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Abstract— The Sparse Iterative Method (SIM) provides a
faster solution to Method of Moments (MoM) matrix equa-
tions than does LU-decomposition with forward and back
substitution. The SIM produces a solution with compu-
tational time proportional to N2, as opposed to the N3
time dependence associated with LU-decomposition. The
SIM is implemented in an object oriented MoM program
which is functionally equivalent to NEC2., In three ex-
amples, the SIM is shown to produce results as accurate
as LU-decompogition. For dipoles, a flat wire grid and a
generic three dimensional missile shape, the speed increase
ranged from 3-30 times the speed of LU-decomposition;
greater speed increases can be expected with electrically
larger problems. The SIM requires ro probiem formulation
changes, such as segment renumbering, and despite the fact
that it is demonstrated for a wire MoM based on NEC2, it is
general enough to be incorporated to any MoM formulation.

I. INTRODUCTION

We have investigated a stationary’ iterative method of
moments (MoM) solution technique for implementation
in an object oriented method of moments program [1].
When a method of moments problem has N unknowns,
and N is large, it is computationally time-consuming; most
time is spent either filling the matrix and/or in the LU-
decomposition of the matrix. Typical method of moment
programs execute in a time, ¢, that is given by

t &« AN? + BN? + other smaller terms

(1)

where A is the time taken to calculate a single matrix
element and B is the time taken to modify a single matrix
element during LU-decomposition on a specific machine.

The B coefficient in equation (1) is much smaller than
the A coefficient. The A coefficient is larger because com-
putation of an element of the interaction matrix usually
involves both numerical integration and other operations.
The B coefficient is smaller; modifying a matrix element
during LU-decomposition involves only a few floating point
operations.

Problems involving a small number of unknowns have
solution times proportional to N2, As the problem size in-
creases, the time associated with the BN # term increases
more rapidly than for the AN? term; this latter term ulti-
mately governs the solution time for large MoM problems.

L A stationary method is one where the rule used to determine the
next guess does not change from iteration to iteration.

Tterative methods concentrate on reducing the BN com-
ponent of the solution. This paper describes a method de-
rived from the physics underlying the MoM. This Sparse It-
erative Method (SIM) replaces LU-decomposition for MoM
problems and results in solutions in a time proportional to
N2, which is considerably faster than LU-decomposition.
Provided a suitable number of iterations are performed,
the SIM results are as accurate as those obtained by LU-
decomposition. In principle, since only a small fraction
of the normal interaction matrix needs to be stored, it is
possible to reduce computer storage requirements using the
SIM. However, a trade off in terms of computer time versus
storage exists; this trade-off is discussed later.

The development and evaluation of the new method was
implemented on a redesigned and rewritten version of the
well known NEC2 [2] program. Nitch [1] redesigned the
FORTRAN version of NEC2 using the Object Oriented
Programming (OOP) paradigm and implemented it using
the C++ computer language. The C++ program is func-
tionally equivalent to NEC2, but the improved software
implementation enables modifications to be easily effected.
The iterative solution technique could thus be incorporated
easily into NEC, allowing the SIM to be evaluated for large
realistic problems. In the past, new methods have been
evaluated based on simple examples and implementations,
due to the programming effort required to do the evalu-
ation for realistic cases. The use of simplified codes can
result in misleading conclusions, due to the fact that the
methods are only evaluated for simple cases. We believe
that testing methods using realistic problems is crucial to
an adequate evaluation; the implementation of the SIM in
the C++ NEC made such an evaluation possible.

IT. BACKGROUND TO METHOD OF MOMENTS

The detailed derivation of MoM is available from many
sources, and only the features of importance to the devel-
opment of the SIM will be discussed here. The method of
moments for perfectly conducting wire segments, as imple-
mented in NEC2, will be considered. In the case of point
matching (equivalent to using impulse or delta weighting
functions), the MoM involves finding a current distribution
across all segments such that the tangential E-field at the
centre of each segment is zero. Zero tangential E-Fields
satisfy the boundary conditions at the interface of a per-
fect conductor. In order to find the currents on a structure,
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the current on each segment, J;(n), is assumed to have a
generic shape defined by the basis function, Jn, 1.e.,

N
T I = ZI,,J,,

n=1

(2)

where I, are the unknown coefficients associated with
the current on each segment (when subdomain basis func-
tions are used). The value of these unknown coefficients
are solved using MoM.

