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Abstract ─ This paper introduces a modal analysis 
for two-dimensional chiral grating. The grating 
structure is composed of rectangular chiral rods 
arranged in rectangular periodic cells and 
embedded in another chiral base material. Total 
fields are presented in terms of transverse electric 
and magnetic field components which are 
expanded as two sets of TE and TM Floquet 
modes.  This representation is used in Maxwell’s 
curl equations to formulate the problem as an 
eigenvalue problem. The resulting eigenvalues 
correspond to the forward and backward 
propagation coefficients. On the other hand, the 
eigenvectors correspond to the amplitudes of the 
TE and TM Floquet modes in the forward and 
backward propagating modes. Reflection and 
transmission coefficients of two semi-infinite 
chiral gratings are obtained by combining this 
modal analysis and mode matching method. This 
analysis is extended to obtain the reflection and 
transmission coefficients of a finite thickness two-
dimensional chiral grating slab by using the 
generalized scattering matrix method.  
  
Index Terms ─ Chiral medium, grating, modal 
analysis, mode matching. 
 

I. INTRODUCTION 
Electromagnetic interaction with periodic 

structures has significant importance in many 
applications like filters, frequency selective 
surfaces, artificial media, etc. This problem can be 
viewed from different points of view like the 
amplitude of the reflection and transmission 
coefficients as in the case of frequency selective 
surfaces and the phase of the transmitted wave as 
in the case of artificial metamaterials. Chiral 

medium introduces an additional point which is 
the polarization conversion and electro-magnetic 
coupling. This is the motivation in the present 
paper and other previously published papers to 
study electromagnetic wave interaction with 
periodic chiral structures [1-4]. Guiding properties 
of infinite multi-layers chiral slab was discussed 
by using modal analysis. This modal analysis of 
periodic layered chiral slabs is extended to study 
the reflection and transmission of a one-
dimensional chiral grating slab by using the mode 
matching method [4]. 

The present paper extends this modal analysis 
to study the reflection and transmission of an 
obliquely incident TE or TM plane wave due to a 
two-dimensional chiral grating slab as shown in 
Fig. (1). The slab is composed of rectangular rods 
implanted inside a base substrate in a rectangular 
periodic scheme. Similar analysis is discussed by 
the author with others for both two-dimensional 
dielectric and two-dimensional magneto-dielectric 
grating slabs [5-6]. However, the key difference in 
the present case is the coupling between the 
electric and magnetic fields due to the chirality 
coefficient. In dielectric grating and magneto-
dielectric grating the formulation begins with the 
wave equation in the corresponding medium. For 
these cases, the wave equation is simply a second 
order differential equation and both electric and 
magnetic field components are separated. 
However, in the present case the wave equation in 
the chiral medium is a fourth order differential 
equation [7]. Thus, it would be much more 
complicated to start the present formulation with 
wave equation as in the cases of dielectric and 
magneto-dielectric gratings. This is the motivation 
here to formulate the problem starting from 
Maxwell’s curl equations. Similar analysis is 
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discussed for the problems of chirowaveguides 
and chirowaveguide discontinuities by using the 
coupled mode analysis. [8-13]. Method of 
moments has also been used to simulate 
transmission of plane waves through an aperture in 
a conducting plane in the presence of a chiral 
medium [14]. This method can be extended to 
simulate the periodic patch or slots on a chiral 
slab. However, it would be quite complicated to 
simulate a 2-D grating slab since the problem 
would be the volume integral equation instead of 
the simple surface integral equation. 
 

 
 

Fig. 1. A two-dimensional chiral grating slab 
excited by an obliquely incident TE and TM plane 
waves. 
 

In the following section, the modal analysis of 
an infinite chiral grating is presented as an 
eigenvalue problem where the eigenvalues 
correspond to the complex propagation wave 
numbers in the longitudinal direction and the 
eigenvectors represent the transverse field 
distributions of the different modes in this infinite 
periodic structure. This modal analysis is 
combined with the mode matching method to 
obtain the scattering matrix of a semi-infinite 
grating. Then the generalized matrix approach 
combined with complex propagation wave 
numbers of the different modes in the infinite 
grating structure are used to obtain the reflection 
and transmission coefficients of the finite-
thickness chiral grating slab. The present analysis 

represents a generalization to the previously 
published analysis for one-dimensional chiral 
grating [4] where the same results of the one-
dimensional case can be obtained by extending the 
length of the implanted rod in y direction yL  to be 
the same as the cell size in the same direction yD . 
These points are discussed in detail in Sec. III in 
addition to other results and discussions related to 
the two-dimensional chiral grating slab. 
 

