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Abstract— The present contribution compares the geomet-
ric approximations of linear triangles and biquadratic quad-
rangles for Boundary Element Methods. The PMCHW for-
mulation for electromagnetic problems is applied to three
canonical problems: a flat plate, a perfect electric conduct-
ing sphere, and a sphere with a low dielectric contrast. The
biquadtratic quadrangles show to yield more accurate nu-
merical results at less meshing expense. Also, the surface
elements may be larger than the ones of linear triangles.

I. INTRODUCTION

Numerical methods that discretize the boundaries be-
tween media are summarized as Boundary Element Meth-
ods. The accuracy of the computations based on the dis-
cretized boundaries relies mainly on two conditions: first,
the geometrical approximation of the curved surfaces by
suitably chosen elements, and second, the mathematical
approximation of the physical quantities on the curved sur-
face. Both parts should be carefully taken into account in
order to obtain fast and accurate results.

The Method of Moments [1] is one particular Boundary
Element Method that uses the electric and magnetic sur-
face current densities on interfaces between two regions as
physical quantities to be computed. For the formulation on
the surface, the boundary conditions for the electric fields
(electric field integral equation EFIE), the magnetic fields
(magnetic field integral equation MFIE), or both (the so-
called PMCHW formulation, [2]) are commonly used. The
comprehensive formulation of the three integral formula-
tions is detailed in [3] and shall not be repeated here. Only
the PMCHW formulation results in physically correct solu-
tions and shows no spurious modes even for closed bodies.
Also the results for dielectric bodies are more accurate com-
pared to only EFIE or MFIE formulations [4]. Common
to all integral equations is the enforcement of the bound-
ary conditions at the interface by induced electric and/or
magnetic surface currents. In general, the geometry is ap-
proximated by surface elements. The surface current basis
functions are then approximating the unknown surface cur-
rents on these surface elements.

Linear triangles [5] have commonly been used in the
past for the geometrical approximation. Linear triangles
are able to discretize almost any arbitrary surface and,
hence, offer a considerable advantage to other, purpose-
designed elements. In recent publications, the need for
better approximations has become apparent. Curvilinear,
triangular patches have been used in addition to higher or-
der Lagrange polynomials on metallic bodies to represent

Fig. 1. Triangular (left) and biquadratic (right) surface patches for
geometrical approximations.

the physical currents on the surface elements [6]. Consid-
erable advantages have been shown [6] for the higher-order
elements when applied to perfect conducting bodies.

In the present contribution, two basic shapes of surface
elements are compared: the commonly used linear triangles
[5] and biquadratic quadragles [3], [7], [8]. The inherent
shortcomings of triangles are identified based on physical
considerations for the currents on simple canonical bodies,
e.g., plates and spheres. The biquadratic quadragles are
shown to remedy the shortcomings while preserving the
versatility of generally applicable surface elements. They
are applied to the integral equations using the PMCHW
formulation. The biquadratic elements result in smoother
current distributions as well as physically correct current
representations for scatterers with edges. The results ob-
tained for the radar cross section of a metallic and a di-
electric sphere are highly accurate even for a surface area
larger than one hundredth of a squared wave length of each
geometrical discretization element.

II. GEOMETRICAL APPROXIMATION OF ARBITRARY
SHAPED SURFACES

A. Triangular Approximation

Linear triangles (see Fig. 1, left) offer two advantages.
First, almost any geometry can be approximated by the
linear triangles [5]. Second, the mathematical description
of the surface representation is relatively simple.

Any point 7, on the surface of a triangle n is parameter-
ized by two local variables u; € [0...1] and uy € [0...1]
by the equation

T (U1, U2) = U171 + uoFnz + (1 —ug —u2) Pz (1)
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Here, 7k, k = 1,2,3 are the positions of the corners of
the triangle n. As the surface of the triangle is planar, the
object’s surface is linearly interpolated.