In the case of NEC2, the basis functions consist of the
superposition of a sine, cosine and a constant term. The
relative relationship between the three terms is obtained
from junction boundary conditions, leaving unknown scal-
ing factors, I, to be determined for each segment; MoM
solves for these scaling factors.

The matrix equation formulated in a MoM solution to
an electromagnetic problem can be mathematically stated
as

ZI=V (3)

where Z is an N x N interaction matrix, I is the unknown
current coefficient vector and V is the specified excitation
vector. The matrix equation is normally solved using LU-
decomposition followed by forward and back substitution.
An element of the interaction matrix, Z;;, represents the
tangential electric field, E};, induced on segment ¢ due to
radiation from the generic current density J; on segment
1

A perhaps obvious, but important, property of the sys-
tem of equations is that multiplication of the first row of
7 with the current vector I gives E!: the total tangential
E-field on segment 1 due to radiation by the currents on
all segments. If a segment is not excited, the tangential
E-field should be zero. That is, for the general observation
segment, i,

N
Et =) E} (4)
j=1

E!; is the tangential E-field on segment i due to a cur-
rent on source segment, j. The equation for obtaining this
guantity as a function of current, geometry and segment
dimensions usually has the form

Efj = f I; J;Gijds (5)
2
where s; denotes integration over the surface of segment j,
and Gj; is a function of the geometric relationship between
the two segments.

The only difference between E};, and the matrix element
Zij, is that Z;; is obtained using the normalised form of the
current {I; = 1) on the source segment while the actual
current, I;J;, is used to obtain E;.

The solution obtained in this manner satisfies the initial
premise; i.e. the tangential E-field at the center of each
segment will be zero—excluding computer rounding errors
and machine precision.
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The components of the total simulation time mentioned
in equation (1) result from the following operations:
» N? elements have to be calculated in order to initialise
the Z-matrix. Each element is calculated by numerically
solving an equation in the form of equation {(5), with I, =1
for each element.
+ The excitation vector, V, is filled according to the ex-
citation of each segment in the structure. Equation (3)
is normally solved by factoring the Z-matrix using LU-
decomposition and then solving for I. LU-decomposition
requires N3 operations; for large problems, matrix factor-
ing hence comprises the largest component of the execution
time.

I1I. PREVIOUS INVESTIGATIONS AND ATTEMPTS AT
ITERATIVE METHODS

Four previous publications describe iterative methods
which relate to the SIM; these are: the banded Jacobi
method [3], the block Seidel technique [4], the conjugate
gradient method [5] [6] and the Impedance Matrix Local-
ization (IML) methed [7].

The banded Jacobi iterative scheme described by [3] was
one of the first iterative methods to be implemented in a
Method of Moments EM Code. This iterative technique is
implemented in the GEMACS [8] program.

In GEMACS, a banded matrix is obtained by neglecting
matrix elements some distance {(or band} away from the
main diagonal. A second matrix, consisting of those ele-
ments that were disregarded in the banded matrix, is also
generated. A first estimate of the current is found by fac-
toring and solving the banded system. The second matrix
is then used to improve the current estimate iteratively un-
til convergence is achieved. The method is similar to the
standard Jacobi iterative scheme, except that a banded,
rather than a diagonal matrix is employed. Mathemati-
cally the SIM is closely related to banded Jacobi iterative
scheme, except that a sparse rather than banded matrix
is employed—this difference has considerable advantages
however.

The following formulation of the banded Jacobi method
is given in terms of equation {3). The method is initialised
by breaking the Z-matrix into two submatrices

Z=B+LU (6)

where LU is an upper and lower triangular matrix and B
is a banded diagonal matrix with upper and lower band-
widths M (number of minor diagonals). GEMACS itera-
tively solves the equation

BI*t*! = v — (LU)I¥ (7)

In order to achieve convergence while using small bands,
the banded Jacobi method relies on renumbering segments
to ensure that the majority of the largest elements of the
Z-matrix lie about the main diagonal. However, with many
structures, such an ordering is not always possible; when a
multi-dimensional structure is electrically large, it is clearly
impossible to ensure that segment numbers of adjacent
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segments remain numerically close to each other—large
cylinders and spherical shapes are particular examples. In
such cases, the use of the banded Jacobi method invariably
causes large matrix elements to lie far from the main diago-
nal, necessitating a wide band in the matrix for reasonable
convergence rates.