II. THEORY 
 
A. Modal analysis of infinite two-dimensional 
chiral grating 

Total fields inside the chiral grating are 
divided into transverse and longitudinal 
components as follows:   

zzt zyxEzyxzyx aEE ),,(),,(),,(  , (1-a) 

zzt zyxHzyxzyx aHH ),,(),,(),,(  . (1-b) 
The transverse field components are expanded as 
an infinite series of bi-orthogonal Floquet TE and 
TM modes propagating along the longitudinal 
direction: 
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where TE

p)( , TM
p)( , TE

pC )( , and TM
pC )(  are four sets 

of unknown amplitudes to be determined. TE
p)(  

and TM
p)(  are the longitudinal propagation 

constants of the thp)(  TE and thp)(  TM mode, 
respectively.  For computational purpose, 
these infinite series are truncated at an upper 
limit Pp   assuming that they start from 1p .  
The transverse expansion functions of the 
electric and magnetic fields are given by: 
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TM
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where 
xincincxm Dmkk /2cossin0   ,      (4-a) 
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yincincyn Dnkk /2sinsin0   ,      (4-b) 

  )exp(/1 yjkxjkDDT ynxmyxmn  ,   (4-c) 

.22
ynxmtmn kkk    (4-d) 

It should be noted that each value of the suffix 
)( p in (2) corresponds to a unique combination of 

m  and n . The specular mode has the value of 
00pp   that corresponds to m=0 and n=0. By using 

these modal expansion functions of (3) in (2), one 
can obtain the transverse field components as 
follows: 
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where 
  )exp(/1 )()()( yjkxjkDDT pypxyxp  ,   (6-a) 

2
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The constitutive relations in a chiral medium can 
be presented as: 

HED 000  jr  ,          (7-a) 

EHB 000  jr  ,          (7-b) 
where   is the chirality coefficient. Based on 
these constitutive relations, one can obtain the 
longitudinal field components in terms of the 
longitudinal electric and magnetic flux densities as 
follows: 
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      /// 000 zrzz BDjH  ,   (8-b) 

where 2  rr . By applying Maxwell’s curl 
equations, one can obtain these longitudinal 
electric and magnetic flux densities as functions of 
the derivatives of the transverse electric and 
magnetic field components as follows: 
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(9-b) 
Thus, the problem is converted into finding 

out the transverse field component distribution 
where it would be required to determine the 
amplitudes of the transverse modes and the 
corresponding longitudinal propagation constants 
which are discussed in Eq. (2). To do this, it is 
required to formulate the problem as an eigenvalue 
problem where the amplitudes of the transverse 
modes correspond to the eigenvectors and the 
longitudinal propagation constants are the 
eigenvalues. This can be obtained by inserting the 
modal expansion of transverse field components in 
Maxwell’s curl equations and weighting the 
resulting equations with P  weighting functions. 
Based on the Galerkin’s method and using the 
constitutive relations in (7), one can obtain that: 
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which can be represented in terms of the modal 
functions at 0z  as follows: 
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where the inner product is defined as: 
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By following similar steps, one can obtain 
equations for yD , xB , and yB . By arranging these 
equations, one can obtain the following eigenvalue 
problem: 
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where the elements of this eigenvalue problem are 
presented in Appendix (I).  It should be noted that 
the dimension of this eigenvalue problem is 

PP 44   which introduces P2  forward modes and 
P2  backward modes. 

 
B. Mode matching analysis of chiral grating 
structures  

By using the mode matching technique and 
following the same steps in [15], one can obtain the 
general scattering matrix between two semi-infinite 
chiral gratings of the same periodicity and coincide 
at the plane z=0 as follows: 
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(13-b) 
The suffixes a and b in (13) correspond to the 
upper and the lower grating, respectively. The 
primed terms correspond to the backward 
propagating modes while the terms without a 
prime correspond to forward propagating modes. 
For a special case where the upper limit is free 
space, the parameters of the upper grating 
structure are 1 rirb  , 1 rirb   and 

1 rirb  . 
     For the case of a finite-thickness chiral grating 
slab of thickness h, the total reflection and 
transmission coefficients can be obtained in terms 
of generalized scattering matrices as follows [5]: 
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which corresponds to the generalized scattering 
matrices of the semi-infinite chiral grating in (11) 
where the upper medium is free space. On the 
other hand    and    correspond to the forward 
and backward phase delay matrices as follows: 
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Finally, I in (14) corresponds to a unit matrix of 
dimension PP 22  .  

The reflection and transmission matrices of 
Eq. (14) represent the reflection and transmission 
of P TE and P TM modes and the interaction 
between them. Specular reflection and 
transmission coefficients can be obtained by 
selecting the corresponding terms in the 
generalized reflection and transmission matrices of 
(14). Thus the specular TE reflection coefficient 
due to the TE incident wave is obtained as 

]][[~
000011

/
11 ppRR TETE   where 00pp   corresponds 

to the Floquet mode m=0 and n=0 as discussed 
earlier. On the other hand the specular TE 
reflection coefficient due to the TM incident wave 
is obtained as ]][[~

000011
/

11 PppRR TMTE  . 
Similarly, the specular TM reflection coefficients 
due to TE and TM incident waves are obtained as  
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/
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000011 PpPpR  , respectively. In a 

similar way, one can obtain the sepcular 
transmission coefficients as ]][[~
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/
12 PpPpTT TMTM  . It should be noted 

that these coefficients correspond to the complex 
reflection and transmission coefficients of the 
electric field components. The corresponding 
power reflection and transmission coefficients are 
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obtained as the square value of the amplitudes of 
these electric field coefficients. For the sake of 
comparison with the available previously 
published results, we present the results of power 
reflection and transmission coefficients as it is 
discussed in the following section. 
 