B. Biquadratic Approzimation

For an approximation of the surface of a body by bi-
quadratic quadrangles, the surface of each element is ap-
proximating the scatterer’s surface by two Lagrange inter-
polations using nine sample points: the four corners and,
additionally, the four points on the center of the edges, and
the center point of the surface element n [3], [7], [8], [9]

9

T (U1, u2) = Z g (U1u2) Pk (2)
k=1

The form functions o, are obtained by the two-
dimensional Lagrange interpolation and define any point
on the surface of the element n:

Qan1 (U1,U2) = iul (Ul - 1) U2 (U2 - 1) (3)

1
2
%ul (W + Dus (s —1)  (5)

an2 (u,u2) = = (1—uf)us(uz —1) (4)

an3 (ur,u2) =

Ona (U1,u2) = %ul (w1 +1) (1 —u) (6)

Qns (u1,u2) = im (ug + 1) ug (u2 +1) (7)

1
5 (
1

Zul (Ul - 1) ug (UQ + 1) (9)

ane (u1,us) = 1—uf)uz (ug + 1) ®)

Qn7 (u1,U2) =

Ong (U1, u2) = %ul (ur — 1) (1 —u) (10)
ang (u,u2) = (1—ui) (1—ud) (11)

where u; and uy take values between —1 and +1; they con-
stitute the local coordinate system of each surface element.
The sample points on the surface of the quadrangle are
defined according to Fig. 1

T (=1,-1)=7m M (0,-1)=7 7,(1,-1)=73
Fn( 1 0)_F8 Fn(OJO):FE) Fn(lao):_:i
T (=1,1) =7 7, (0,1) = 7% i (1,1) =75

As examples for the versatility of biquadratic quadran-
gles, Fig. 2 shows in each subfigure one single quadrangle.
The corners ry, r3, 75, 77 are highlighted by black points
in Fig. 1. Each quadrangle approximates closely planar
surfaces (a and c), curved surfaces with one (b and d), and
two curvatures (g and h). A circle or a half-sphere are al-
ready closely represented by only one element, as seen in
subfigure e and f, respectively. Note that each geometrical
curve is approximated only by one biquadratic quadrangle.

C. Directional Derivatives

For any surface element n, the directional derivatives
are necessary for the geometrical description and the sub-
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sequent, evaluation of the derivatives of the physical quan-
tities on the surface elements [3], [7].

The directional derivatives are expressed in the local co-
ordinates as

BFn (ul, U,z)

12
u, (12)
and
(97711 (U1 ; U2)
—_— 13
5u (13)
The coefficients of the metric tensor are
Oy, (u1,u2) OFy (u1,us) (14)

Imii = T hu, Ou;

with 4,5 = 1,2 and obtained with the above directional
derivatives. The determinant of the metric tensor for ele-
ment n is

(15)

9n = gn119n22 — 9212-

The differential surface element is obtained by the differ-
ential coordinate system

Oy (u1,u2) Oy, (u1,us)

dSn = 16
6u1 BUQ ( )

The surface of the differential surface element is
dS, = \/9n duy dus. 17

The normal vector of the surface element is finally defined
as
1 aFn (ul, Uz)

\/g—n Ouy

The divergence of a physical quantity F (later the elec-
tric or magnetic surface currents) acting in the surface is
obtained by

BFn (Ul 5 UQ)
aUQ )

-
Np =

(18)

2
0 o
Z

z—l

V F (u17u2 (19)

Here, the f,, are the components of F' in the two coordinate
directions u; and wus.

III. PHYSICAL APPROXIMATION OF SURFACE
CURRENTS: ROOF-ToP BASIS FUNCTIONS

Besides the geometrical approximation of the shape of a
body, also the current densities on the surface elements
need to be approximated. A physical representation of
the currents is compulsory, furthermore, the representation
should be as close as possible to the solution. Therefore,
the following requirements should be fulfilled:

« no current flow orthogonal to an outer edge

o the normal component of a current at a common edge
is constant and continuous. This ensures that no line
charges are generated.
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Fig. 3. Roof-top function across the common edge of two triangular
(left) and rectangular (right) surface elements.

One common current representation is the Roof-Top rep-
resentation which fulfills the above requirements and will
be used in this contribution.