A second iterative scheme was proposed by Baldwin,
Boswell, Brewster and Allwright [4], who modified NEC2
to iteratively solve for a number of substructures. Their
method is similar to the banded Jacobi method in that it
consists of a B-matrix which contains all the self interac-
tion submatrices for the substructures, and a LU-matrix,
which contains the interaction submatrices between differ-
ent substructures:

[Z,] © ve- D 0 (Z12] - [Z1p]

0 [Z2] --- O [Z21] © v [Z2p]
zZ=|. : - T : T

o o [Z5] (Zpt] [Zpa] -+ O

&

Each element in square brackets denotes a submatrix
which contains either the self-interaction terms for a spe-
cific substructure, or the interaction between different sub-
structures. This iterative method is akin to the banded
Jacobi method, except that it uses a Seidel iteration tech-
nique. This method is a more coarsely granulated version
of the banded Jacobi method and is suitable for a problem
domain with unconnected substructures; good results were
reported for this specific class of problems. The method is,
however, not general enough for application to problemns
such as electrically large continuous bodies.

Conjugate gradient methods constitute the third class of
iterative methods reviewed in this paper. Although Sarkar
and Siarkiewicz [5) report faster convergence for this tech-
nique in comparison with stationary methods, Davidson
[6], amongst others, reports slower convergence rates for
the conjugate gradient method. The reason for this dis-
crepancy possibly is a result of the fact that Sarkar inves-
tigated very simple problems (dipoles and square patches)
that resulted in matrices that had only a few eigenvalues;
for such matrices, the conjugate gradient method is known
to converge quickly. Davidson applied the method to more
realistic problems and reports that the solution times are
even greater than those for LU-decomposition.

Recently, Canning [7] proposed an Impedance Matrix Lo-
calization (IML) method for MoM calculations. IML for-
mulates sub-domain basis and weighting functions which
exhibit strong directional characteristics. The radiation
patterns of the basis and weighting functions are then made
directional between the source and observation regions of
a structure, resulting in an interaction matrix with many
small elements. The small elements are set to zero, and
the resulting sparse matrix is solved iteratively. The ini-
tial results presented for this technique are for simple two
dimensional problems and it is difficult to compare to the
SIM until results for more general three dimensional cases
becomes available.

1V. DEVELOPMENT OF THE SPARSE ITERATIVE
MEeTHOD (SIM)

The SIM consists of a sparse matrix that contains only
those elements that have an interaction greater than some
specified value. In the first implementation of the SIM, the
elements making up the sparse matrix were chosen accord-
ing to the distance between interacting segments. If the
source and observation segments were further apart than
a distance that we called the zero interaction distance, do,
then their interactions were not included in the sparse ma-
trix. An iterative scheme is then used to compensate for
the couplings which were neglected. The accuracy of the
solution obtained using the SIM can be forced to be as ac-
curate as that obtained using LU-decomposition by using
a sufficient number of iterations.

1 TEE

Fig. 1. Arbitrary oriented wire segments used to illustrate the de-
velopment of the Sparse Iterative Method (SIM)

The following discussion concerning the development of
the SIM is done with reference to figure 1. Initially, cou-
pling between segments that are further apart than a dis-
tance, dg, are omitted when filling the matrix, since cou-
pling reduces with increasing separation. Alternatively,
some measure of interaction other than a distance can be
used to determine which matrix elements to include. The
incorporation of other parameters, such as orientation, will
probably improve the performance of the method.

Omitting the coupling between segments further apart
than dp results in a sparse matrix, S; the non-zero elements
represent strong coupling. Thus the Z matrix is broken into
two submatrices

Z=S+D (9)
where the D matrix is the dense matrix of the interacticns
not in the sparse matrix S.

The matrix equation, SI = V, is solved for the currents,
1, on the structure where V is the structure excitation. The
current, I, will not satisfy the boundary conditions at all
segments, since weaker interactions were disregarded and,
as a result, some segment centers will have non-zero tangen-
tial E-fields. A modified LU-decomposition technique{9] is
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used on 5 to take advantage of its sparsity, and our imple-
mentation did not use specialized storage mechanisms for
the sparse matrix, as it is outside the scope of this work.