III. RESULTS AND DISCUSSIONS 
In this section, we present sample results to 

verify the present analysis. It should be noted that 
the present method represents a general form for 
the cases of dielectric and magneto-dielectric 
grating slabs by setting the chirality coefficients in 
both the base substrate and the implanted rods to 
be zero. This method can also be used for both 
one-dimensional and two-dimensional grating. For 
the case of one-dimensional grating, the length of 
the implanted rod in one direction is extended to 
be the same as the periodic distance in this 
direction. For the space limit, we did not show 
comparisons with previously published results of 
dielectric grating and magneto-dielectric grating. 
However, we obtained excellent agreement with 
these results.  

It should be noted that the presented results 
are based on normalized dimensions with respect 
to the operating wavelength. Thus, these results 
are not limited for a certain frequency. The present 
analysis has no lower limit on the normalized 
dimensions. However, for the case of a chiral 
grating slab with a quite small periodic cell 
compared with the operating wavelength, we 
obtained reflection and transmission coefficients 
which are nearly the same as the corresponding 
ones of a homogenous chiral slab having electrical 
properties equivalent to the average properties of 
the host and inclusion as discussed in [4].  This 
average in the present case is obtained based on 
the ratio of the dimensions of both the inclusion 
and the host in the unit cell. This property has 
been quite clarified in [4], thus these results are 
not repeated here. On the other hand, the upper 
limit of the normalized dimensions of the cells is 
kept below unity to avoid the presence of higher 
order propagating Floquet modes in air-side as 
discussed in [4].  

For the case of a one-dimensional chiral 
grating slab, we present a sample result for 
comparison with the published results of Wu and 
Jaggard [4]. In this case, the parameters of the 

base and inclusion are 1.0,1,5.2  brbrb   
and 1.0,1,5.1 111   rr , respectively.  The 
periodic cell is square and is related to the grating 
thickness as 713.1/hDD yx  .  The dimensions 
of the implanted rod inside the cell are 2/xx DL   
and yy DL  . The incident plane wave is assumed 

to be the TE wave of incidence angle ,45inc  
0inc .  Figure 2 shows the specular reflection 

and transmission coefficients in this case for both 
the co-polarized and cross-polarized components 
as functions of normalized grating thickness where 

00 /2 k  corresponds to the free space wave 
number. By comparing this figure with the 
corresponding results in [4], one obtains an 
excellent agreement.  
      In this paper, we extend the previous case to be 
a two-dimensional chiral grating by setting 

2/yy DL  . We also changed the permeability of 
the base to be 4.1rb . The remaining 
parameters are the same as in Fig. 2. We studied 
both TE and TM cases as shown in Figure 3 and 4. 
It can be noted that the polarization conversion in 
the reflected field is greater at resonance 
frequencies in the case of TE incident wave than 
the case of TM incident wave. 
 

 
(a) TE reflection and transmission coefficients due 
to TE incident wave. 
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(b) TM reflection and transmission coefficients 
due to TE incident wave. 
Fig. 2. Specular power reflection and transmission 
coefficients due to an obliquely incident TE plane 
wave on a chiral grating slab. ,45inc . 0inc , 

,5.2rb , ,1rb  1.0b , ,5.11 r  ,11 r  
1.01  , 713.1/hDD yx  , 2/xx DL   and 

yy DL  . 
 

 
(a) TE reflection and transmission coefficients due 
to TE incident wave. 

 
(b) TM reflection and transmission coefficients 
due to TE incident wave. 
Fig. 3. Specular power reflection and transmission 
coefficients due to an obliquely incident TE plane 
wave on a chiral grating slab. 45inc , 0inc , 

5.2rb , 4.1rb , 1.0b , 5.11 r , 11 r , 
1.01  ,  713.1/hDD yx  , 2/xx DL   and 

2/yy DL  . 
 

 
(a) TM reflection and transmission coefficients 
due to TM incident wave. 
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(b) TE reflection and transmission coefficients due 
to TM incident wave. 
Fig. 4. Specular power reflection and transmission 
coefficients due to an obliquely incident TM plane 
wave on a chiral grating slab for the same 
parameters of Fig. 3. 
 

IV. CONCLUSION 
     Chiral grating can be used to control both the 
magnitude and polarization of the reflected and 
transmitted fields. In this paper, we presented 
detailed modal analysis of two-dimensional chiral 
grating. This modal analysis is combined with 
mode matching technique and generalized matrix 
method to study the reflection and transmission 
due to a finite thickness two-dimensional chiral 
grating slab. The present analysis represents a 
generalization for previously studied cases 
including dielectric grating, magneto-dielectric 
grating and one-dimensional chiral grating. 
 

APPENDIX (I) 
     The details of the elements of the eigenvalue 
problem in Eq. (11) are presented in this 
Appendix. These elements are obtained as: 
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For the special case where the unit cell and 
implanted rod are of rectangular shapes as shown 
in Fig. 1, the above inner products can be obtained 
analytically in closed forms as discussed in [6]. 
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