The currents on the surfaces are represented by linear
functions in the local u;, us-system combining the current
densities on two neighboring surface elements by placing
the maximum of the current orthogonal to a common edge
at the position of the common edge. Thus, the currents
are approximated by linear basis functions and given by the
directional derivatives of the corresponding surface element
n at the position 7,

(5u1

07n

ﬁn(UhUQ):ful +fu2E (20)

Here, f,, and f,, define the shape of the basis function,
in the present case roof-top functions. Roof-top functions
are constant in one coordinate direction (orthogonal to the
current density flow) and linear triangular in the second
coordinate direction. One roof-top function in the local
u1, us-system is shown in Fig. 3 across the common edge
of two triangular and rectangular surface elements.

In the following, only electrical surface currents are item-
ized, magnetic surface currents are analogous.

A. Linear Triangles and Roof-Top Basis Functions

Two linear triangles T,F and T, for a surface approxima-
tion are shown in Fig. 4 [5]. Their common edge is denoted
m, the source positions on the triangles are 7}, and 7, in
the global coordinate system and g}, and 7, in the local
coordinate systems. The basis function ﬂn for a current
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Fig. 4. Roof-Top basis functions on neighbouring surface elements:
left linear triangles, and right biquadratic quadrangles.

that flows from T)} to T, is then

2114#; P T inToF
=8 gy TminTy, (21)
0 else.
The surface divergence is
j‘% P in TOF
Viim=1{ —l= #inT, (22)
0 else.

B. Biquadratic Quadrangles and Roof-Top Functions

In Fig. 4 (right) the roof-top functions are shown for two
neigbhbouring biquadratic surface elements @} and Q.
The basis functions are given for the surface current on the
surface elements

- g22 (u1m7 u2m) o7
== 7 /T, P, — 2
Ju1m g (Ul, U2) ul (Ul) u2 (U2) 5“1 ( 3)
- g11 (u1m7 u2m) o7
JU2m g (UI; U/2) U2(u2) ul (U1) (SUQ ( )

Here, Py 2(u1,2) is the constant function in one dimension,
Tu1,2(u1,2) the triangular function in the other dimension
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Fig. 5. Roof-Top basis functions on quadrangles in the parameter
space.
| | / | | | | |
) ] ¥ /{ ¥ ¥ ¥ ¥
Fig. 6. Surface discretization of a rectangular plate by triangular

surface elements and biquadratic rectangles.

(see Fig. 5) defined by
% + l11,1,2 for u1,2m = +1
5t 3ui2 for ui om = —

Tur2(ur2) = { (25)

This ensures that no normal component is present at outer
edges.

C. Comparison of linear triangles and biquadratic quad-
rangles

Fig. 6 shows the discretization and possible currents on a
rectangular plate discretized by triangular and rectangular
surface elements. Gray surface elements are situated at the
border of the plate being a discontinuity of the plate. The
physical current normal to the border has to vanish, hence,
the current must be oriented parallel to the edge.

The current on triangular functions yields two compo-
nents that are oriented orthogonally and parallel to the
edge, hence an unphysical surface current close to the bor-
der exists. In other words, a constant current along the
border is not accessible to linear triangles. To remedy this,
the biquadratic approximation accurately models a con-
stant current parallel to an outer edge as well as the normal
component.

This will be shown with the following example. Consider
a flat rectangular plate with size 1.5Ax 0.7\ along the z-axis
and the y-axis, respectively. A plane wave at f = 150 MHz
is incident normally with the E-vector along the longer side
of the plate or the z-direction.

Fig. 7 shows the z-polarized current density ||J;||, or
co-polarized in the direction of the E vector. The figure on
the left shows the current modeled by linear triangles, ans
the figure on the right shows the the biquadratic quadran-
gles. Both approximations seem to model quite closely the
physical current densities.

A different picture is seen for the y-polarized, or cross-
polarized, surface current densities ||J,|| in Fig. 8. The
differences between the results for the triangular and the
biquadratic surface elements are clearly seen at the borders
of the plate at y = £0.7 m. The triangles cause a current
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Fig. 7. z-polarized surface current densities of a rectangular plate
by triangular surface elements (left) and biquadratic rectangles
(right).

