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Abstract—A method is presented for the optimisation of the
shape of the ferromagnetic core of fluxset type magnetic filed
sensors. The objective of the optimisation is to find a core shape
that guarantees the most homogeneous magnetisation of the
core due to a given external magnetic field. By finding the
optimal shape of the core the sensitivity of the semsor is
improved. Since the thickness of the ferromagnetic conducting
ribbon core used for fluxset semsors is considerably smaller
than its other dimensions, the presence of the core is modelled
by magnetic and conducting surface currents flowing in a
mathematical surface representing the core. The
electromagnetic field is calculated by solving an integral
equation derived from the assumption of impedance type
boundary conditions on the two sides of this surface. The core
shape is optimised by minimising the magnetisation differences
at different locations of the core. Simulated annealing
procedure is used for the optimisation.

1. INTRODUCTION

Fluxset type magnetic field sensors are used for the
measurement of weak magnetic fields in various
applications, such as geomagnetic measurements or eddy
current testing (ECT) (1], [2]. The basic components of a
fluxset sensor are an exciting solenoid and a pick-up
solenoid wound around a ribbon shape ferromagnetic core
(see Fig. 1). The magnetisation of the core due to the
magnetic field generated by the exciting solenoid can be
changed by varying the shape of the core. The more
homogeneous the magnetisation of the core material, the
better the sensitivity of the sensor. In this paper an
optimisation method is presented that can be used for finding
the optimal core shape for a given exciting field.

To find the optimal shape, the solution of the related direct
problem, i.e. the calculation of the magnetisation of a given
core due to an external magnetic field, is required. Since the
thickness of the core is negligible compared to its other
dimensions, it is advantageous to assume it as a
mathematical surface. The presence of the ferromagnetic
core is modelled by magnetic and conducting surface
currents flowing in the surface representing the core. The
actual distribution of the surface currents is calculated by
solving an integral equation derived from the enforcement of
the impedance type boundary conditions [3], [4] on the
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Fig. 1. Schematic drawing of a fluxset sensor.

two sides of the core surface. The numerical solution of the
integral equation is calculated by wusing analytical
expressions for the spatial Fourier transform (FT) of the
elements of the dyadic Green's functions related to the
magnetic and conducting surface currents.

On the basis of the above outlined solution of the direct
problem, the optimisation of the core shape is made by using
simulated annealing optimisation procedure. The objective of
the optimisation is the minimisation of the deviation of the
magnetisation at different spots on the surface of the core
from the average value of the magnetisation. Several
constraints dictated by technological reasons are also posed
on the optimisation procedure.

In the followings first the operation principle of the fluxset
sensor is outlined to explain the objectives of the shape
optimisation. After this, the derivation and numerical
solution of the integral equation used for the modelling of
the ferromagnetic conductor core is discussed. Finally the
procedure used for finding the optimal shape of the core is
explained. Several numerical and experimental examples are
also presented to demonstrate the results of the paper.

II. OPERATION PRINCIPLE OF FLUXSET SENSORS

The schematic drawing of a fluxset sensor is shown in
Fig. 1. The sensor is made of two solenoids wound on each
other. The inner and outer solenoids are called exciting
solenoid and pick-up solenoid, respectively. In the middle of
the sensor the ribbon shape core is located. The core is an
annealed metallic glass that is a very good soft magnetic
material with high initial permeability and low saturation.



Fig. 2. Idealised BH curve of the core material.

The idealised BH curve of the core material is shown in
Fig. 2. The initial relative permeability and conductivity of
the core are about p =85000 and o©=1.0 105 Si/m,
respectively, the material saturates on about B.=1 T. The
actual BH curve and other parameters of the material are
strongly depend on the different mechanical, heat, chemical,
etc. treatments of the raw material carried out to improve the
magnetic properties of the core. The approximate length and
diameter of the sensor are 8 mm and 2 mm, respectively. The
thickness of the ribbon core is 40 pm.
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Fig. 3. Oscilloscope plot of the current of the exciting solenoid, i (), and the
voltage of the pick-up solenoid, v (s). a) without external magnetic field, b) with
external magnetic field.
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In Fig. 3 the oscilloscope plot of the current of the exciting
coil, i (), and the voltage of the pick-up coil, v(1), are
shown. Considering the idealised magnetisation curve shown
in Fig. 2, we can see in Fig. 3.a that the induced voltage in
the pick-up solenoid, v (#), is almost zero when the core is
saturated, on the other hand this induced voltage is a
relatively large value (proportional to the time derivative of
the exciting current) while the exciting magnetic field
changes its direction (i.e. the core material is magnetised in
the linear range). If an external magnetic field (i.e. the field
to be measured) is superimposed on the periodic excitation,
the time spent in saturation in one direction (e.g. when
B=B,) is longer than the time spent in saturation in the other
direction (e.g. when B=-B), as a result the impulse, v (?), 18
shifted. This situation is shown in Fig. 3.b. The time shift of
the impulse, v(£), can be accurately measured, consequently
the external field can be predicted.