The crux of our selution technigue is to apply artificial
sources to the structure with values that are equal and
opposite to the tangential error fields on each segment.
These sources compensate for the coupling that has been
neglected between those segments that are further than dy
apart. The error fields can be described by a vector of
length, N, called E¢. Mathematically, application of the
artificial sources can be achieved by subtracting the error
fields, E*® from the excitation vector, V. New currents are
then calculated by solving 81 = V — E°. This procedure is
performed iteratively until the solution converges.

The iterative technique described above can be expressed
in concise mathematical notation as follows:

Set Vy = V and iterate:

S = Vi (10)
° DI, (11)
Visr = Vi — Ef (12)

This procedure can be continued until the number of itera-
tions, %, results in a converged solution for I,. Convergence
is not usually easy to define without knowledge of the ac-
curate answer. Two measures of convergence were used:
The first is the Predicted Relative Error (PRE) as de-
fined by [8]. For the k-th iteration, the PRE is defined
as
PRE; = (IREx)*/IRE: 1 (13)

where IRE is the Iterative Relative Error (JRE) for itera-
tion k and is given by:

1M = Te—ai
1RE = ]

- the Euclidean vector norm is implied.
The other convergence measure used was the normalised
residual error, R? which is given by

T
IIE3H
as defined in {6]

The computer time requirements for the SIM are given
by equation (16).

(14)

(15)

t « AN? + BN® + kCN? + other smaller terms  (16)
As in equation (1), the AN? term is associated with calcu-
lating the interaction elements for the § and D matrices.
The BNF term is related to the time required to factor the
sparse matrix, S, where z ranges from 1-3, depending on
matrix sparsity. When large sparse matrices are factored
z approaches 1 . The kCN? term is related to the time re-
quired to calculate the E-tangential errors using equation
(11) for k iterations. In this case the C coefficient is quite
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small since it only involves a single complex multiplication
and addition.

The SIM method hence produces results in times propor-
tional to N2, The SIM resulted from careful consideration
of the physical mechanisms at play in the method of mo-
ments. It is'interesting to note that the final method bears
a similarity to the Banded Jacobi Method (8], where the
updating of the RHS of equation (10} is done in exactly
the same manner. The major advantage of the SIM is that
a sparse, rather than a banded, matrix is employed. As
such, the method is not constrained to examples which are
easily renumbered. The SIM should alsc result in either
less dense matrices to factorise, or, for similar densities, a
lower number of iterations to reach convergence.

V. ILLUSTRATION OF THE OPERATION OF THE SPARSE
ITERATIVE METHOD

| 1 6
2 7
-+ 1
0.5A] 3 TV 8
4 9
H H
5 10
v I
. 0.6) )

Fig. 2. Two dipole example to illustrate the operation of the Sparse
Iterative Method

The SIM is best illustrated using a two dipole example
(figure 2). Each dipole consists of five 0.1) segments and
are spaced 0.6\ apart. The zero interaction distance, dj,
was set to 0.5\, and the absolute wavelength was 10 m
(29.98 MHz). The segment numbering is indicated in figure
2; the first dipole was excited with a 1 V applied E-field
source in the center (segment 3). This example is hence
simplified, in the sense that all the interactions on each
dipole are included in the S-matrix, but no interactions
between the two dipoles are included, since they are spaced
at more than dy from each other. The format of the SIy =
V equation is shown in figure 3.

The first iteration will solve for the current on the left
dipole (segments 1-5), but since interactions to the right
dipole are omitted, no current will be induced on segments
6-10. Figure 4 shows this current in the bottom graph.

Figure 4 also shows the tangential E-field error, versus
position on the antennas, for each iteration. After the first
iteration, no E-field error is present on the left dipole—
all interactions on that dipole were represented in the S-
matrix, and the boundary conditions satisfied by normal
method of moments operation. Large E-field errors exist on
the parasitic dipole, since no interactions to that antenna
were taken into account. These values are then subtracted
from the excitation vector for the next estimate for current,
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Fig. 5. Format of SIy = V, after first iteration.

