the boundary

conditions will be employed by way of making a comparison
in the results section.

MATRIX SOLUTION

Svppose there are a total of N unknown potential
points ¥, Also consider that (2) is implemented at every one
of these N points yielding N equations. Suppose that the
boundary conditions, that tangential H and normal B be
continuous, arc imposed at P boundary points yielding an
additional 2P constraints. The total number of equations is
now 2P+N with only N unknowns. It is best to solve this
non-square matrix in a least square sense using eigenvalues,



The resulting matrix for the N unknowns could be wrilten as

Ad =B (13)
where & is the vector of unknown potentials, A contains ail
the geometry, and the right hand side b contains the source
terms. Pre-multiplying by the transpose of A yields the
positive definite matrix H in the equation
H® =A% =2

Although this new matrix H is more ill conditioned than the
original matrix A, it is positive definite and can be treated
by some valuable techniques [5). In particular, one can
use the eigenvalues A and eigenvectors & directly to get an
accurate solution. Because the eigenvectors of H are
orthogonal, both sides of (14) can be multiplied by each of
the eigenvectors to obfain the solution vector & as a
weighted sum of the eigenvectors. That is, assuming

6=E ad,

i=1

(14)
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where we express & as a weighted sum of all eigenvectors
&;, it then follows that

(16)

GRID REFINEMENT

Adding points to refine the grid is vsually quite
desirable when solution accuracy is suspect in a given region
or where the field is varying considerably. Adding extra
points would normally mean preprocessing from scratch to
set all the bulk constitutive equations since the counting
sequence on unknowns would be all wrong. Using the
Taylor’s expansion in (5) obviates the need to redo the
preprocessing of the problem; one simply adds a number of
additional equations for each of the additional points added
to the grid. With this approach the designer has the liberty
of literally placing the grid points anywhere, It is necessary
1o keep a table of each point’s coordinates and material
region. The program must in turn identify the 5 (9 for 3D)
nearest neighbors still within its own region. Points could
be placed on the boundary itself if desired to increase
accuracy in these regions.

RESULTS

The motor of Figure 3 was analyzed in attempting
to assess the accuracy of this method. The stator is doubled
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Figure 8. Double sided motor with permanent
magnet shell rotor.

sided. Sandwiched in between is a permanent magnet rotor
comprising the bulk of the air gap.

Midline of the double sided mowor
Scalar potential &=0 akng this kine.

o®/on = 0 along this line

Figure 4. Section of the motor to be analyzed in a
linear geometry.

Due to symmetry, only one pole pitch of the motor
has been analyzed, The problem is divided down the center
of a stator tooth and spans a complete pole pitch. Since no
flux exits the lower portion of the stator, a Neuman

condition %%:o exists there. Also at the midline inside the

shell rotor of this double sided motor, no tangential B field
exists. Thus the potential ¢ can be set to zero along this
line as shown in Figure 4. A polar grid would necessarily be
used for this inherently cylindrical problem if the radius is
small. In practice, very little error was found in examining



one pole pitch in this quasi-linear grid and then multiplying
by the number of such poles to get the total torque.

The probiem is analyzed by two methods, first
using a conventional reluctance grid as suggested in [6];
this approach is delineated "normal” in the figures. Here an
equal grid distribution is employed and the spacing chosen
to force the unknown potentiais to have a spacing wherein
some of the potentials naturally fell on the interfaces.
Second, the boundary constituted by the iron - air interface
is modeled using the method detailed above (except at
comers where for convenience the reluctances were kept).
The bulk equations were altered to be one sided as in (4) in
close proximity to the teeth. Furthermore, the potential
derivatives needed to insure continnity of field density B
across the interface were modeled using the one sided
derivative expressed in (12).

The x directed field was predicted in both cases
along the air gap, midway between the stator teeth and rotor
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Figure § X directed B along the air gap.

magnets, The results are shown in Figure 5. The number of
unknowns was 128. With the post boundary condition
technique, an additional 20 equations were added to insure
continuity of the normal component of the magnetic field
density. The post boundary condition match has good
agreement with the normal field approach.

The additional prediction of the y directed B fields
is shown in Figure 6.

CONCLUSIONS

A method is presented for predicting magnetic
fields using a uniform grid placed incognizant of the
interfacial inhomogeneities,.  Boundary conditions are
imposed after the bulk equations are in place and the non-
square system is solved for the least square solution, The
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Figure 6 Y directed B field along the air gap.

primary advintage of the method is the flexibility afforded
in the arbitrary placement of modeling points and in the
improvement of accuracy by the ease of adding additional
points. The fact that the resulting matrices are always non-
square having more rowa than columns does not appear to
incur numerical inaccuracies for the problems studied. The
anthor has found in paraliel that the non-square matrix
solution presents no problern for matrices sized at 3000 by
1000, indicating the method would be feasible for large
problems,
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