The accuracy of the measurement basically depends on the
shape of the pulse, v(#), detected on the sensor coil. It can be
seen that, the sharper the detected voltage signal, the easier
to detect small time differences, consequently the magnetic
field is measured more accurately. On the basis of this
consideration we may conclude that the more uniform the
magnetic field in the core (i.e. the different regions of the
core are saturated in the same time instant), the higher
accuracy can be achieved in the measurement. The
requirement of the uniformity of the magnetic field in the
core might be fulfilled by changing the shape of the sensor
core. Since the pulse shape is formed by the fast change of
the magnetic flux density inside the core when the exciting
field changes its sign, the time dependence of the pulse can
be calculated by assuming a linear ferromagnetic material
that permeability is obtained as the gradient of the linear part
of the BH curve. Of course, the results of such calculations
are useful only if the core material is not saturated. Since our
goal is to find a configuration where the whole volume of the
sensor core is saturated in the same time instant, the
assumption of linear ferromagnetic material is acceptable.

TII. CALCULATION OF THE MAGNETISATION OF THE CORE

A. The Integral Equation

Assume that a linear ferromagnetic conductor film is
placed in the z=0 plane of a Cartesian co-ordinate system
(see Fig. 4). The conductivity, permeability and thickness of
the film are W, ¢, and h, respectively. The electromagnetic
field is assumed to vary in time as the real part of exp(jcr)
where o is the angular frequency of the excitation. Since the
thickness of the film is considerably smaller than its other
dimensions, the film is modelled as a mathematical surface,
S, having zero thickness. The behaviours of the tangential
component of the electric and magnetic fields on the two
sides of surface, S, are approximated as they were on the two
sides of an infinite plate that thickness is . This behaviour is



Fig. 4. Ferromagnetic conductor fitm in the z=0 plane.

expressed by the so called impedance type boundary
conditions [3], {4],
H -H: =ﬂ:anh(ﬂ'i)ﬁx(E:+E:), 1)
n 2
E'-E; =1tanh(%h-]ﬁx(H,*+H,'), @
G,

where M= ,/ joo,, E, and H, denote the tangential
components of the electric and magnetic fields on the
surface, S. Subscripts + and — refer to the filed values on the
z=+0 and z=~0 sides of the surface. i is the normal vector of
surface, S.

The jump in the tangential electric and magnetic fields
prescribed by (1) and (2) might be realised by placing the
magnetic surface current, M (r), and the conducting surface
current, K (), as secondary sources in the surface, S (r
denotes the spatial co-ordinate vector). Based on the outlined
model the electric field, E, and the magnetic field, H, in the
presence of the ferromagnetic film can be obtained as,

H=H,+H,, 3)

E=E,+E,, )
where the subscript O refers the external field (in the case of
the fluxset sensor this external ficld is the one that is
generated by the exciting solenoid). The field quantities with
the subscript f denote the electromagnetic field generated by
the secondary sources, M(r) and K(r), representing the
presence of the ferromagnetic film. Hf and E; can be
expressed with the help of dyadic Green's functions in the
following form:

E, = [[VxG(rir')-M,(r') - jouG(rir')- K,(r')] ds'.  (5)

H, = [[joeG(rir)- M,(r)+ VxGlrir )} K,(F)] &5, (6)
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where g, and |1, are the permittivity and permeability of the
free space, respectively. G(rlr') is the dyadic Green's function
transforming the excitation into the field components. r and
r' are the co-ordinates of the field and the source points,
respectively. G(rlr') is obtained by the solution of the
equation [5],

VxVXG(rir) -’ g,Grir)=8(r-r' )1, %)
where I is the unit dyad defined as,
I=Xk+3y+22, ®)

and X, ¥ and Z denote the unit vectors of the co-ordinate
system.

Having the expressions (5) and (6) with the assumption
that the external field is continuous on the surface, S, the
following integral equations are obtained for the unknown
secondary sources, M,(r) and K (r), modelling the effect of
the presence of the ferromagnetic film:

Gﬂcom["—:)(ﬂ; —H;)-ix(E; +E;)=2AxE,, ©)
1

%coth(%h)(E; —E;)-ax(H},+H;)=2ixH,, (10)

where superscripts +, — and subscripts 0, ¢, f have the same
meaning like in (1)-(4).