Etan (mV/m)
8

Fig. 4. The current and Etan error on the two dipole array example
after every iteration

vielding the matrix equation shown in figure 5

Solving with this modified excitation vector yields the
current and E-tangential error results for iteration 2 (see
figure 4). A current is now established on the parasitic
dipole with zero E-tangential errors. The reason why
the tangential E-field errors are zero is because they were
counter-acted by error sources that were equal and oppo-
site to the tangential errors that were found in the previ-
ous iteration. In this iteration, the effect that the parasitic
dipole current has on the source dipole is neglected, hence
there will be E-tangential errors on the source dipole. A
new excitation vector is formulated to negate these errors.

Figure 4 illustrates how this process results in a current
distribution which satisfies the boundary conditions after
a few iterations.

VI. REsuLTS

This section commences with results for linear dipoles of
varying electrical length. The results for this rather triv-
ial problem demonstrate the computational advantages in-
herent in the SIM, compared to normal LU-decomposition.
Thereafter, results for a 2% square grid (544 segments) and
a simple missile structure (410 segments) are presented.
These more realistic examples verify the operation of the
SIM for complex problems and demonstrate the computa-
tional time advantage of the SIM over LU-decomposition.
The SIM computational speed advantage will increase with
an increase in problem size.

All computer time results are for a Intel 486 processor
running at 33 MHz and equipped with 256 kByte cache
memory. The two methods both run within the same C++
NEC2 equivalent program with a software switch to select
whether LU-decomposition or the SIM was to be used. The
redesigned program [1] was compiled using the GCC public
domain C++ compiler with optimisation. No manual effort
was made to optimise either of the two routines numerically
or computationally.

A. Dipoles

The dipole length was continually adjusted to ensure
that segment length is maintained at A/10. The 500 seg-
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TABLE I
TABLE OF RESULTS FOR DIFOLE PRGBLEMS {ALL SIMULATIONS WERE DONE WITH INTERACTION DISTANCE OF 2A)

segments | k | S-den S-factor | SIM-iterate | SIM Total [ LU-factor
_ -sity(%) | (5) (s) (s) (s)
100 1 |36 1 0.25 1.25 3
200 4 |19 1 2 2 35
300 5 |13 1 5 6 87
400 6 |10 1 10.2 11.2 206
500 T |8 3 17.8 20.8 403
600 8 | 6.5 4 28.8 32.8 697
700 9 | 5.6 5 44.1 49.1 1106
800 9 |50 7 58 65 1850
900 10 | 4.4 9 82 91 2350
1000 11 | 4 10 112 122 3224

ment dipole, for instance, will be 50 in length. The dipoles
were all fed on the center (or just off center) segment with
an applied field voltage source. Table I gives detailed re-
sults for these simulations. The matrix fill times are not
included—these are the same for LU-decomposition and
the SIM. Figure 6 shows the computer time comparison
between LU-decomposition and the SIM. The two com-
ponents in the SIM solution, sparse matrix factoring and
iteration time, are also shown in figure 6.

10 Y T T T T T

—  MoM Factor

SIM Facter

SIM lterate

SIM Facior + Horate

Compulsr time {s)

100 =0 300 500 700 00 WO 1000
Number of Segrmants (N}
Fig. 6. Computer time comparison between the SIM and LU-

decomposition solutions on a Intel 486-33 computer. SIM results
are broken down in terms of the component for sparse matrix
factoring and for total iteration time.

The values in figure 6 were obtained using a constant
dyp = 2X\. There is a tradeoff between the time spent on
factoring the sparse matrix and the time associated with
iteration to obtain the final solution. Figure 7 indicates the
computer times required for factoring 8, for iteration and
the total solve time, all plotted versus dg. .

Figure 7 indicates that the SIM factor time increases
with increasing dy, since the matrix density increases. The
iteration time, on the other hand, reduces with increasing

Compuier time {8}

Fig. 7. Computer time versus dgy for factoring, iteration and the
combination in the SIM for a 700 segment dipale

do, since more interactions are taken into account in the
S-matrix and requires fewer corrections to achieve conver-
gence. Given that the factor time increases faster than the
corresponding reduction in iteration time with increasing
dg, it is clear that the optimum is close to the minimum dy
required for stable solutions.

For problems with a large number of unknowns, table I
shows a dramatic decrease in solution time using the SIM,
as opposed to LU-decomposition. The speed-up factor at
1000 segments is around 30, and this value will continue to
increase for larger problems, since LU-decomposition fol-
lows 2 N3 time dependence whereas the SIM is essentially
limited by a N? time dependence. The following two sec-
tions show results for grid problems.