Fig. 8. y-polarized surface current densities of a rectangular plate
by triangular surface elements (left) and biquadratic rectangles
(right).

density orthogonal close to the edges 0.7 m. Even though
the current magnitude only reaches approximately 25 %,
these currents are nonphysical and result in a higher than
physical reflection. As discussed above, the linear triangles
are not able to model the correct physical current densities
(see Fig. 6).

Figure 9 shows the phase of the y-polarized surface cur-
rent densities (orthogonally polarized to the incident wave).
The figure on the left shows the phase obtained by the
linear triangular approximation. The phase exhibits large
steps that are no multiple phase shifts of 360 °. The fig-
ure on the right shows the smooth phase obtained by the
biquadratic quadrangles with the correct physical phase

Fig. 9. Phase of the y-polarized surface current densities of a rectan-
gular plate by triangular surface elements (left) and biquadratic
rectangles (right).



TABLE I
SPURIOUS MODES AT FREQUENCY f IN MHz OF A SPHERE WITH
RADIUS 7 = 1 m. MODES ARE DENOTED BY p AND 7.

214 275 333 390 446 502 556
369 434 497 558 619 678 736
520 587 654 a..

w3

behavior over the complete plate. Biquadratic quadrangles
are, hence, much better suited to model edges of scatter-
ers than linear triangles. This holds for both flat objects
as well as three-dimensional objects with a non-negligible
thickness.

In the following, the radar cross section of a smooth 3D
scatterer is computed, and the results of different approxi-
mations will be compared.

IV. MonNosTATIC RADAR CROSS SECTION OF A SPHERE
A. Canonical Problem: Sphere

The canonical shape “sphere” has been chosen to analyze
the capabilities of the discretization schemes. The specific
advantage of the sphere is the fact that an analytical solu-
tion exists for the radar cross section. By comparing the
numerical results to the results of the Mie solution [10] a
simple and accurate benchmark exists.

For the present contribution, a sphere with radius 1 m is
chosen, the geometrical surface area of the sphere is hence
47 m2. The origin of the sphere is at the origin of the
spherical co-ordinate system.

Numerical solutions by the EFIE or MFIE solely are
known to suffer from spurious modes. These spurious
modes occur at frequencies where the interior problem (the
hollow sphere) exhibits eigen modes. For the sphere with
a radius of 1 m, some of the frequencies are shown in ta-
ble I. At these frequencies, the solution of EFIE or MFIE
methods may show erroneous results.

B. Possible Meshing Schemes

Linear triangles linearly interpolate the scatterer’s sur-
face which is modelled by flat surface elements. For an
accurate surface modelling, very small discretization ele-
ments should be chosen. For comparison purposes, three
different discretization schemes for linear triangles are used
in the remainder.

A first discretization scheme is obtained by discretizing
the sphere directly. No symmetry or any other special prop-
erty of the sphere is taken into account. Two discretization
levels produce two meshes, denoted by al and a2, with 288
and 2586 triangles and 432 and 3879 unknowns, respec-
tively.

One possibility to improve the accuracy especially for
symmetric objects as spheres is to impose a symmetric
mesh for the object. For one particular incidence and a
given co-cordinate system, an electric and magnetic sym-
metry according to the symmetry of both the object and
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the incident field with respect to the co-ordinate system
helps to increase the accuracy. However, for a general
application, electric and/or magnetic symmetries are not
available as the symmetry changes with direction of inci-
dence. In this paper, a geometrical symmetry for the ob-
ject is observed, hence the mesh was modified to include
this symmetry by meshing one eighth of the shpere and
useing symmetry for the remaining seven eighths s of the
sphere (scheme b). Again, two meshes are produced, the
first (scheme b1) with with 352 triangles and 528 unknowns
for the complete sphere, the finer mesh (scheme b2) with
2688 triangles and 4032 unknowns.