For special geometrical arrangements the above integral
equation might be simplified. Such situation is when the
ferromagnetic film is placed in free space. In this case only
the magnetic surface currents are needed for the calculation
of the tangential magnetic field on the surface, S. This
special case will be applied for the optimisation of the core of
the fluxset sensor.

B. Numerical Solution of the Integral Equation

Considering the arrangement and co-ordinate system
shown in Fig. 3, the discrete approximation of integral
equations (9), (10) is found by approximating the unknown
functions, M (r) and K(¥), as,

N N
M,(x,y)= Y Ma,(x,)= Y (ML3+M05)a,(x.y): xyes
n=1

n=l

11

) . (an

K,(x,y)=ZK,"a..(x,y)=Z(K;;x+K,",y)a,,(x,y): x,y€S
n=l n=l

(12)

where a,(x,y) denotes the approximating function. Although
the method outlined here is easily applicable for rather wide
class of approximating functions, the computer code



developed for the optimisation of the sensor core uses linear
approximating functions. Accordingly, the surface, S, is
subdivided into a regular grid of N cells, each cell being a
rectangle, the co-ordinates of the n-th grid point are (x,;y,).
The distances between the nearby points in the x and y co-
ordinate directions are Ax and Ay, respectively. Consequently
the approximating functions are,

a(xy) f[x % )’A;,,] n=12,..N;

-l xl— yl+lxyl,
0, otherwise;

=-l<x,y<l;

f(x,y)={ a3

In the followings we will use the two-dimensional spatial
Fourier transform (FT) of spatial functions. In the case of the
approximating function the FT is denoted and defined as,

an(a»B) = }."{a,, (X, y)} = T ]:an(x,y)ej(“""ﬂ)’) dxdy,

—aot0

(14)

where o and P are the pairs of the x and y co-ordinates in the
Fourier transform plane.

Using similar considerations presented in {6], the FT of
the electric and magnetic field generated by the
approximation of the surface currents (11) and (12} can be
expressed analytically in the following form (superscripts +
and — refer to the field in the z>0 and z<0 half spaces,

respectively),

At (0,B.2) = F{HE (x,y,2) &} =

=g{(ﬁz+vz)muny opM; Ky q}k(a gm0
A (oup.2) = FlH; (x.3.2) 5} =

g[*aﬁ 20(5; YZ)M%%]ﬁn(a,B)e-m’ ae
ﬁi(a,ﬁ,z)ﬁ{ft*(x,y,z)-z}:
Es(B,2)= F{E:(x,y.2) 3} =

=g[-( +72C)£:7+a|3 M zu:t_ (P (18)
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B (oB,2) = FLE(%,7,2)-5) =

=i oBK;, (Oﬂ +Y ) Mn (OL ﬁ)e-ﬂlzl (19)
=1 20,y
Ex(a.B.z)= i"{E?(x,y,z)'E} =
N n n n _ n , 20
- 2 iU.K_u +BK, iBMsx oM;, &"(Q,B)e‘m" @0
n=l1 2(060 27
where, '
] ot o =B, e, > ol +B en
= — ot 4B -t 2 2,p2."
J,/ W€y, OHGE, <’ +B%;

Having a look at the above expressions, we can see that
they can be applied for the kind of approximations where the
FT of the approximating functions, a,(x,y) (n=1, 2, ...,N),
exist. Practically most of the possible approximations meet
this requirement.

Taking the inverse FT of the expressions, (15)-(20), and
testing them with the testing functions, 7, (x.y) (m=1,2,....N),
a system of 4N linear equations is obtained for the 4N
unknown coefficients, M., M:y, K, K"y (r=1,2,....N). In
the numerical examples presented in this paper, linear
testing functions are used, i.e.,

1, (x,y)= f[x 2 ,yAyy ] m=12,..N; (22)

After solving the obtained equation system, the
clectromagnetic field can be evaluated using (3), (4) and
(15)-(20), consequently the magnetic field can be calculated
on the two sides of surface, S. Based on the well-known
interface conditions (continuity of the tangential component
of the magnetic field and the normal component of the
magnetic flux density at the interface of the film and air), the
magnetisation of the ferromagnetic film can be also
evaluated. Since the relative permeability of the
ferromagnetic material used for the core of the fluxset sensor
is very high (1,=85,000), our design requirement will be the
smoothness of the amplitude of the tangential component of
the magnetic field on the surface, S.