B. Grid Patch

A wire grid patch, with dimensions and segment num-
bering similar to an example presented in the GEMACS
manual [8], was analysed - the geometry is shown in figure
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TABLE i1

TABLE OF RESULTS FOR GRID PATCH

15

do(M) | S-density | k | PRE (%) | S-factor | SIM-iterate | SIM Total | LU-factor
0.9 39 41 0.29 458 25 483 733
0.65 | 24.2 3| 064 285 20 305 733
0.4 10.6 8| 088 170 42 212 733
8. It was hoped to compare SIM to GEMACS using other C. Missile
geometries, b.u.t the program is unfortunately not available A missile example drawn from [6] was used to illustrate
due to US military restrictions. the simulation of a more complex problem. Figures 9
- 2 wavelengths -
17
118 A
2|19
o = 107 mm
c ® > 13 mm
: t=
tn
c
o
4
>
o
2
™ 23 mm 135 mm
¥
157 mm
® v v
167 mm

Fig. 8. The 544 segment wire grid patch problem

The grid was excited with a plane wave with a direction
of propagation broadside to the patch and a polarisation
of 45° relative to the patch edges. Table Il shows the com-
parison between the SIM and LU-decomposition or various
problem parameters. In this case, iterations were contin-
ued until a PRE < 1% was achieved. This value is quite
accurate for most electromagnetic problems [8], but typi-
cally, values close to machine precision were obtained with
3 or 4 more iterations.

The speed increase for this problem, relative to LU-
decomposition, for an interaction distance of 0.4, is ap-
proximately 3-4 times faster. This speed-up is much less
than the approximately 20 times increase for a dipole prob-
lem with the same number of segments. Wire grid prob-
lems have a higher number of segments within the zero-
interaction distance; the sparse matrix will therefore be
considerably denser for a grid problem when compared to
a linear dipole. As the size of the grid problems increase, so
the difference between the execution time of the SIM and
the LU-decomposition based techniques will become larger.
The SIM is hence not inherently less successful with grid
problems, but rather just requires electrically larger prob-
lems for its full potential to be achieved. Qur current im-
plementation on a 486 personal computer does not allow
larger problems to be evaluated at this stage.

Fig. 9. The geometry of the missile geometry used as test case at a
frequency of 3 GHz

h b

Fig. 10. The gridded 410 segment missile problem

and 10 show the actual and segmented geometry. Segments
which were approximately 0.1x in length were used, and
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TABLE III
TABLE OF RESULTS FOR MISSILE EXAMPLE

S-density | k | PRE (%)

S-factor

SIM-iterate | SIM Total | LU-factor

25.7 6 | 0.65 42

13 55 194

wire radii were chosen to ensure a wire surface area equal
to twice the actual surface area of the missile. Applied
E-field voltage sources were placed on the 4 slanting wires
and the 410 segment problem was analysed using both LU-
decomposition and the SIM. '

Table III gives the pertinent values for parameters and
times for this problem. The SIM once again produced
result about 4 times faster than LU-decomposition. The
points raised in the previous section concerning the den-
sity of the sparse matrix also apply t¢ this problem.

To illustrate the difference in the results produced by the
two techniques, the input impedances from both methods
were recorded.

16.2458-)0.06050 ©2
16.2432-j0.05737

LU-decomposition:
SIM:

VI1. CoNCLUSION

A sparse iterative method for replacing LU-decomposi-
tion in MoM problems has been presented; the method
is based on the formulation of a sparse matrix through
neglecting those matrix elements which represent coupling
smaller than a predefined value.

Correction for neglecting many small couplings is then
performed by calculating the tangential E-field at match
points, and applying these as equal and opposite exci-
tations to the structure. Performing this procedure it-
eratively results in a solution which is forced to sat-
isfy the boundary conditions at the match points, up to
any specified degree of accuracy - including that of LU-
decomposition. Even when enough SIM iterations are per-
formed such that the currents are as accurate as those
obtained from LU-decomposition, the SIM still executes
faster.

The convergence of the method is somewhat dependant
on the particular geometry, but in all cases a 10~2 limit on
Eian guaranteed convergence. It was shown that in some
cases this can be relaxed to 10°.

Simple comparative cases were presented to indicate
computer time related aspects, and some more complex
two- and three-dimensional cases were also analyzed to
demonstrate the general applicability of the SIM.
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