The third scheme follows a common way to improve re-
sults obtained by linear triangles: the surface areas of the
model (e.g. the surface of all triangles) and the geometrical
body are compared. Then the triangles are scaled to ob-
tain an area that is as close as possible to the original one.
This is only possible for canonical shapes as e.g. spheres,
cylinders, or rectangular bodies as usually the surface of
the geometrical body is not accessible to the modeller. In
the present case, the two meshes ¢l and ¢2 have 352 and
2688 triangles with 528 and 4032 unknowns, respectively.

In the case of biquadratic quadrangles, the reference
points for each discretization element are chosen on the
surface of the scatterer. Due to the inherent conformal
shape of the discretization elements, the surface is very
closely modelled. Only one mesh, scheme d, will be repre-
sented here. No attempt was made to include symmetry.
This mesh uses 216 mesh elements with an average surface
of 0.0582 m? or A\%/69 for each surface patch. The mesh
results in 432 unknowns that represent the electric current
densities on the scatterer.

The meshing schemes are summarized in Table II.

C. Angle of Incidence Sweep for PEC Sphere

At first, the monostatic radar cross section of a perfect
electric conducting sphere is computed. A plane wave with
f = 150 MHz, A = 2m is incident, at this frequency the
sphere’s diametre is one wavelength. The computed fre-
quency is well below the first eigen frequency, the EFIE
computation does, hence, not suffer from any discernable
contributions of a spurious mode. The analytical value of
the monostatic radar cross section RCSy;e = 3.7894 dBsm
is calculated by the Mie-series [10]. In all figures, the ana-
lytical value is represented by a straight line with no mark-
ers.

The angle of incidence is computed at 46 discreete angles
of # = 0° to # = 90° with an increment of §§ = 2 °.
The first incidence is with k¥ = —&, the last with k=
—é&y. After having meshed the sphere, neither the mesh
is modified, nor is the sphere rotated. This is to test the
accurary of the computation when the wave is incident in
different directions with respect to the vertices of the mesh.
Of course, the result should not change with the incident
angle.

In Fig. 10, the monostatic radar cross section is shown
for the discretizations al and a2. The marked lines show

173



174

ACES JOURNAL, VOL. 20, NO. 3, NOVEMBER 2005

TABLE II
MESHING SCHEMES USED FOR THE COMPUTATIONS.

scheme  surface elements  property
a triangular mesh points are chosen on geometrical surface
b triangular mesh as a, but also includes geometrical symmetry
c triangular mesh as b, additionally the total surface area of triangles is scaled to match the surface
area of the sphere
d biquadratic mesh points are chosen on geometrical surface without taking into account symmetry
4.0
3.8 =
4,0 . .
3.6 4
3,8
3,6 £ 3.4 ]
o)
e 34 E 3.2 lytic solution ]
a 1 —s—mesh b2
mes
Z 3,2 iytic solution @ 3.0 B
14 —a—mesh a2
g 30 2.8 [
28 26 ]
2,6
24 I . .
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"o 10 20 30 40 50 60 70 80 90 ¢ in degree
¢ indegree
Fig. 11. Monostatic RCS of a PEC sphere computed for different
angles of incidence. The sphere is meshed by 352 and 2688 linear
Fig. 10. Monostatic RCS of a PEC sphere computed for different triangles, the mesh includes the symmetry of the sphere accord-

angles of incidence. The sphere is meshed by 288 and 2586 linear
triangles according scheme a.

the computed radar cross section for the two meshes. For
mesh al, the computed radar cross section has a mini-
mum and maximum value of RCSmin,e1 = 2.5282 dBsm
and RCSmax,e1 = 2.6335dBsm for an average level of
RCSave,a1 = 2.5766 dBsm. The amplitude RCSmax,a1 —
RCSmin,a1 is ARCS,1 = 0.105 or 4.1 %. The absolute
deviation from the analytical value is 32 %. Mesh a2
yields more accurate values of RCSmin,q2 = 3.611 dBsm,
RCSmax,a2 = 3.637 dBsm, RCSyye,q2 = 3.621 dBsm, and
ARCS,> = 0.026 or 0.72 %, respectively. The absolute
error to the analytical value is 4.45 %. At a frequency of
f = 150 MHz, each triangle has a surface of at most A2 /90.