C. Numerical Example

A computer code has been developed for the above
described numerical calculations. As an example, the
tangential magnetic field on the surface of an elliptical shape
core is calculated. The principle axis of the ellipsis is 5 mm
and it is parallel to the x axis, the minor axis of it is 0.8 mm.
The relative permeability and conductivity of the film are
1, =85,000 and 6=1.0 10° S/m, respectively. The frequency
of the excitation is f=10.0 kHz. The ferromagnetic film is
placed in the homogeneous x-directed external magnetic
field that amplitude is 1.0 A/m.
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Fig. 5. x component of the magnetic surface current density representing the
ferromagnetic film (out of phase with the external magnetic field).

In Fig. 5 the x component of the magnetic surface current
modelling the presence of the ferromagnetic film is plotted.
(Note that in the following plots the function values
corresponding to the points outside of the film surface are set
to zero, these values have no meaning.) The y component of
the magnetic surface current is considerably smaller than its
x component, this is because of the particular excitation and
because of the dimensions of the ellipsis (the principle axis is
6.25 times bigger than the minor axis). Figure 6 shows the
x component of the magnetic field on the surface of the film.
The y component of the magnetic field - due to similar
reasons mentioned before - is negligible, consequently the
magnetisation of the film can be characterised almost
entirely with the values plotted in Fig. 6. The ratio of the in
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Fig. 6. x component of the magnetic field on the surface of the ferromagnetic
film. a) in phase with the external magnetic field, b) out of phase with the
external magnetic field.
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phase and out of phase components gives information on the
phase shift of the sensor signal with respect to the external
field.

IV. OPTIMISATION OF THE CORE SHAPE

Based on the outlined method for the calculation of the
magnetisation of the sensor core, the optimal core shape is
found by simulated annealing optimisation procedure. The
objective, expressing the requirement of smoothness of the
magnetisation of the core material, is the minimisation of the
expression,

SIE-H
= (23)

where H, denotes the average of the absolute value of the
tangential magnetic field on the surface, S, and H; is the

absolute value of the tangential component of the magnetic
field at the n-th grid point. This objective function gives the
value of 35.1% for the elliptical shape core analysed in the
previous section.

Several constraints are posed on the optimisation. One of
the constraints comes from the symmetry of the sensor
arrangement, consequently the core is designed to be also
symmetric. By the outer dimension of the sensor, the
maximum size of the core is defined, it cannot be bigger than
a Smmx0.8mm rectangle (see Fig. 7). To obtain a sensor
signal with sufficient amplitude, the minimal size of the core
is also fixed (see white area in Fig. 7). In Fig. 7 the shapes
corresponding to the first and final approximations of the
optimisation, i.e. the initial and the final shapes, are also
shown.

Due to the symmetry and the special elongated shape of
the sensor, the shape of the core is described with a small
number of parameters, accordingly, the number of degrees of
freedom of the optimisation is 4. The particular choice of the
simulated annealing optimisation procedure [7] is supported
by the facts that it is very easy to apply this algorithm and it
works almost for sure if it is properly implemented. On the
other hand, the efficiency of this method is not particularly
good because of the high number of function calls required
for finding the optimum. However, the design of a fluxset
sensor is not a kind of problem that has to be solved very
frequently, that is why the robustness of the optimisation is
the primary concern and the efficiency is not crucially
important.

Final Shape

0.8 mm

Smm

Permitfed Area Initial Shape

Fig. 7 Constraints of the optimisation and the initial and final shapes.
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Fig. 8. x component of the tangential magnetic field for the initial shape core.
a) in phase with the external magnetic field, b) out of phase with the external
magnetic field.

In Fig. 8 the x component of the tangential magnetic field
in the case of the initial shape is plotted. In Fig. 9 the
tangential magnetic field of the optimal shape sensor core is
shown. The objective function, (23), for the initial and final
shapes are 54.4% and 29.5%, respectively.

CONCLUSIONS

An optimisation method has been presented for the design
of the ferromagnetic core of fluxset sensors. As the part of
the method, the solution of the related direct problem, i.e. the
calculation of the magnetisation of a ferromagnetic
conductor thin film due to a given external field, has been
discussed. The presence of the ferromagnetic conductor film
has been represented by magnetic and conducting surface
currents. The actual distribution of these surface currents has
been obtained by the numerical solution of an integral
equation derived from the application of the impedance type
boundary conditions at the surface representing the film. The
integral equation has been solved by using analytical
expressions for the spatial Fourier transform of the
electromagnetic field generated by the surface currents
representing the ferromagnetic film. On the basis of the
solution of the direct problem, the shape of a fluxset sensor
has been optimised by using simulated annealing procedure.
Numerical examples have been presented for the
demonstration of the results of the paper.
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b)
Fig. 9. x component of the tangential magnetic field for the opumum shape core.
1) in phase with the external magnetic field, b) out of phase with the external
magnetic field.
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