Fig. 11 shows the results for meshes b1 and b2. For b1,
the radar cross section has a minimum and maximum value
of RCSmin,p1 = 2.664 dBsm and RCSmax,p1 = 2.848 dBsm,
respectively, for an average of RCSgavep1 = 2.750 dBsm.
The amplitude is ARCSy = 0.184 or 6.7 %, the absolute
deviation to the analytical value is only 27 %. Mesh b2
yields RCSmin,p2 = 3.643 dBsm, RCSmax,p2 = 3.660 dBsm,
RCSave,p2 = 3.649 dBsm, and ARCS}2 = 0.018 or 0.48 %,
respectively. The absolute error compared to the analytical
value is 3.7 %. In conclusion, taking the symmetry of the
scatterer into account increases slightly the accuracy of the
computation. Still, many triangles and, hence, unknowns
are necessary to obtain results that appear acceptable.

The meshes cl and ¢2 yield results that are shown in Fig.

ing to scheme b.

12. They are found to be of much better agreement with
the analytical value than the above results. In particu-
lar, mesh ¢l yields in a computed radar cross section with
a minimum value and a maximum value of RCSnin,c1 =
3.5635dBsm and RCSmax,c1 = 3.709 dBsm, respectively,
for a mean level of RCS aye,c1 = 3.611 dBsm. The difference
RCSmax,a1 — RCSmin,qe1 is hence ARCS:; = 0.174 or 4.8 %.
The absolute deviation to the analytical value is only 4.7 %
indicating that the accurate representation of the actual
surface of the scatterer is important. Mesh ¢2 yields
slightly more accurate values of RCSmin,c2 = 3.763 dBsm,
RCSmax,c2o = 3.780 dBsm, RCSave,c2 = 3.769 dBsm, and
ARCS . = 0.017 or 0.46 %, respectively. Again, the ab-
solute error to the analytical value is 0.54 %. It is, hence,
obvious from the data that an accurate geometrical approx-
imation including symmetry and surface of the scatterer is
necessary for good computational results, especially when
highly accurate radar cross sections are computed.

Finally, the sphere is meshed by the biquadratic sur-
face elements according to scheme d. The computed radar
cross section, also shown in Fig. 12, is with a very good
agreement with the analytical value with an error of only
1.5 %. The computed RCS has minimum and maximum
values, average and error are RCSmin,g = 3.721 dBsm,
RCSmax,a = 3.743 dBsm, RCSave,q = 3.733 dBsm, and
ARCS4 = 0.0213 or 0.57 %, respectively. It is noted that
for the triangular meshes only the one with symmetry and
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Fig. 12. Monostatic RCS of a PEC sphere computed for different
angles of incidence. The sphere is meshed by 352 and 2688 linear
triangles with a mesh that includes symmetry, the total surface
of the triangles corresponds to the sphere’s surface according to
scheme c. Additionally, the sphere is meshed by a biquadratic
mesh that has 216 biquadratic rectangles according to scheme d.

a geometric scaling for the actual surface yields better re-
sults, with a high cost of 4032 unknowns.

Table IIT concludes of the meshing schemes, the ampli-
tudes of the computed RCS values, the average RCS-values
and the errors.

D. Frequency Sweep for a PEC Sphere

Next is a frequenc_): sweep of the above sphere for a plane
wave incident with & = —é&},. The mesh is left unmodified
for the frequencies from f; = 100 MHz to f, = 500 MHz.
The results for meshes cl1, ¢2 and d are reproduced. The
sizes of the surface elements in terms of squared wave-
lengths for the frequencies f = 300 MHz and f = 500 MHz
are shown in Tab. IV together with the absolute values..

Fig. 13 shows the radar cross section of the three nu-
merical schemes in comparison with the analytical MIE
solution. It is seen that the coarse mesh cl yields, over the
complete frequency range, results that do not correspond
well to the analytical values. The fine mesh ¢2 with 4032
unknowns results in radar cross section values that are still
far away from the analytical solution, but better than the
smaller mesh for frequencies of up to f ~ 250 MHz. Start-
ing from f =~ 300 MHz, the two curves deviate from each
other. The triangular mesh shows erroneous results at fre-
quencies around f =~ 390 MHz which is close to the inner
resonance frequency p = 1,m = 4 of the sphere. The mesh
with the biquadratic quadrangles is on the analytical curve
for frequencies up to f ~ 500 MHz.

The mesh using triangular discretization cells yields ac-
curate results only for cell sizes areas that are smaller than
A2/90. In contrast, the biquadratic quadrangles yield still
accurate results for large cells comparable to A2/10. Hence,
less cells can be used to discretize a scatterer resulting in
smaller problem sizes with higher accuracy.
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Fig. 13. RCS of a perfect conducting sphere. Triangular mesh with
352 and 2688 elements in comparison with 216 biquadratic quad-
rangles and the theoretical values.

-10

-15
-20
-25

-30 i

RCS in dBsm

-35

-40

-45

-50 L I L L L L I
100 150 200 250 300 350 400 450 500

fin MHz

Fig. 14. RCS of a sphere with a low dielectric contrast, e, = 1.1.

E. Frequency Sweep for a Low Contrast Sphere

With the same meshes as previously, the radar cross
section of a dielectric sphere with a very low contrast of
e, = 1.1 is computed. This case is especially difficult to
model numerically as the contrast is very low.

Mesh c1 and ¢2 yield both results that are not accurately
modelling the zeros of the frequency response. The aver-
age level still corresponds to the average level of the ana-
lytic Mie results. Mesh c¢1 yields completely wrong results
starting at 300 MHz, whereas mesh ¢2 somewhat follows
the analytic values up to a frequency of 400 MHz.

Mesh d together with the complete PMCHW formulation
yields the results in Fig. 14 compared to the analytic re-
sults. The numerical solution follows the analytic solution
up to a frequency of about 350 MHz.

V. CONCLUSIONS

For accurate numerical solutions by boundary element
methods applied to scattering problems, two main issues
should be considered carefully: the geometrical approxi-
mation of the surface of the scatterer and the numerical
approximation of the physical quantity on the boundary.
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TABLE III
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AMPLITUDE AND AVERAGE RCS COMPUTED BY THE MESHING SCHEMES IDENTIFIED IN TABLE II FOR A SPHERE OF RADIUS 1 m. ANALYTICAL
VALUE IS RCSMmig = 3.789 dBsm.

Mesh  # unknowns Amplitude Average error
ARCS/dBsm RCSave/dBsm in %

al 432 0.105 2.58 32
a2 3879 0.026 3.62 4.5
bl 528 0.184 2.75 27
b2 4032 0.018 3.49 3.7
cl 528 0.174 3.61 4.7
c2 4032 0.017 3.77 0.5
d 432 0.021 3.73 1.5

TABLE IV

AVERAGE DISCRTIZATION CELL SIZES NORMALIZED TO SQUARED WAVELENGTH FOR THE THREE MESHING SCHEMES.

scheme type no. of cells average size in m®> f=300MHz f =500 MHz
cl triangular 352 ac1 = 38.7-1073 A\?/26 \2/9
2 triangular 2688 aeo =5.14-1073 A2/194 A2/70
d biquadratic 216 aq = 58.2-1073 A2/34 A2 /6

Utilizing linear triangles has the advantage of simple mesh-
ing algorithms, the ability to model almost any surface and
the relatively simple mathematical formulation. The limits
of the linear triangles show up when currents close to edges
or borders must be computed: a non-physical solution may
result. Also, as it is necessary to mesh the geometrical sur-
face area as close as possible by the approximation, accu-
rate results may only be obtained when the surface area of
the numerical model is scaled to match the surface area of
the physical problem.

Biquadratic quadrangles are somewhat more difficult to
be described mathematically. They need more surface
points for discretization, but yield a much more accurate
description of the physical problem. This results in fewer
surface elements and consequently less unknowns in the
numerical formulation. The present contribution also has
shown that a formulation founded on biquadratic quadran-
gles may use considerably larger elements compared to a
formulation based on linear triangles with the same numer-
ical accuracy.
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